CHIPP workshop on High Energy Frontier

First CMS Physics Results

Polina Otiougova University of Zurich

On behalf of Swiss CMS Groups (UZH, ETHZ, PSI)

01.09.2010

Weight: 12500 t Diameter: 15 m Length: 21.6 m Magnetic field: 4 T

End of november 2009: first collisions at 0.9 TeV Mid of december 2009: first collisions at 2.36 TeV End of March 2010: first collisions at 7 TeV

Outline

I. Promt and non-promt J/Ψ cross section (CMS PAS BPH-10-002)

2. Inclusive D⁰ production

3. Commissioning of b-jet Identification (CMS PAS BTV-10-001)

4. Inclusive b-jet production (CMS PAS BPH-10-009)

5. Open beauty production cross section with muons (CMS PAS BPH-10-007)

6. Hadronic Event Shapes (CMS PAS QCD-10-013)

7. Measurements of Inclusive W and Z Cross sections (CMS PAS EWK-10-002)

8. Performance of Methods for Data-Driven Background Estimation in SUSY Searches (CMS PAS SUS-10-001)

9. Search for heavy Stable Charged Particles (HSCP) (CMS PAS EXO-10-004)

Charm and Beauty

 J/Ψ Promt and non-promt cross section in pp collisions at 7TeV.

$$\frac{d\sigma}{dp_T}(J/\psi) \cdot BR(J/\psi \to \mu^+\mu^-) = \frac{N_{\text{corr}}(J/\psi)}{\int Ldt \cdot \Delta p_T}$$
CMS PAS BPH-10-002
$$\frac{N_{\text{corr}}(J/\psi)}{\int Ldt} - \text{The } J/\psi \text{ yield, corrected for the } J/\psi \text{ selection efficiency, in a given } p_t \text{ bin}$$

$$\int Ldt - \text{Integrated luminosity}$$

$$\Delta p_T - \text{Size of the } p_t \text{ bin}$$

$$BR(J/\psi \to \mu^+\mu^-) - \text{Branching ratio } (5.88\pm0.10)\%$$

Comparison of the measurement of the prompt production

The cross section is significantly higher than the predicted in 1.4 < |y| < 2.4. The discrepancy is mostly observed at low p_t values

 $BR(J/\psi \to \mu^+\mu^-) \cdot \sigma(pp \to J/\psi + X) = (289.1 \pm 16.7(\text{stat}) \pm 60.1(\text{syst})) \text{ nb}$

Peak: 1.863±0.002 GeV Width: 0.014±0.002 GeV

MC expectations

2

m_{Kπ} [GeV]

Commissioning of b-jet Identification at 7TeV.

(CMS PAS BTV-10-001)

Tagging discriminators. Comparing data and MC (I)

 $\begin{array}{l} \mbox{Minimum number of tracks attached to} \\ \mbox{the vertex } N_{trk} \geq 2 \end{array}$

 $\begin{array}{l} \mbox{Minimum number of tracks attached to} \\ \mbox{the vertex } N_{trk} \geq 3 \end{array}$

Good agreement between data and MC for all the discriminators!

Inclusive b-jet production in pp collisions at 7 TeV

b-tagging - SSVHP; The SV is fitted with at least 3 charged particle tracks; 10% eff. to tag the light flavor jets; 60% eff. to tag a b-jet at $p_t=100$ GeV.

The production cross section:

 $\frac{d^2 \sigma_{\rm b-jets}}{d p_T d y} = \frac{N_{\rm tagged} f_b C_{\rm smear}}{\epsilon_{\rm jet} \epsilon_b \Delta p_T \Delta y \mathcal{L}}$

 N_{tagged} - number of tagged jets per bin; Δp_t , ΔY bin widths; f_{b-} fraction of tagged jets containing a b-hadron; e_b- b-jet tagging efficiency; e_{jet}-jet reconstruction efficiency; C_{smear} -unfolding correction. Unfolds the measured p_t to

particle level

$$f_b = \frac{F_b \epsilon_b}{F_b \epsilon_b + F_c \epsilon_c + F_l \epsilon_l}$$

 e_{lc} - mistag rates for LF and Charm

F_b, F_c, F_F relative fractions of jets

b-tagged sample purity estimation

Results

Measured b-jet cross section compared to the MC@NLO (Overlayed) Good agreement between data and **PYTHIA** in the jet p_t-range 30<pt<150GeV, |y|<2.0, with 2% stat, 21% syst. Reasonable agreement with MC@NLO calculation. and measured b-jet fraction, within 21% syst. Significant shape difference in p_t and y.

