

Calibration, alignment and understanding the LHCb detector with early data

Outline

Swiss institutes are making an important contribution to the alignment and calibration of the LHCb tracking system

- Introduction to the LHCb tracker
- Alignment + performance (resolutions)
- Mass and momentum scale calibration

Alignment and detector understanding improving all the time, most results here pre-summer. Major update and improvements coming soon

The LHCb Tracker

LHCb

The LHCb Tracker

Alignment

LHCb Alignment framework

- Coupled to the LHCb Track model
- Based on closed form Kalman filter
 - W. Hulsbergen NIM A600:471-477,2009.
- Possible to iterate full reconstruction chain
- Used for both global + internal alignment
- Millepede used for crosschecks + Velo alignment

Validation:

- Size of movements: are they reasonable compared to survey ?
- Unbiased hit residuals: biases and obtained resolution
- Known mass of resonances, expected resolution from Monte Carlo/fitted mass error

LHCb ГНСр

(Not) Alignment

Toughest challenges encountered are not related to alignment but incorrect assumptions about the detector geometry

- Tracker measures x precisely
- Strong constraints from module overlaps
- •Difficult to recover from wrong assumptions about geometry in x
- e.g. wrong TT pitch:
- \bullet 183.33 μm used instead of 183 μm
- Leads to x-scaling

x misalignment in mm + offset

Before first collisions

2008/2009 TED runs

Spills of 5×10^9 protons dumped on a tungsten beam-stopper (the 'TED') 350 m downstream of LHCb. First time/space alignment of VELO and Silicon Tracker performed

First collisions

track uncertainty

• Good agreement with Monte Carlo assuming module alignment is $\sim 5 \,\mu m$

• Fill-to-Fill variation along (x,y) of relative alignment of two halves within $(5 \,\mu\text{m}, 3 \,\mu\text{m})$

• Module and sensor alignment better

than 5 μ m: improvement to 2 μ m soon

- Hit resolution as a fraction of strip pitch and projected angle
- Measured with hit residuals corrected for

Velo Performance

Impact parameter resolution

Closest distance of approach of track to the beamline: Impact Parameter

 $IP(3D) = hit resolution \oplus multiple scattering/pt$

Measure x and y component of IP

Assume track originates at primary interaction point

 σ of the distribution is IP resolution

Lead to increase of RF foil thickness in MC from 250 to 300 μm

TT Performance

Study unbiased residuals unfolding track uncertainty

- Data ~ 55 µm, MC ~ 51 µm
- Module misalignments 24 μ m, 15 μ m soon
- Binary resolution ~ 52 μ m,
- y positioning ~ 3 mm global inconsistancy

IT Performance

Study unbiased residuals unfolding track uncertainty

- \bullet Data ~ 55 μm , MC ~ 52 μm
- Module misalignments 16 μ m, improvement to 10 μ m soon
- Binary resolution ~ 57 μ m
- y positioning ~ 1 mm global inconsistancy

Outer Tracker Performance

- Space time relation consistant with testbeam
- \bullet Measured resolution 250 μm
- \bullet Expectation from testbeam 200 μm

residual [mm]

Mapping Material

Data/MC comparison

<u>LHCb</u>

Crucial test: mass and resolution of 2-body decays of known resonances

$$m_{d_1d_2}^2 = (E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2}) \cdot (\vec{p_1} + \vec{p_2})$$

Mass bias + resolution depends on the daughter momenta and opening angle

Material effects

Energy loss: sqrt dependence on p and amount of material Multiple scattering: degrades resolution, sqrt dependence on X_0

Field map: Cowboys + marines

Discrepancies between used field map + reality Good discriminating variable angle between normal to decay plane and the field direction

Alignment Weak modes

e.g. q/p bias, visible if plot mass versus $p^+ - p^-$ 'Fix': with J/ ψ or magnet off data

Common X-translation with a scale factor in T

$$m_{d_1d_2}^2 = (E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2}) \cdot (\vec{p_1} + \vec{p_2})$$

Tracks with VELO hits

Mass Resolution

Comparison data/MC

Cowboys and Marines

Study J/ψ mass resolution as a function of the angle between the decay plane and the y-axis (B field direction)

Origin of the effect unclear: seems to come from the alignment

Work in progress

To remove Cowboy/Marine effect

- J/ ψ mass constraint in alignment
- Use only high p tracks in procedure

Good improvement in mass resolution

• Detector movements to be understood

Summary

LHCb have made a great start

- Alignment and calibration of tracking system already well understood
 - Helped by data taken during sychronization tests before first beam
- Close to achieving MC expectations for residuals , good data/MC agreement

Mass and resonance studies

- Probe global rather than local consistancy of the alignment
- \bullet J/ ψ shows clear evidence of cowboy/marine effect
 - 'Solved' by using $J\!/\psi$ constraint in alignment
- Significant impact on Y resolution (82 to ~ 49 MeV)

Studies to improve the alignment quality ongoing, improvement expected soon

The Magnet

PV Resolution

Vertex Resolution

Measure resolution by splitting Track sample in two Compare split vertices of equal multiplicity Method validated with MC

PV Resolution (x,y,z) with 25 tracks

Data: (16, 15, 91) μm MC (12, 11, 57) μm

Momentum Scale

Apply linear correction to the mass based on decay plane angle based on March-June data

Old Alignment

New Alignment

New New Alignment

Mass resolution improved to 14 MeV, shape versus p look more reasonable

Bias versus pseudorapidity

<u>Lнср</u> Гнср

Outer Tracker

- Outer part of 3 stations after the magnet
- Each station 4 double planes of straw tubes
- Largest straws 4.7 m long with two sided readout
- Cell diameter 5 mm , pitch 5.25
- Straws made from Kapton XC with Al winding
- Gas Ar/CO $_2$ /O $_2$ 70/28.5/1.5
- ~ 3 % X_0 per station, 52k channels

Outer Tracker

OT measures a drift time

Max drift time ~ 50 ns (read out 3 crossings)

TR relation to convert to unsigned distance to wire

Drift ambiguity solved by adding to track (Solution that minimizes drift distance)

Correction for propagation on wire

Detector resolution ~ 200 microns

Outer Tracker

- ~ 19 hits track in OT acceptance , dead region around y = 0 cm
- ~ 1 % crosstalk
- Efficiency parameterized by

$$\epsilon(l) = \eta_0 (1 - e^{-\rho l})$$
 $l = 2\sqrt{r^2 - d^2}$ -
 $\rho \sim 1.5 / \text{mm} (\text{no } O_2)$

Tracker Turicensis

- 4 planes of Silicon $(0^\circ, +5^\circ, -5^\circ, 0^\circ)$
- Area of 8.2 m² covered ,
- 143 k readout channels
- 7 % radiation length

Tracker Turicensis

- 7-sensor ladders.
- 500 μ m thick, 183 μ m pitch sensors
- Strip lengths up to 37 cm,
- Capacitance 56 pF
- Long Kapton interconnects to take signal out

Inner part: High Occupancy 4-2-1 segmentation

Outer part: Low occupancy 4-3 segmention

TT Status

99.8 % of the detector functional

IT Performance

S/N

IT Status

99 % of the detector functional

'Trivial' scaling

Overall scale factor: Mass offset (flat versus p) Energy loss: sqrt dependence versus p

Field map: Cowboys + marines

Discrepancies between used field map + reality Good discriminating variable angle between normal to decay plane and the field direction

Alignment Weak modes

e.g. q/p bias, visible if plot mass versus p+-p-'Fix': with J/ ψ or magnet off data

