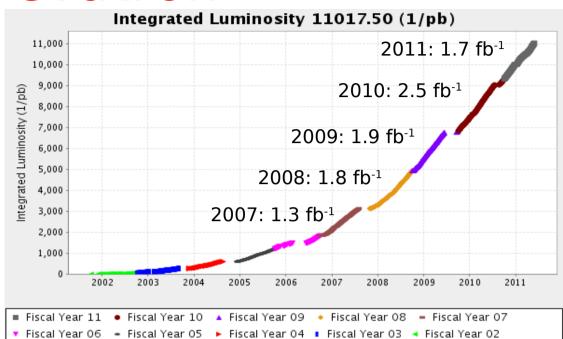
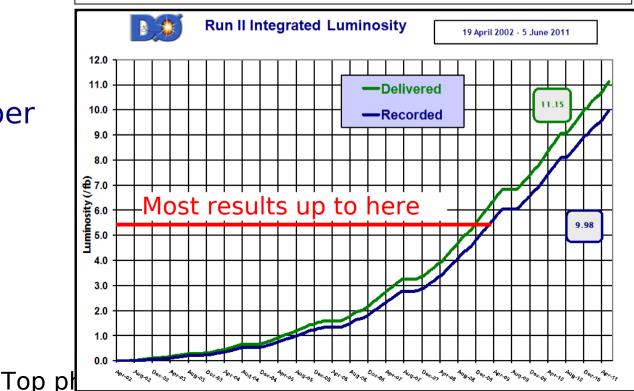
Physics at the LHC Perugia, June 9, 2011

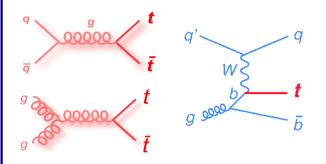
Top quark physics at the Tevatron

- Tevatron top program
- Production cross section
- Top quark mass measurements
- Top quark properties
- Single top: separate t-channel observation
- Searches
- Conclusions



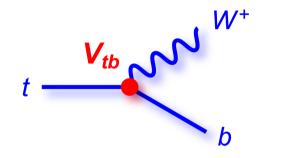


The Tevatron


- 6.3 km pp collider @ √s=1.96 TeV
 - 25 year old!
 - 36x36 bunches
 - ightharpoonup 10¹¹ ightharpoonup per bunch
 - 396 ns bunch spacing
 - 1.8 M crossings/s
 - 4.3·10³² cm²s⁻¹ peak lumi
- ▶ 11 fb⁻¹ delivered
- ▶ 10 fb⁻¹ recorded
- Expect ~12 fb⁻¹ by October
- Detectors working well
 - ~90% data taking efficiency

Top quark Tevatron program

How is it produced


Strong force:

 $\sigma_{\rm H} \sim 7~{\rm pb}$

Electroweak force:

 $\sigma_{\rm s+t} \sim 3 \ \rm pb$

How does it decay

V_{th} ~ 1

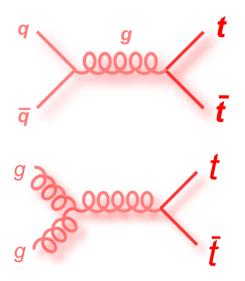
V-A coupling:

$$F_0 \sim 0.7$$

What are its intrinsic properties

Mass

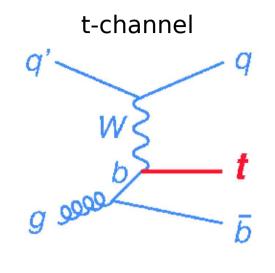
Width: $\Gamma_{+} \sim 1.3 \text{ GeV}$


Charge: +2/3

Spin: 1/2

Are there signs of new physics anywhere

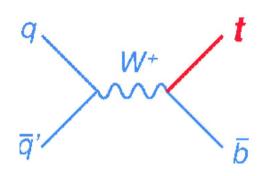
t', W', Z', H+, resonances, FCNC, anomalous charge...


Production

TeV: 7.1±0.4 pb

LHC7: 163±11 pb

LHC14: 920±60 pb



2.1±0.1 pb

64±2 pb

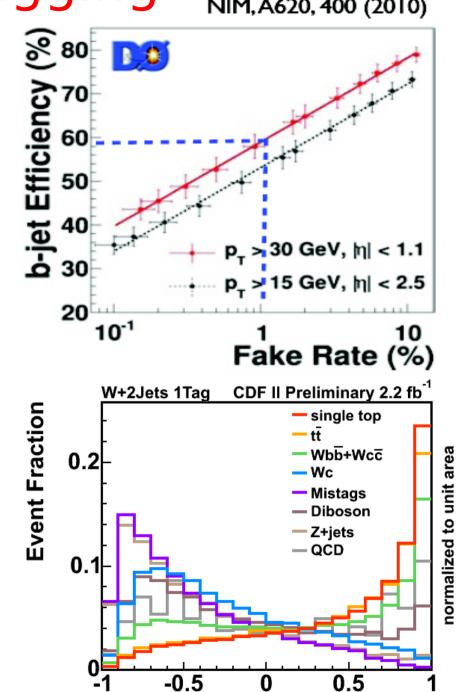
243±6 pb

1.1±0.1 pb

4.6±0.2 pb

 $11.9 \pm 0.4 \text{ pb}$

Kidonakis NNLL $m_{\scriptscriptstyle +} = 173$ GeV with MSTW 2008 PDFs


- Pair production x20 at LHC7: 250 pb⁻¹ @ LHC7 ~ 5 fb⁻¹ @ Tevatron
 - \blacksquare qq dominates at the TeV, gg at the LHC
- Single top production: CP symmetric at TeV
 - 86% more t than t̄ at LHC7
- ► Third mode for EW production: gb→Wt, negligible at the Tevatron Arán García-Bellido Top physics at the Tevatron

