

Detector studies for e+ecollisions at CLIC

Outline:

- CLIC physics potential
- CLIC experimental conditions (comparison to ILC)
- CLIC experiment
- Current activities and R&D plan
- Summary

Lucie Linssen

CHIPP meeting, Zurich, Sept 2nd 2010

- The LHC will determine the future of high-energy physics. The linear collider is one of the best options to complement and extend the LHC programme
- New physics is expected in TeV energy range
 - E.g. motivated by particle astrophysics (dark matter)
 - Higgs, Supersymmetry, extra dimensions, ...?
- LHC will indicate what physics, and at which energy scale:
 - Is 500 GeV enough (ILC)
 - Is there a need for multi TeV? (CLIC)
- The CERN "Linear Collider Detector" project addresses both ILC and CLIC, though current focus is on the preparation of the CLIC physics/detector CDR, due for Mid-2011

ILC and CLIC in a few words...

linear collider, producing e⁺e⁻ collisions

CLIC ILC

- •Based on superconducting RF cavities
- •Gradient 32 MV/m
- •Energy: 500 GeV, upgradeable to 1 TeV (lower energies also considered)
- •Detector studies focus mostly on 500 GeV

Luminosities: few 10³⁴ cm⁻²s⁻¹

Based on 2-beam acceleration scheme
Gradient 100 MV/m
Energy: 3 TeV, though will probably start at lower energy (~0.5 TeV)
Detector study focuses on 3 TeV

What can CLIC provide in the 0.5-3 TeV range?

In a nutshell...

Higgs physics:

•Complete study of the light standard-model Higgs boson, including rare decay modes (rates factor ~5 higher at 3 TeV than at 500 GeV)

•Higgs coupling to leptons

•Study of triple Higgs coupling using double Higgs production

•Study of heavy Higgs bosons (supersymmetry models)

Supersymmetry:

•Extensive reach to measure SUSY particles

And in addition:

- •Probe for theories of extra dimensions
- •New heavy gauge bosons (e.g. Z')
- •Excited quarks or leptons

(S)LHC, ILC, CLIC reach

	LHC 100 fb ⁻¹	ILC 800 GeV 500 fb ⁻¹	SLHC 1000 fb ⁻¹	CLIC 3 TeV 1000 fb ⁻¹
Squarks [TeV]	2.5	0.4	3	1.5
Sleptons [TeV]	0.34	0.4		1.5
New gauge boson Z' [TeV]	5	8	6	22
Excited quark q* [TeV]	6.5	0.8	7.5	3
Excited lepton l* [TeV]	3.4	0.8		3
Two extra space dimensions [TeV]	9	5-8.5	12	20-35
Strong WLWL scattering	2σ	-	4σ	70σ
Triple-gauge Coupling (95%)	.0014	0.0004	0.0006	0.00013

http://www.cern.ch/lcd Lucie Linssen, 2/9/2010

Gian Giudice CLIC09

ILC and CLIC detector studies

In several aspects the CLIC detector will be more challenging than ILC case, due to:

- Energy 500 GeV => 3 TeV
- More severe background conditions
 - Due to higher energy
 - Due to smaller beam sizes
- Time structure of the accelerator

Detector studies and R&D for the ILC are most relevant for CLIC.

Many years of investment in ILC e⁺e⁻ physics/detector simulations, hardware R&D and detector concepts. No need to duplicate work.

Therefore the CLIC detector study links to several ILC collaborations: ILD concept, SiD concept, CALICE, FCAL, LC-TPC + EU projects (EUDET/AIDA).

Validated ILC concepts

 ILD: International Large Detector

 "Large"
 : tracker radius 1.8m

 B-field
 : 3.5 T

 Tracker
 : TPC + Silicon

 Calorimetry
 : high granularity particle flow

 ECAL + HCAL inside large solenoid

SiD: Silicon Detector

"Small"	: tracker radius 1.2m
B-field	:5T
Tracker	: Silicon
Calorimetry	: high granularity particle flo
ECAL + HC	AL inside large solenoid

CLIC detector concepts will be based on SiD and ILD. Modified to meet CLIC requirements

e.g. ILD concept adapted to CLIC

Changes to the ILD detector:

- 20 mrad crossing angle
- Vertex Detector to ~30 mm inner radius, due to Beam-Beam Background
- HCAL barrel with $\sim 7 \Lambda_i$ with 1 cm tungsten plates
- HCAL endcap with $\sim 7 \Lambda_i$ with 2 cm steel plates
- Forward (FCAL) region adaptations
- ... and similarly for SiD

http://www.cern.ch/lcd Lucie Linssen, 2/9/2010

İİL

- CLIC 3TeV beamstrahlung $\Delta E/E = 29\% (10 \times ILC_{value})$
 - Coherent pairs (3.8×10⁸ per bunch crossing) <= disappear in beam pipe
 - Incoherent pairs (3.0×10⁵ per bunch crossing) <= suppressed by strong solenoid-field
 - "Tridents" <= give an impact "similar" to incoherent pairs</p>
 - γγ interactions => hadrons (3.3 hadron events per bunch crossing)
- In addition: Muon background from upstream linac

Beam-induced background (2)

CLIC beamstrahlung: coherent, incoherent + trident pairs

Beam-induced background (3)

CLIC beamstrahlung: $\gamma\gamma \rightarrow$ hadrons

At high energy physics goes in forward direction

Example: s-lepton production

http://www.cern.ch/lcd Lucie Linssen, 2/9/2010

IIL

- Due to beam-induced background and short time between bunches:
 - High occupancy in the inner regions (incoherent, tridents)
 - Jets scale and resolution are affected ($\gamma\gamma$ =>hadrons)
 - Time-stamping is a must for almost all detectors
- Narrow jets at high energy
 - Calorimeter has to measure high-energy particles (leakage)
 - Separation of tracks in dense jets

Vertexing - Background

incoherent pairs (and backscattering) hitting the CLIC vertex detector:

CLIC vertex detector requirements

Requirements for the vertex detector need to be determined more precisely. However, we have already a global view on the needs:

- Single-layer position resolution ~3μm 5 μm
 - Typically achieved with 20*20 micron pixels
- Single-layer material thickness 0.1%X₀ 0.2%X₀
- Time-stamping ~5-10 ns (?)
 - \circ $\,$ Still needs more study with full simulation $\,$
- Occupancy
 - \circ Will be at the ~10% level for the innermost layer
 - Therefore we need multi-hit capability
- o Triggerless readout over the 156 ns bunch-train
 - With full data readout in less than 200-400 µsec to allow power-pulsing

Very challenging hardware project

CLIC vertex detector

....first layouts are now being implemented in full simulation

- ★ Is a detector based on PFA suitable for CLIC ?
- ★ Study jet energy resolution of a detector with Tungsten HCAL of different depth

Motivation:

- To limit longitudinal leakage CLIC HCAL needs $\sim 7\Lambda_i$
- A deep HCAL pushes the coil/yoke to larger radius (would give a significant increase in cost and risk for the coil/yoke)
- A tungsten HCAL (CLIC option) is more compact than Fe-based HCAL, (ILC option) while Geant4 performance is similar
- Increased cost of tungsten barrel HCAL compensates gain in coil cost

Prototype tungsten HCAL: check simulation in test beam

- Prototype tests performed within CALICE collab.
- Use 30-40 layers of Tungsten, 1 cm thick, 80 cm Ø
- Use different active materials
- Start in Nov 2010, with 30 W plates, and scintillator planes

Tungsten HCAL prototype

Scintillator plane

Tungsten stack

- Final focus quadrupole QD0 inside experiment, $L^* = -3.6$ m
 - -- Beam focusing stability required at sub-nm level !!

Measurements in CMS and several (LHC-) underground locations have guided ideas about how to suspend QD0 within the experiment volume.

Final focus (QD0) stability

Current LCD@CERN activities

Current activities concentrate on preparation for CDR

- Mostly simulation studies:
 - Demonstrate that CLIC physics potential can be extracted from detector
 - Propose ILD-type and SiD-type detectors that can do the job
 - Perform physics benchmark studies
- Concentrate on critical issues
 - Determine required sub-detector performances to see the physics
 - Redesign of the very forward region
 - Take engineering aspects, cost etc into account
- Preparing and starting targeted hardware R&D

Hardware/engineering R&D

LCD hardware/engineering R&D (needed beyond ILC developments):

