

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Status of Higher Order QCD Calculations

Aude Gehrmann-De Ridder

CHIPP HEF 2010

01.09.2010

QCD at High Energy Colliders

QCD: successful theory of strong interactions
 QCD is omnipresent in high energy collisions

QCD effects

- initial state: parton distributions
- final state: jets
- hard scattering matrix elements with multiple radiation

Detailed understanding of QCD mandatory for

- Interpretation of collider data
- Precision studies
- Searches for new physics

Expectations at LHC

- LHC brings new frontiers in energy and luminosity
- Production of short-lived heavy states (Higgs, SUSY,...)
 - detected through their decay products
- Search for new effects in multi-particle final states
 - typically involving jets
 - need to understand signal and background processes
- Require precise predictions: NLO

Expectations at LHC

- Large production rates for Standard Model processes
 - > jets
 - top quark pairs
 - vector bosons
- Allow precision measurements
 - masses
 - couplings
 - parton distributions
- Require precise theory: NNLO

Aude Gehrmann-De Ridder: Status of Higher Order QCD Calculations

Outline

Multiparticle production at NLO

Precision observables at NNLO

Aude Gehrmann-De Ridder: Status of Higher Order QCD Calculations CHIPP HEF 2010

Why NLO?

- reduce uncertainty of theory prediction
- reliable normalization and shape
- accounts for effects of extra radiation
- jet algorithm dependence
- Example: Z+j at Tevatron
 - NLO error: ~15%
 - substantial NLO effect
 - correction not constant

• Require two principal ingredients (here: $pp \rightarrow 3j$)

- one-loop matrix elements
 - explicit infrared poles from loop integral
 - \square known for all 2 \rightarrow 2 processes
 - \Box known for many 2 \rightarrow 3 processes
 - \Box current frontier 2 \rightarrow 4: major challenge
- tree-level matrix elements
 - implicit poles from soft/collinear emission

Implicit poles appear only upon phase space integration

$$\sim \frac{1}{s_{qg}} = \frac{1}{2E_q E_g (1 - \cos \Theta_{qg})} \quad \begin{array}{l} \text{Soft gluon:} \quad E_g \to 0 \\ \text{Collinear qg:} \quad \cos \Theta_{qg} \to 1 \end{array}$$

Structure of NLO m-jet cross section

$$\mathrm{d}\sigma_{NLO} = \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NLO}^R - \mathrm{d}\sigma_{NLO}^S \right) + \left[\int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NLO}^S + \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NLO}^V \right]$$

- General methods for combining virtual and real emission:
 - extract process-independent implicit poles from real emission
 - residue subtraction (S. Frixione, Z. Kunszt, A. Signer)
 - dipole subtraction (S. Catani, S. Dittmaier, M. Seymour, Z. Trocsanyi)
 - antenna subtraction

(D. Kosower; J. Campbell, M. Cullen, E.W.N. Glover; A. Daleo, T. Gehrmann, D. Maitre, M. Ritzmann, AG)

Automated subtraction tools

- dipole method
 - □ SHERPA (T. Gleisberg, F. Krauss)
 - □ MadDipole (R. Frederix, T. Gehrmann, N. Greiner)
 - □ TeVJet (M. Seymour, C. Tevlin)
 - □ Helac/Phegas (M. Czakon, C. Papadopoulos, M. Worek)
- residue method

□ MadFKS (R. Frederix, S. Frixione, F. Maltoni, T. Stelzer)

Bottleneck up to now: one-loop multileg matrix elements

NLO: One-loop multi-leg amplitudes

General structure

$$\mathcal{A} = \sum_{i} d_i \operatorname{Box}_i + \sum_{i} c_i \operatorname{Triangle}_i + \sum_{i} b_i \operatorname{Bubble}_i + \sum_{i} a_i \operatorname{Tadpole}_i + R$$

- One-loop scalar integrals known analytically (G. Passarino, M. Veltman; G.J. van Oldenbourgh; K. Ellis, G. Zanderighi; A. Denner, S. Dittmaier)
- Task: compute integral coefficients
- Challenges
 - complexity: number of diagrams, number of scales
 - stability: linear dependence among external momenta
- Enormous progress using two approaches
 - traditional: Feynman diagram based
 - unitarity based: reconstruct integral coefficients from cuts