Measured b-jet cross section as a ratio to inclusive jet cross section.

Measured b-jet cross section compared to the MC@NLO (As a ratio) Open beauty production cross section with muons in pp collisions at 7TeV.

CMS PAS BPH-10-007

pt>3 GeV/c

Distribution in data and results of the maximum likelihood fit. The dashed red and blue lines: *b* and *cudsg*-templates

[dn] ('X+μ

X+q

<u>do</u>(pp

Final Result:

 $\sigma(pp \to b + X \to \mu + X', p_{\perp}^{\mu} > 6 \text{ GeV}, |\eta^{\mu}| < 2.1) = (1.48 \pm 0.04_{\text{stat}} \pm 0.22_{\text{syst}} \pm 0.16_{\text{lumi}}) \, \mu b$

Hadronic Event Shapes in pp Collisions at 7TeV CMS PAS QCD-10-013

 $T_{\perp,\mathcal{C}} \equiv \max_{\vec{n}_T} \frac{\sum_{i \in \mathcal{C}} |\vec{p}_{\perp,i} \cdot \vec{n}_T|}{\sum_{i \in \mathcal{C}} p_{\perp,i}} \text{ - central transverse thrust (| \eta | < 1.3)} \quad \tau_{\perp,\mathcal{C}} \equiv 1 - T_{\perp,\mathcal{C}}$

Yellow bands- syst. and stat. uncertainties added in quadrature

Electroweak Physics

Measurements of Inclusive W and Z Cross sections in pp collisions at 7TeV. CMS PAS EWK-10-002

Cross section

SUSY and "Exotic"

1.5

Electron Background prediction

The leptons produced in cascade decay of SUSY particles are usually isolated from the other

Muon Background prediction

The distributions of relative muon isolation. All selected events MET>20 GeV.

Background dominated events, MET<20GeV, Ht>20GeV

Green band- fit without W rejection Blue line- fit after W rejection

Search for heavy Stable Charged Particles (HSCP) in pp collisions at 7 TeV.

CMS PAS EXO-10-004

- 4. The ratio of b-jet to inclusive jet production is measured. Reasonable agreement between PYTHIA , MC@NLO calculation and measured overall b-jet fraction
- 5.Preliminary result for the total inclusive b-quark production cross-section

 $\sigma(pp \to b + X \to \mu + X', p_{\perp}^{\mu} > 6 \text{ GeV}, |\eta^{\mu}| < 2.1) = (1.48 \pm 0.04_{\text{stat}} \pm 0.22_{\text{syst}} \pm 0.16_{\text{lumi}}) \,\mu\text{b}$

- 6. Results on hadronic event shapes. Good agreement between data and MC.
- 7. W and Z cross sections were measured. No disagreements with SM observed. $\sigma_{W \to lv} = (9.22 \pm 0.24_{stat} \pm 0.47_{syst} \pm 1.01_{lumi})nb \quad \sigma_{Z/\gamma^* \to ll} = (0.88 \pm 0.08_{stat} \pm 0.04_{syst} \pm 0.10_{lumi})nb$
- 8. Studies of the QCD background supression with α_T Prediction lepton background in SUSY searches.

9. mgluino < 284 GeV/c², 95% C.L., (tracker only), mgluino < 271 GeV/c², 95% C.L., (tracker+muon)

BACKUP SLIDES

Estimation of the b-tagging efficiency (I)

Relative momentum of muon wrt. the jet (p_t^{rel}) is sensitive to B decays because of high B mass.

Use p_t^{rel} shape to fit fractions (f_b) of b and light+c jets in tagged and anti-tagged jets.

Efficiency calculation:

 $\epsilon_{b}^{\text{data}} = \frac{f_{b}^{\text{tag}} \cdot N_{data}^{\text{tag}}}{f_{b}^{\text{tag}} \cdot N_{data}^{\text{tag}} + f_{b}^{\text{untag}} \cdot N_{data}^{\text{untag}}}$

 f_b^{tag} , f_b^{untag} -fractions of b jets in the data, N_{data}^{tag} , N_{data}^{untag} - total yields of tagged and untagged jets.

> Event Selection: Pt> 20 GeV Muon Selection:

Global muon: combined fit of silicon and muon-chamber hits, belonging to the independent tracker and muon system.

pt>5 GeV and | η |<2.4 χ^2 < 10 for the global track "high purity" track category ≥ 2 pixel hits and ≥ 12 total hits expected tracker outer hits < 3

b-Fractioniofitif the pragage place (II)

b Efficiency

Commissioning of b-jet Ide......