- Vertex detector
 - trade-off between pixel size, amount of material and timing resolution
- Hadron calorimetry
 - Tungsten-based HCAL (PFA calo, within CALICE)
- Time stamping
 - Needed for (almost) all subdetectors
- Power pulsing
 - In view of the 50 Hz CLIC time structure => allows for low-mass detectors
- Solenoid coil
 - Large high-field solenoid concept, reinforced conductor (CMS/ATLAS experience)
- Overall engineering design and integration studies
 - In view of sub-nm precision required for FF quadrupoles
 - For heavier calorimeter, larger overall CLIC detector size etc.
- In addition: TPC electronics development (Timepix-2, S-ALTRO)

CLIC has a large physics potential, complementary to LHC

CLIC physics/detector studies in close collaboration with ILC Growing community both inside and outside CERN

Work currently focuses on CLIC physics/detector CDR (Mid-2011)

- •Software tools in place for adapted ILD and SiD detector models
- •Detector requirements globally "understood"
- •Detector geometries for CDR simulations being finalised
- •Physics benchmark studies for the CDR are starting
- •Hardware R&D has started

Welcome to join

Thank you!

CLIC_SiD detector

CLIC_ILD detector

Spare Slides

CLIC parameters

Center-of-mass energy	ILC 500 GeV	CLIC 500 GeV	CLIC 3 TeV
Total (Peak 1%) luminosity [·10 ³⁴]	2(1.5)	2.3 (1.4)	5.9 (2.0)
Repetition rate (Hz)	5	· · · · · ·	50
Loaded accel. gradient MV/m	32	80	100
Main linac RF frequency GHz	1.3	12	
Bunch charge [·10 ⁹]	20	6.8	3.7
Bunch separation (ns)	370	0.5	
Beam pulse duration (ns)	950μs	177	156
Beam power/beam (MWatts)		4.9	14
Hor./vert. IP beam size (nm)	600 / 6	200 / 2.3	40 / 1.0
Hadronic events/crossing at IP	0.12	0.2	2.7
Incoherent pairs at IP	1 ·10⁵	1.7·10⁵	3·10⁵
BDS length (km)		1.87	2.75
Total site length km	31	13	48
Total power consumption MW	230	130	415

Crossing Angle 20 mrad (ILC 14 mrad)

Frederic Teubert

30

Example: heavy mass SUSY particles

e.g. $e^+e^- \rightarrow H^0A^0$ production

Energy scan of cross section close to threshold

$$\delta \tilde{m}_u = 15 \text{ GeV}$$

LHC mass determinations improve if info from CLIC is included in decay chains

Gian Giudice CLIC09

The Particle Flow Paradigm

- ★ In a typical jet :
 - 60 % of jet energy in charged hadrons
 - + 30 % in photons (mainly from $\pi^0 o \gamma\gamma$)
 - + 10 % in neutral hadrons (mainly n and K_L)
- * Traditional calorimetric approach:
 - Measure all components of jet energy in ECAL/HCAL !
 - + ~70 % of energy measured in HCAL: $\sigma_E/E \approx 60 \,\%/\sqrt{E(GeV)}$
 - Intrinsically "poor" HCAL resolution limits jet energy resolution

- ***** Particle Flow Calorimetry paradigm:
 - charged particles measured in tracker (essentially perfectly)
 - Photons in ECAL: $\sigma_E/E < 20\%/\sqrt{E(GeV)}$
 - Neutral hadrons (ONLY) in HCAL
 - Only 10 % of jet energy from HCAL ⇒ much improved resolution 33

Mark Thomson

LINKS and MAILING LISTS

LCD project web page: http://lcd.web.cern.ch/LCD/

LCD internal notes:

http://lcd.web.cern.ch/LCD/Documents/Documents.html

Wiki page with various documentation:

https://twiki.cern.ch/twiki//bin/view/CLIC/Detector

For example, in the wiki page you can find the SiD' and ILD' modified detector geometries for CLIC, and the software documentation

LCD indico pages:

http://indico.cern.ch/categoryDisplay.py?categId=1954

For a list/description of our working groups, see our indico page: <u>http://indico.cern.ch/categoryDisplay.py?categId=1954</u>

If you want to join one or several of our working groups you can subscribe to the respective mailing lists, by following the e-groups link: <u>https://groups.cern.ch/Pages/GroupSearch.aspx?k=lcd-wg</u>

In case you encounter any problems, please contact: Kate.ross@cern.ch

Lucie.linssen@cern.ch