NLO multi-leg: traditional approach

Based on one-loop Feynman diagrams

- contain high-rank tensor integrals
- reduced to basis integrals: with analytical (A. Denner, S. Dittmaier) or semi-numerical (GOLEM: T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, C. Schubert) approach
- Successfully applied in first complete $2 \rightarrow 4$ calculation: $pp \rightarrow ttbb$ (A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini) $\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\mathrm{b}\bar{\mathrm{b}}}} \left[\frac{\mathrm{fb}}{\mathrm{GeV}} \right]$ $pp \rightarrow t\bar{t}b\bar{b} + X$ $pp \rightarrow t\bar{t}b\bar{b} + X$ $\frac{d\sigma_{\rm NLO}}{d\sigma_{\rm LO}}$ 10 2 NLO -----1.81.61.41.20.80.6 $p_{\mathrm{T,b\bar{b}}} > 200\,\mathrm{GeV}$ $p_{\mathrm{T} b\bar{b}} > 200 \,\mathrm{GeV}$ 0.40.10.250 100 150 200 250 300 350 400 $0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300 \quad 350 \quad 400$ 0 $m_{\mathrm{b}\bar{\mathrm{b}}} \,[\mathrm{GeV}]$ $m_{\rm b\bar{b}} \, [{\rm GeV}]$ Aude Gehrmann-De Ridder: Status of Higher Order QCD Calculations CHIPP HEF 2010

NLO multi-leg: unitarity-based method

Generalized unitarity

- apply multi-particle cuts: one or more loop propagators onshell (Z. Bern, L. Dixon, D. Dunbar, D. Kosower, R. Britto, F. Cachazo, B. Feng; P. Mastrolia; D. Forde)
- result: integral coefficients are products of tree-level amplitudes evaluated at complex momenta
- Reduction at integrand level (OPP: G. Ossola, C. Papadopoulos, R. Pittau)
- Rational terms not determined by unitarity
 - Special recursion relations (C. Berger et al.)
 - Feynman diagram approach (OPP)
 - D-dimensional unitarity (R. Ellis, W. Giele, Z. Kunszt, K. Melnikov)
- Algorithmic procedure: can be automated

Automating NLO calculations

Virtual corrections: implementations

- semi-numerical form factor decomposition: GOLEM (T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, T. Reiter)
- unitarity and multi-particle cuts: BlackHat
 (C.F. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D.A. Kosower, D. Maitre)
- reduction at integrand level: CutTools (G. Ossola, C. Papadopoulos, R. Pittau)
- generalized D-dimensional unitarity: Rocket (W. Giele, G. Zanderighi)
- generalized D-dimensional unitarity: Samurai (P. Mastrolia, G. Ossola, T. Reiter, F. Tranmontano)
- several more packages in progress
 (A. Lazopoulos; W. Giele, Z. Kunszt, J. Winter; K. Melnikov, M. Schulze)
- NLO multileg results available

The Les Houches Wish List (2010)

	2010	
process wanted at NLO	background to	
1. $pp ightarrow VV + jet$	$tar{t}H$, new physics Dittmaier, Kallweit, Uwer; Campbell, Ellis, Zanderighi	Feynman
2. $pp ightarrow H+2$ jets	<i>H</i> in VBF Campbell, Ellis, Zanderighi; Ciccolini, Denner Dittmaier	diagram methods
3. $pp ightarrow t ar{t} b ar{b}$	t t H Bredenstein, Denner Dittmaier, Pozzorini; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek	now joined
4. $pp ightarrow tar{t} + 2$ jets	$tar{t}H$ Bevilacqua, Czakon, Papadopoulos, Worek	by
5. $pp ightarrow VV bar{b}$	$VBF o H o VV$, $tar{t}H$, new physics	
6. $pp ightarrow VV + 2$ jets	$VBF \to H \to VV$	unitarity
	VBF: Bozzi, Jäger, Oleari, Zeppenfeld	based
7. $pp ightarrow V+3$ jets	new physics	methods
8. $nn \rightarrow VVV$	Berger Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre; Ellis, Melnikov, Zanderighi SUSY trilepton	
	Lazopoulos, Melnikov, Petriello; Hankele, Zeppenfeld; Binoth, Ossola, Papadopoulos, Pittau	
9. $pp ightarrow b \overline{b} b \overline{b}$	Higgs, new physics GOLEM	
Dixon	CERN HO 2010	

NLO multileg: $W^{\pm} + 3j$, $Z^{0} + 3j$

Calculations of W[±] + 3j

- Blackhat + Sherpa (C.F. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita, D.A. Kosower, D. Maitre)
- Rocket (R.K. Ellis, K. Melnikov, G. Zanderighi)

• excellent description of Tevatron data

- moderate corrections
- precise predictions
- rich phenomenology
- Calculation of Z⁰ + 3j (Blackhat + Sherpa)
- Ongoing: W[±] + 4j (Blackhat + Sherpa)

Aude Gehrmann-De Ridder: Status of Higher Order QCD Calculations

Outline

Multiparticle production at NLO

Precision observables at NNLO

Where are NNLO corrections needed?

- Processes measured to few per cent accuracy
 - ► $e^+e^- \rightarrow 3$ jets
 - 2+1 jet production in deep inelastic scattering
 - hadron collider processes:
 - jet production
 - vector boson (+jet) production
 - top quark pair production
- Processes with potentially large perturbative corrections
 - Higgs or vector boson pair production
- Require NNLO corrections for
 - meaningful interpretation of experimental data
 - precise determination of fundamental parameters

What is known to NNLO?