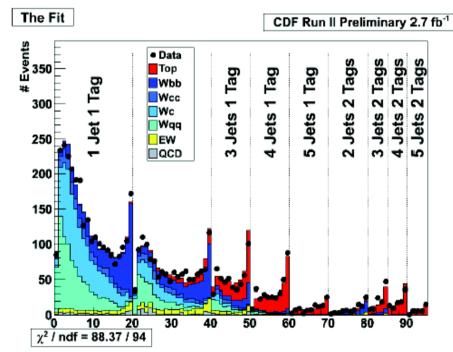
Tools: b-tagging

NIM, A620, 400 (2010)

KIT flavor sep. output

- Algorithms based on jet lifetimes, track counting, μ in jet, and SVX
- Improved performance by combining variables from different taggers
- DØ: NN tagger
 - 7 input variables
 - Moving to BDT with c-separation
- CDF: NN heavy flavor separator applied after SVX tagger
 - Separates b from c and lights
 - 25 input variables
- Developed techniques to measure b-tag efficiency in data

Top pair cross section: ℓ +jets


- First step to understand top quark sample
- Test QCD predictions
 - Limited by systematics: Luminosity ~6%

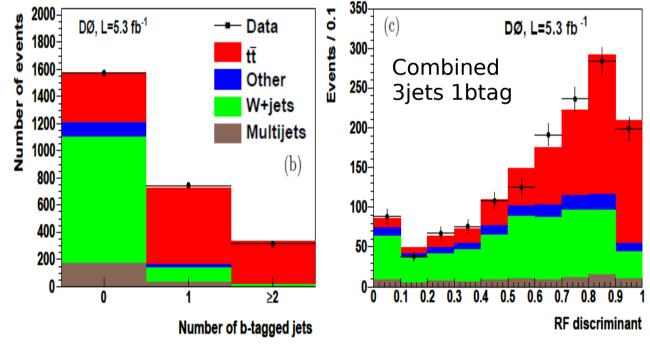
$$\sigma_{t\bar{t}} = \frac{N_{data} - N_{bkg}}{A \cdot L}$$

Background modeling tools:

- Developed techniques to obtain QCD and W+jets backgrounds normalization from data
- \blacktriangleright Simultaneous measurement of $\sigma_{\rm t\bar{t}}$ and background normalization
 - Use NN flavor separator and Njets
 - Improves by 9% stat. and 15% syst. uncertainties
 - Measures k-factors for W+jets

$$K_{W_{b\bar{b}}} = 1.57 \pm 0.25$$
 $K_{W_{q\bar{q}}} = 1.10 \pm 0.29$
 $K_{W_{c\bar{c}}} = 0.94 \pm 0.79$ $K_{W_c} = 1.90 \pm 0.29$

Top pair cross section: ℓ +jets


Selection D0 5.3 fb⁻¹ $m_{+}=172.5$

- **▶** Lead jet $p_T>40$ GeV, $|\eta|<2.5$
- lsolated e: $p_T > 20$, μ : $p_T > 25$ GeV
- \blacktriangleright MET>20 or 25 GeV (μ +jets)
- QCD cleanup cuts
- At least one tight b-tag jet

e+mu, ≥4 jets, ≥1 b-tag			
W+jets	131 ± 13		
Multijet	31 ± 4		
Z+jets	12 ± 2		
Other	19 ± 1		
tt	877 ± 45		
Total	1066 ± 38		
Observed	1060		

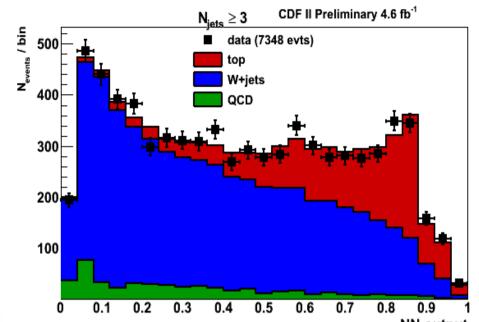
Three measurements:

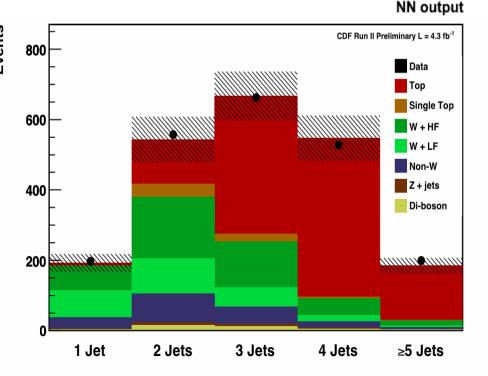
- Kinematic information discriminant
- Counting using b-tagged sample
- Combined: b-tag and Random Forest