Algorithms for the b-jet identification:

I.The "track counting" (TC) approach. Jet is a b-jet if it contains at least N tracks with significance of impact parameter (IP) exceeding S. N=2-TC High Efficiency E; N=3-TC High Purity. Discriminator: Value S for the Nth track.

2. SSV- based on the reconstruction of at least 1 SV. N_{trk}>=2-"high efficiency" SSVHE, N_{trk}>=3-"high purity" SSVHP.

Discriminator: A monotonic function of the three dimensional flight distance.

3. The jet probability algorithms. Each track is assigned a probability (P_{tr}) to originate at the PV. Discriminator: built from the set of P_{tr} in the jet

4. Lepton-based tagging algorithms identify b hadrons via their semileptonic decay. Discriminator: achieved on pt of the lepton, the IP of the lepton or both.

operating points:

"loose" (L) contamination of light partons: 10% "medium" (M) contamination of light partons: 1% "tight" (T) contamination of light partons: 0.1%

> Event Selection: jet $p_t > 30 \text{ GeV};$ $|\eta| < 2.4;$

Charged Particle Track quality requirements:

- number of pixel hits ≥ 2
- total number of silicon (pixel + strip) hits ≥ 8
- χ^2 / *ndof* of the track fit < 5.0
- transverse momentum $p_{\rm T} > 1.0 \,{\rm GeV}/c$
- unsigned transverse impact parameter $d_{xy} < 0.2 \,\mathrm{cm}$
- unsigned longitudinal impact parameter $d_z < 17 \,\mathrm{cm}$
- distance of closest approach to the jet axis < 0.07 cm;
- decay length < 5 cm.

Estimation of the b-tagging efficiency (I)

SF_b- scaling factor. Faciobetween sata and MC efficiencies.

Tagger+Operating Point	$\epsilon_b^{ m data}$	$\epsilon_b^{ m MC}$	SF_b
SSVHPT	0.17 ± 0.01	0.18	0.91 ± 0.06
SSVHEM	0.34 ± 0.01	0.38	0.88 ± 0.03
SSVHET	0.11 ± 0.01	0.12	0.93 ± 0.10
TCHPL	0.34 ± 0.01	0.41	0.84 ± 0.03
TCHPM	0.25 ± 0.01	0.30	0.85 ± 0.04
TCHPT	0.19 ± 0.01	0.21	0.87 ± 0.05
TCHEL	0.50 ± 0.01	0.61	0.83 ± 0.02
TCHEM	0.39 ± 0.01	0.46	0.86 ± 0.02
TCHET	0.13 ± 0.01	0.13	0.97 ± 0.08

Statistical errors only

Vertex Mass

Two or more Three or more reconstructed tracks reconstructed tracks

Mistag measurements in data (I)

Mistag Measurements in data (II)

The investigation of the kinematics of leptons near jets as candidates for daughters of b-hadron decay.

Mistag Rate

Evaluated from tracks with negative IP or from SV with negative decay lengths

Negative and Positive b-tag discriminators

Mistag Rate (III)

<i>b</i> tagger	mistag rate (data)	scale factor (data/MC)
TCHEL	0.062 ± 0.002	0.91 ± 0.03
TCHEM	0.0074 ± 0.0009	1.0 ± 0.1
TCHPM	0.0041 ± 0.0004	0.9 ± 0.1
SSVHEM	0.0084 ± 0.0006	0.87 ± 0.08
TCHPT	0.0005 ± 0.0003	1.4 ± 1.0
SSVHET	0.0012 ± 0.0003	1.0 ± 0.4
SSVHPT	0.0004 ± 0.0002	0.8 ± 0.4

b-tagging uncertainties estimates

Leading sources of systematic uncertainties for b-jet cross section measurement.

Summary on the systematic uncertanities:

source	uncertainty
Trigger	3–5 %
Muon reconstruction	3 %
Tracking efficiency	2 %
Background template shape uncertainty	1–10 %
Background composition	3–6 %
Production mechanism	2–5%
Fragmentation	1–4 %
Decay	3 %
MC statistics	1-4%
Underlying Event	10%
Luminosity	11%
total	16-20 %

IV. MET predictions, based on templates, compared to the observed MET in gamma+>=3 jet events.

V. Comparison of the di- photon MET distribution with the prediction from a sample with 2 nonisolated photon candidate.

Dominant contribution to MET resolution in di-photon events comes from mis-measurement of the jets recoiling against the di-photon system.