Fully inclusive observables

- total cross sections: R-ratio, Drell-Yan and Higgs production
- structure functions in deep inelastic scattering
- evolution of parton distributions
- Higgs production in vector boson fusion (P. Bolzoni, F. Maltoni, S. Moch, M. Zaro)

- single differential observables
 - rapidity distribution in Drell-Yan process
 (C.Anastasiou, L. Dixon, K. Melnikov, F. Petriello)
- Fully differential observables
 - colourless high mass system including decays
 - jet production

Aude Gehrmann-De Ridder: Status of Higher Order QCD Calculations

NNLO calculations

• Require three principal ingredients (here: $pp \rightarrow 2j$)

- two-loop matrix elements
 - explicit infrared poles from loop integral
 - $\hfill\square$ known for all massless 2 \rightarrow 2 processes
- one-loop matrix elements
 - explicit infrared poles from loop integral
 - and implicit poles from soft/collinear emission
 usually known from NLO calculations
- tree-level matrix elements
 - implicit poles from two partons unresolved
 known from LO calculations

- Challenge: combine contributions into parton-level generator
- need method to extract implicit infrared poles

NNLO calculations

Solutions

- sector decomposition: expansion in distributions, numerical integration (T. Binoth, G. Heinrich; C. Anastasiou, K. Melnikov, F. Petriello; M. Czakon)
- subtraction: add and subtract counter-terms: processindependent approximations in all unresolved limits, analytical integration
 - several well-established methods at NLO
 - NNLO for specific hadron collider processes:
 q_T subtraction
 - (S. Catani, M. Grazzini)
 - NNLO for jet observables in e⁺e⁻ processes: antenna subtraction (T. Gehrmann, E.W.N. Glover, AG)

Higgs boson production at NNLO

Dominant production process: gluon fusion

exclusive calculations to NNLO, including H decay

- using sector decomposition (C.Anastasiou, K. Melnikov, F. Petriello)
- using q_T-subtraction (S. Catani, M. Grazzini)
- Application: Higgs at Tevatron H \rightarrow WW \rightarrow | ν | ν
 - all distributions to NNLO (C.Anastasiou, G. Dissertori, M. Grazzini, F. Stöckli, B. Webber)
 - cuts on jet activity
 - neural-network output to NNLO

Aude Gehrmann-De Ridder: Status of Higher Order QCD Calculations

CHIPP HEF 2010

Vector boson production at NNLO

Fully exclusive calculations

- parton-level event generator
 - using sector decomposition (K. Melnikov, F. Pertriello)
 - using q_T subtraction (S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini)
- including vector boson decay
- allowing arbitrary final-state cuts
- Application: lepton charge asymmetry (S. Catani, G. Ferrera, M. Grazzini)
 - small NNLO corrections
 - determine quark distributions

Jet production at NNLO: e⁺e⁻ collisions

- Two calculations of NNLO corrections to $e^+e^- \rightarrow 3$ jets
- using antenna subtraction (T. Gehrmann, E.W.N. Glover, G. Heinrich, AG; S. Weinzierl)
- as parton-level event generator
- allow evaluation of event shapes and jet rates
- improved description of data with reduced scale uncertainty
- one per cent for three-jet rate
- J_{3 jet} / • use to extract α_s from LEP data:

 $\alpha_{s}(M_{7}) = 0.1175 \pm 0.0020(exp) \pm 0.0015(th)$

(G. Dissertori, T. Gehrmann, E.W.N. Glover, G. Heinrich, H. Stenzel, AG)

NNLO jet cross sections at hadron colliders

two-loop matrix elements known for

- two-jet production
 (C.Anastasiou, E.W.N. Glover, C. Oleari, M.E. Tejeda-Yeomans; Z. Bern, A. De Freitas, L. Dixon)
- vector-boson-plus-jet production (T. Gehrmann, E. Remiddi)
- (2+1) jet production in DIS (T. Gehrmann, E.W.N. Glover)

antenna subtraction formalism at NNLO: with radiators in initial state

NNLO jet cross sections at hadron colliders

- First implementation of antenna subtraction
 - ▶ $gg \rightarrow 4g$ subtraction constructed and tested (E.W.N. Glover, J. Pires)
- Integration of antenna functions
- final-final antennae known
- initial-final antennae derived recently:
 sufficient for (2+1) jets in DIS (A. Daleo, T. Gehrmann, G. Luisoni, AG)
- initial-initial in progress (R. Boughezal, M. Ritzmann, AG)

Conclusions and Outlook

QCD is crucial for the success of LHC physics

- interpretation of collider data
- searches for new physics
- precision studies

Particle theory is getting ready

- impressive progress in automated multiparticle NLO cross sections
- high precision NNLO calculations for fully differential observables in benchmark processes are in progress