Arán García-Bellido

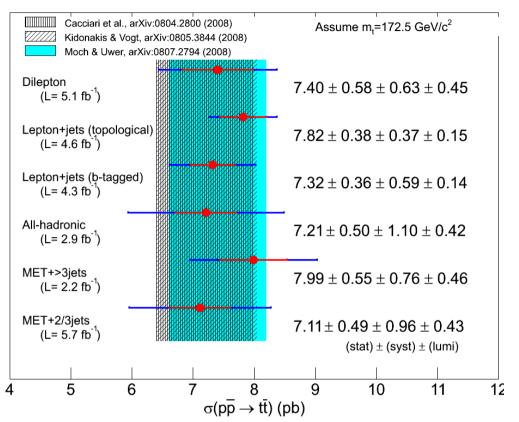
Top pair cross section: ℓ +jets

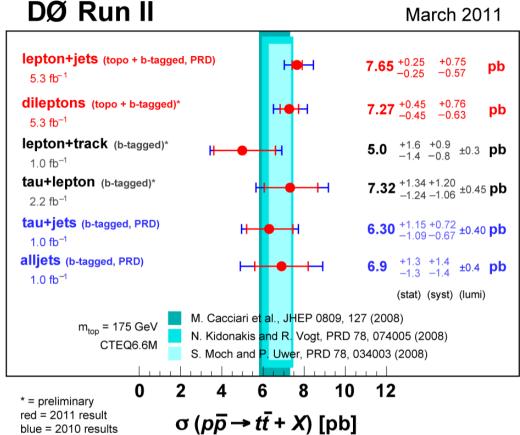
CDF 4.3-4.6 fb⁻¹ $m_t = 172.5 \text{ GeV}$

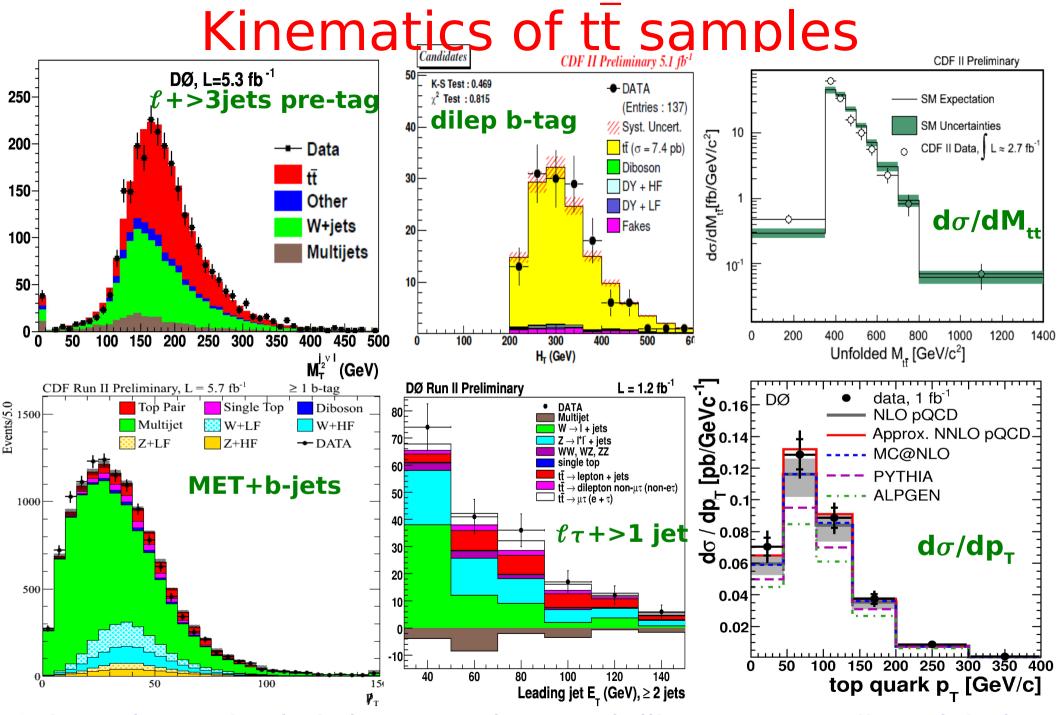

Measure ratio of cross sections to cancel out luminosity uncertainty


$$\sigma_{t\bar{t}} = \frac{\sigma_{t\bar{t}}}{\sigma_{z}} \cdot \sigma_{z}^{theory}$$

- Measure Z cross section on same triggers and same data sample
- (almost) Replace 6% uncertainty in luminosity with 2% uncertainty on $\sigma_{\rm Z}^{\rm theory}$
- lacktriangle Combine $\sigma_{\mathsf{t}ar{\mathsf{t}}}$ from
 - NN discriminant with 7 topological variables before b-tag
 - SVX b-tagged sample

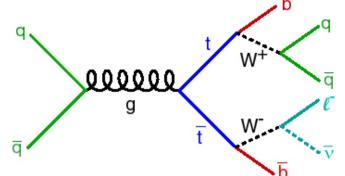

7% relative uncertainty




Arán García-Bellido

Cross sections combinations

- Tested many other channels: all hadronic, tau+lepton, tau+jets, MET+jets... all compatible results
- Best single measurement has 7% relative uncertainty: similar to theoretical uncertainty
- Most sensitive measurements limited by systematics