Data distributions of the l_{as} discriminator for tracks with
I. different number of dE/dx measurements,
2. 15 dE/dx measurements and different eta regions.

Resolution at higher masses

Beta of HSCP lowers, the dE/dx increases => some of charge measurements can be truncated. Consequence- underestimation of the HSCP mass

 $I_{\rm h}$ distribution for all tracks in t_1 MC sample. The curves for 5 nominal values of t_1 are shown

Reconstructed mass spectra for these tracks.

Background estimation

Performed by investigation of absence of correlation between the p_t dE/dx.

l_{as} distribution for 2 momentum ranges. Good agreement between 2 distributions. Indication that the assumption of lack of correlation gives a good approximation • J/Ψ Promt and non-promt cross section in pp collisions at 7TeV.

CMS PAS BPH-10-002

Prompt- produced indirectly via decays of heavier states of Charmonium Non-prompt- produced via decay of b-hadron.

The four- momentum is computed as the vector sum of the two muon momenta.

Dimuon invariant mass distributions for Global Muon pairs

$\begin{array}{l} \begin{array}{l} \displaystyle \underset{d\sigma}{d\sigma} \\ \displaystyle \frac{d\sigma}{dp_T}(J/\psi) \cdot \mathrm{BR}(J/\psi \to \mu^+ \mu^-) = \frac{N_{\mathrm{corr}}(J/\psi)}{\int Ldt \cdot \Delta p_T} \\ \displaystyle N_{\mathrm{corr}}(J/\psi) \cdot \mathrm{The}J/\psi \ \text{yield, corrected for the J/psi selection efficiency, in a given pt bin} \\ \displaystyle \int Ldt \ \text{-Integrated luminosity} \\ \displaystyle \Delta p_T \ \text{-Size of the pt bin} \\ \displaystyle \mathrm{BR}(J/\psi \to \mu^+ \mu^-) \ \text{-Branching ratio (5.88\pm0.10)\%} \end{array}$

10⁻³ 10⁻² 10⁻¹ 10⁻³ 10¹² 10¹⁰ 10¹⁰ 10¹⁰ Res 11¹⁰ 10¹⁰ 10¹⁰

Selections used in the analysis

<u> </u>				
LOOSE	ϵ_{p_T}	p_T^{cut}	ϵ_{I}	I_{as}^{cut}
Tracker+Muon	$10^{-1.0}$	7.7 - 25.9	$10^{-1.5}$	0.0036 - 0.4521
Tracker only	$10^{-2.0}$	7.9 - 67.4	$10^{-2.0}$	0.0037 - 0.5293
TIGHT	ϵ_{p_T}	p_T^{cut}	ϵ_{I}	I ^{cut} _{as}
Tracker+Muon	$10^{-3.0}$	7.7 - 125.9	$10^{-3.0}$	0.0036 - 0.6526
Tracker only	$10^{-4.0}$	7.9 - 259.0	$10^{-3.5}$	0.0037-0.8901

 $\epsilon_{p_T} \epsilon_I$ MIP Background efficiency values

Result for Loose selection

LOOSE	Exp.	Obs.	Exp. in full spectrum	Obs. in full spectrum
Tracker+Muon	82 ± 33	77	1007 ± 200	838
Tracker Only	108 ± 38	122	184 ± 250	260

Result for Tight selection

TIGHT	Exp.	Obs.	Exp. in full spectrum	Obs. in full spectrum
Muon-like	0.153 ± 0.061	0	0.249 ± 0.050	0
Tk-only	0.060 ± 0.021	0	0.060 ± 0.011	0

Search for heavy Stable Charged Particles (HSCP) in pp collisions at 7 TeV.

Event Selection:

CMS PAS EXO-10-004

p_t>7.5GeV/c;

3 hits is Silicon Tracker for dE/dx measurement;

Clean separation:

selection of tracks with high p_t and dE/dx.

Estimator for selection based on dE/dx

$$I_{as} = rac{3}{N} imes \left(rac{1}{12N} + \sum_{i=1}^{N} \left[P_i imes \left(P_i - rac{2i-1}{2N}
ight)
ight]^2
ight)$$

N- number of track hits in Silicon Strip; P_i - probability the MIP will produce a charge \leq the observed one for the observed path length; Summation is over the number of track hits ordered in terms of increasing P_i .

Distribution in data, min baias MC and Signal for p_t and I_{as} Good agreement between data and MC, strong discriminating power for HSCP signal.

Measurements of Inclusive W and Z Cross sections in pp collisions at 7TeV.

110 110