Selected samples in I+jets, tau+jets, and dilepton are well modeled

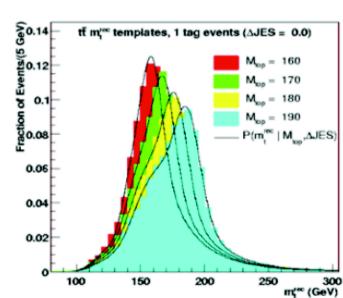
Arán García-Bellido

Top quark mass

- Best known top quark property!
- Combinatorics: how to assign jets to partons
- Need to calibrate jet energies to particle level (JES)
 - In-situ determination with m_w

Extraction methods

Matrix Element:


- Event probability based on parton physics
- Integrate over:
 - Incoming parton PDFs
 - Differential cross section (M)
 - Need transfer functions (reco parton)
- Maximizes statistical power by using full event information

$$P_{sig}(\vec{x}) = \frac{1}{\sigma(m_t, JES)} \int PDFs \frac{d\sigma(\vec{y})}{d\vec{y}} W(\vec{x}, \vec{y}; JES)$$

$$P_{evt}(\vec{\mathbf{x}}) = \mathbf{f}_{top} \cdot P_{sig}(\vec{\mathbf{x}}, \mathbf{m}_t, \mathsf{JES}) + (1 - \mathbf{f}_{top}) P_{bkg}(\vec{\mathbf{x}}, \mathsf{JES})$$

Templates:

Compare data to MC with different mass hypothesis

Arán García-Bellido

Latest m₊ measurements

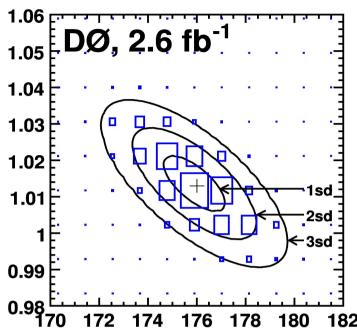
D0 Matrix Element (3.6 fb⁻¹) in ℓ +jets

- Detailed study of b/light jet response
 - Used γ +jets Data/MC corrections
 - Up to 1 GeV shift if corrected

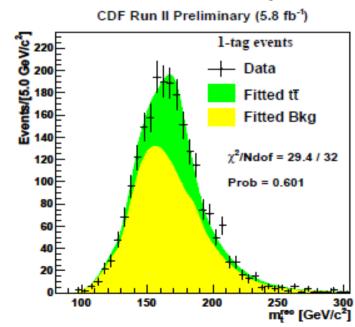
 $m_{.}=174.9\pm0.8(stat)\pm1.3(sys)$ GeV

0.9% relative uncertainty

- Derive background from data
- Cut on NN discriminant to separate QCD
- Divide sample in 1 or >1 tagged jets
- $\rightarrow \chi^2$ fit with m_w and m_t templates



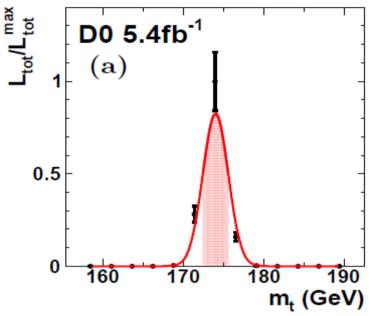
 $m_{t} = 172.5 \pm 1.4(stat) \pm 1.0(JES) \pm 1.2(sys)$ GeV


1.2% relative uncertainty

Arán García-Bellido

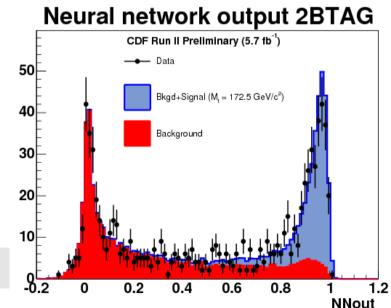
Top physics at the Tevatron

m, GeV



More m, measurements

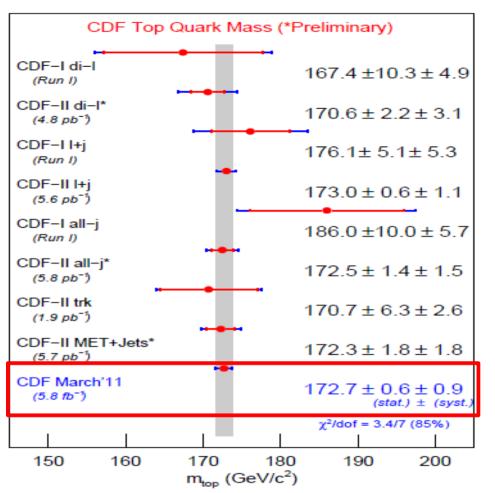
D0 Matrix Element (5.4 fb⁻¹) in dilepton

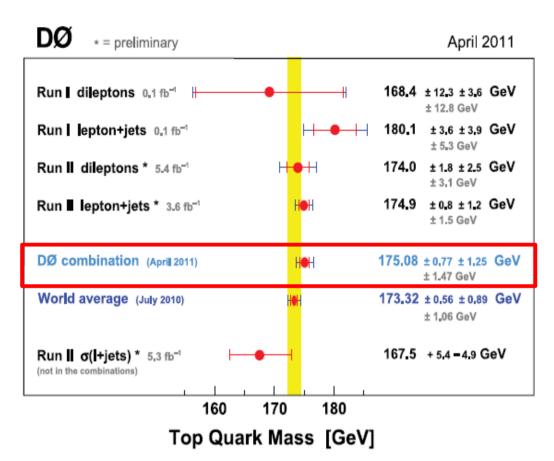

- Selects 479 events, 85% tt̄
- Two missing neutrinos:
 - ME integrates over 8 variables
- One background ME: Z+2jets
- $m_t = 174.0 \pm 1.8(stat) \pm 2.4(sys)$ GeV

1.8% relative uncertainty

CDF templates (5.7 fb⁻¹) in MET+jets

- MET+≥4jets, 1 or 2 b-tags
- Use NN>0.8 to remove background
- ▶ Use M3, M3' and m_{jj} variables to fit likelihood, each sampled over different m_t and JES
- $m_t = 172.3 \pm 2.4(stat + JES) \pm 1.0(sys)$ GeV


1.5% relative uncertainty


Arán García-Bellido

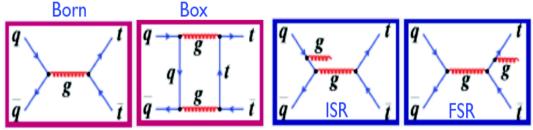
Top physics at the Tevatron

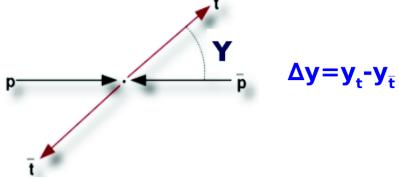
13

Combined mass results

 $m_{+}=173.3\pm0.6(stat)\pm0.9(sys)$ GeV

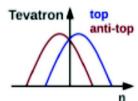
July 2010: 0.6% relative uncertainty

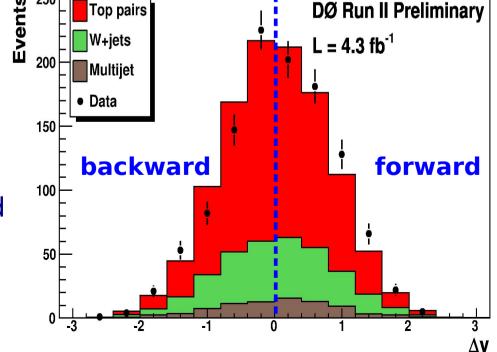

Different methods produce consistent results


- Different channels are consistent with each other
- Latest CDF and D0 combinations already close to 0.6%

Arán García-Bellido

Color charge asymmetry


LO: top quark production angle is symmetric wrt beam direction


NLO: forward-backward asymmetry A_{fb}~5% due to interference effects

$$A_{fb} = rac{N^{\Delta y > 0} - N^{\Delta y < 0}}{N^{\Delta y > 0} + N^{\Delta y < 0}}$$

D0 analysis in ℓ +jets 4.3 fb⁻¹

- $ightharpoonup \ell$ +jets sample with b-tagged jets
- Kinematic fitter to reconstruct tt pair
- Extract A_{fb} from 4 templates fit: fwd and bwd tt, multijets, and W+jets
- Result is raw asymmetry (uncorrected) for detector effects)

~2 sigma discrepancy Arán García-Bellido Top

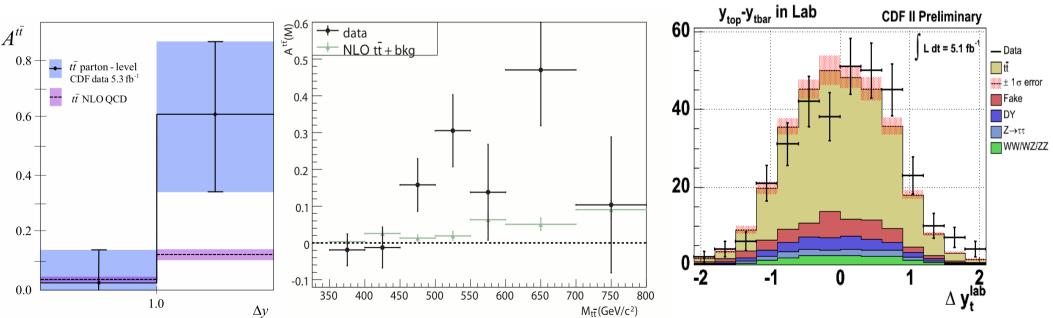
Color charge asymmetry

CDF ℓ +jets sample 5.3 fb⁻¹

- Unfold result to parton level
- Largest discrepancy for high Δy and large M₊₊
- Soft QCD effect, new physics?
- Double the dataset to look at!

CDF dilepton sample 5.1 fb⁻¹

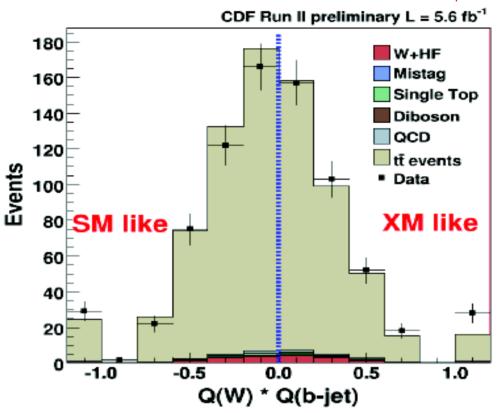
- Independent sample
- Lepton direction correlated with top direction
- Different tt reconstruction
- Raw result (not unfolded)


$$\mathbf{P} \mathbf{A}_{fb}^{Ij} = 16 \pm 7 \% \quad \mathbf{A}_{fb}^{SM} = 6 \pm 1 \%$$

Aran Garcia-Bellido

~2 sigma discrepancy

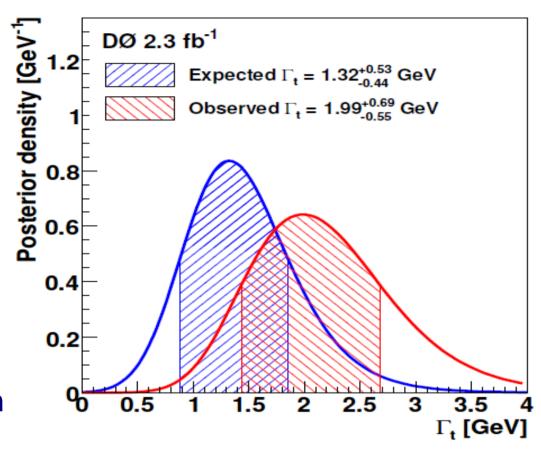
~2.3 sigma discrepancy


Top charge

CDF 5.6 fb⁻¹ in ℓ +jets

- Possible exotic model with -4/3e
- Fit pairs W's and b's for best m₊
- Use lepton to get W charge
- Determine b charge based on tracks charges
 - Purity = 68%
 - Efficiency = 98%
- Use Q_wxQ_b to build likelihood

Top width


D0 singletop+B (2.3 fb⁻¹)

- Direct measurement on m_t distribution is limited by detector resolution
- Indirect measurement from
 - lacksquare t-channel single top σ
 - B(t→Wb) from tt decays

$$\Gamma_{t} = \frac{\Gamma(t \to Wb)}{B(t \to Wb)}$$

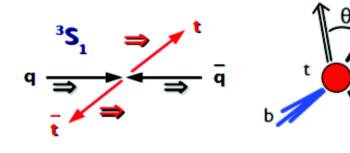
- Assumes coupling in production and decay is the same
- NLO: Γ_t =1.3 GeV for m_t =170 GeV

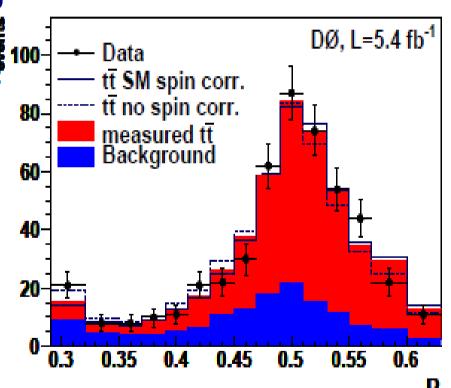
Spin correlations

NEW!

D0 5.4 fb⁻¹ in dilepton

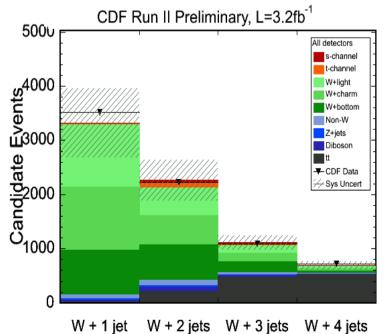
- Pair production: top quarks are unpolarized, but spins are correlated
- Flight directions of top decay products carry information about top polarization
- Matrix Element analysis (30% improvement over single variable)


$$R = \frac{P_{\text{sgn}}(H=c)}{P_{\text{sgn}}(H=u) + P_{\text{sgn}}(H=c)}$$

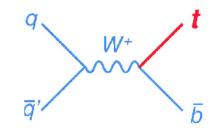

- ► Test hypothesis of correlated (c) or uncorrelated (u) t and t̄ spins
- Excludes uncorrelated case at 97.7%CL

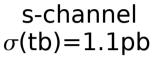
$$C_{NLO} = 0.78^{+0.03}_{-0.04}$$

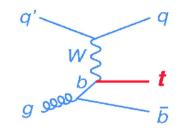
$$C_{obs} = 0.57 \pm 0.31$$

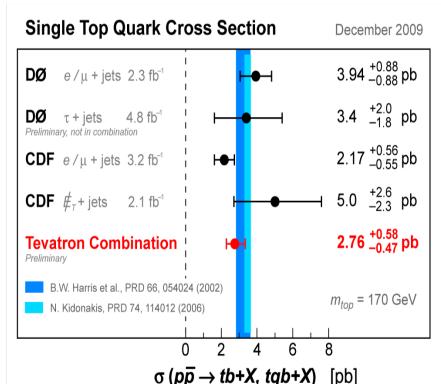


Most precise value of correlation strength

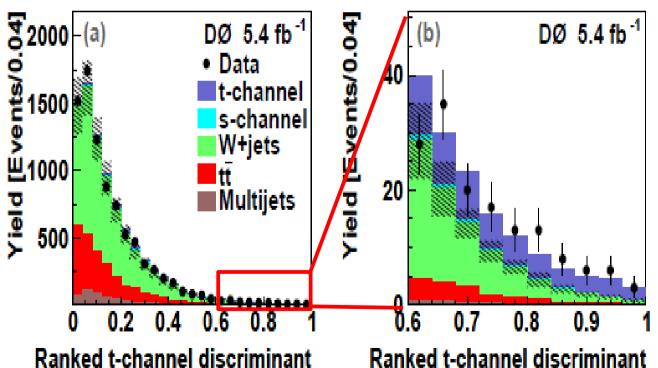

Single top physics

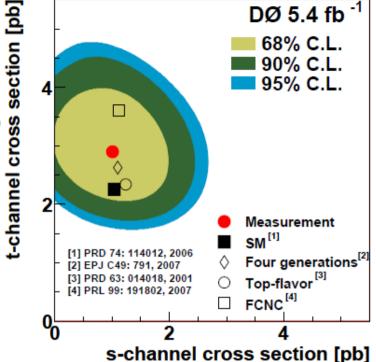

Electroweak production: tb and tqb


- Access directly W-t-b coupling (CKM)
- New physics:
 - s-channel sensitive to resonances
 - t-channel sensitive to anomalous couplings, FCNCs
- Extract small signal out of a large background: need MVA techniques
- Careful study of W+hf backgrounds


Took 14 years to observe after top discovery!

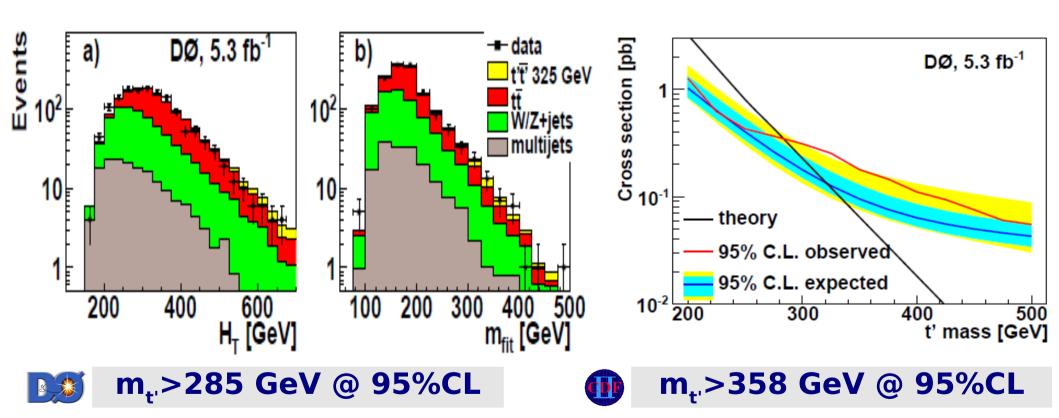
t-channel $\sigma(\mathsf{tqb}) = 2.1\mathsf{pb}$




8% relative uncertainty

Observation of t-channel

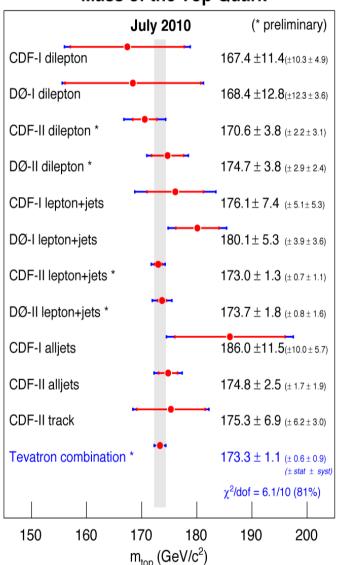
- Use three MVA techniques
 - Boosted Decision Trees
 - Bayesian Neural Network (BNN)
 - Neuroevolution of Augmented Topologies (NEAT)
- Combined into an additional BNN (BNNComb)
 - Only ~70% correlated with each other
- Fit simultaneously s- and t-channel cross sections: without SM assumption



$$\sigma$$
(tb) =0.98±0.64 pb σ (tqb)=2.90±0.59 pb

tqb: 5.5σ (4.6 σ exp.) 20%-60% rel. unc.

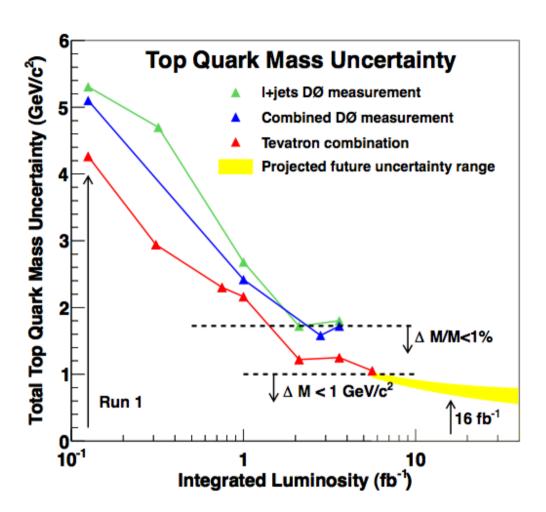
Search for t'


- Fourth family t' not excluded if m_{t'}-m_{b'}<m_w
- Analyses look for t't̄' production and t'→Wq
- \blacktriangleright Use ℓ +jets channel without b-tagging
- ≥ 2D fit to data in H_T and m_H from kinematic fit

After 16 years of studies

- Impressive list of measurements
- We know:
 - $m_{+} = 173.3 \pm 1.1 \text{ GeV}$
 - $\Delta m = m_t m_{\bar{t}} = 3.8 \pm 3.7 \text{ GeV}$
 - $\sigma(tt) = 7.0 \pm 0.6 \text{ pb}$
 - $\sigma(t) = 2.7 \pm 0.6 \text{ pb}$
 - $|V_{tb}| = 0.88 \pm 0.07$
 - Longitudinally polarized W: $f_0=0.67\pm0.08(stat)\pm0.07(sys)$ [$f_0(SM)=0.7$]
 - Charge: exclude -4/3e @ 95% CL
 - $\Gamma_{t} = 2.0 \pm 0.7 \text{ GeV } [\Gamma_{t}(SM) = 1.3 \text{ GeV}]$
 - Spins in tt are correlated: C=0.57±0.31
 - cτ < 52.2 μm @ 95% CL</p>
 - ... and many limits on new physics

Mass of the Top Quark

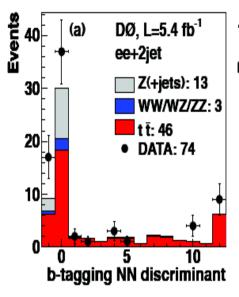


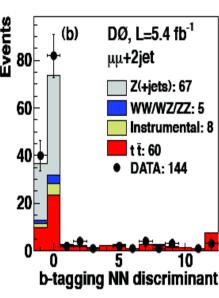
http://www-cdf.fnal.gov/physics/new/top/top.html http://www-d0.fnal.gov/Run2Physics/top/top public web pages/top public.html

Conclusions

- Tevatron has surpassed expectations on top mass and cross section uncertainties
 - $\Delta \sigma/\sigma \sim 7\%$, close to theoretical uncertainty
 - Δm/m=0.6% and will improve: below 1 GeV with more data
 - True legacy measurement: will be hard to surpass
- Many properties have been studied
 - No significant deviation from SM so far
 - Exciting discrepancy in color charge asymmetry: keep an eye on this
- Broad program of searches in top sector
 - Will soon be improved by LHC reach
- Single top observed (s+t and t) and continues to be studied
 - LHC at current lumis produces ten times more top quarks per minute than Tevatron!
 - Will still work on complementary searches: boosted tops, A_{fb}, s-channel, spin correlations...
 - Now 10 fb⁻¹ on tape: double the data presented here

Extras

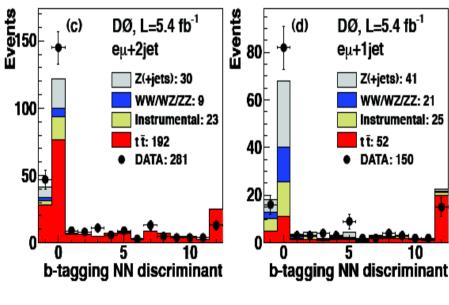

Dilepton cross section


CDF 5.1 fb⁻¹ m₊=172.5 GeV

- ► Two isolated leptons p₋>20 GeV
- ▶ Two or more jets $p_{\tau}>15$ GeV $|\eta|<2.5$
- MET>25 GeV, H_→>200 GeV
- In b-tagged analysis: ≥1 b-tag
- ▶ 343 (137) events before (after) b-tag

- Simultaneous fit in 4 regions
- Use smallest NN b-tag output of the two leading jets
- Systematics as Gaussian constrained nuisance parameters
- Luminosity is the largest unertainty

DØ, L=5.4 fb⁻¹


Z(+jets): 41

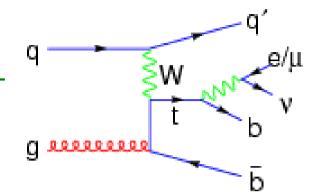
t t: 52

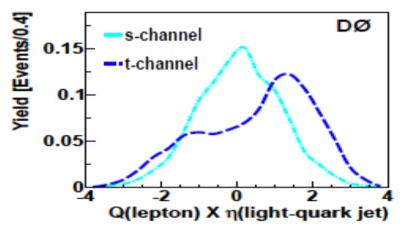
DATA: 150

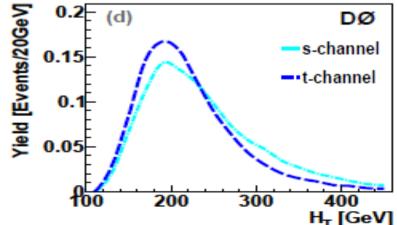
Instrumental: 25

eu+1jet

$$\sigma_{tt} = 7.36^{+0.90}_{-0.79} \text{(stat+sys)} \text{ pb}$$


ty 11% relative uncertainty
Top physics at the Tevatron 27


13% relative uncertainty Arán García-Bellido To


Signal selection

- Selection designed to be as open as possible: describe backgrounds well
 - Only one isolated ℓ; 2, 3 (4) jets; 1,2 b-tags; MET
- ► S/B~1/200 before b-tagging
- Best S/B~1/10 after b-tagging
- Dominated by W+jets backgrounds
- Uncertainty on background larger than expected signal yield

Source	2 jets	3 jets	4 jets
tb	104 ± 16	44 ± 7.8	13 ± 3.5
tqb	140 ± 13	72 ± 9.4	26 ± 6.4
$tar{t}$	433 ± 87	830 ± 133	860 ± 163
W+jets	$3,560 \pm 354$	$1,099 \pm 169$	284 ± 76
$Z{+}\mathrm{jets}~\&~\mathrm{dibosons}$	400 ± 55	142 ± 41	35 ± 18
Multijets	277 ± 34	130 ± 17	43 ± 5.2
Total prediction	$4{,}914\pm558$	$2{,}317\pm377$	$1{,}261\pm272$
Data	4,881	2,307	1,283

