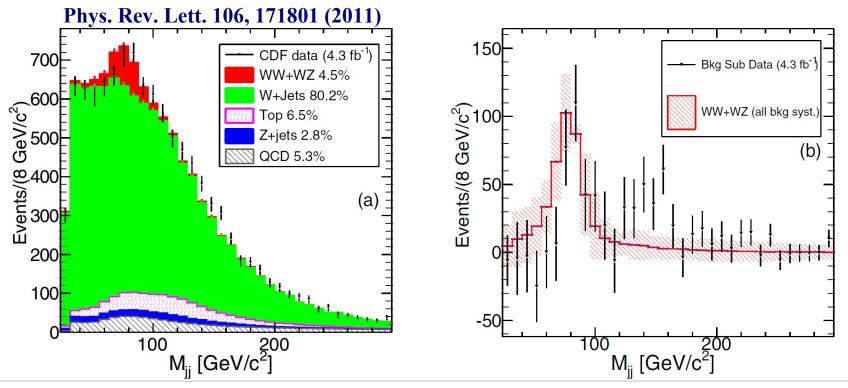


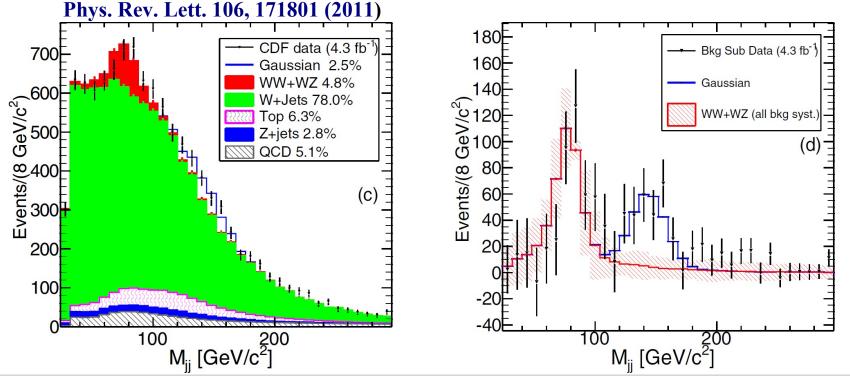
Study of Dijet Invariant Mass Distribution in lvjj Final States Arán García-Bellido University of Rochester On behalf of the D0 Collaboration


Physics at the LHC 2011 - Perugia - June 11, 2011

Slides based on Wine & Cheese seminar on June 10 by Joe Haley

What's so hot about wjj?

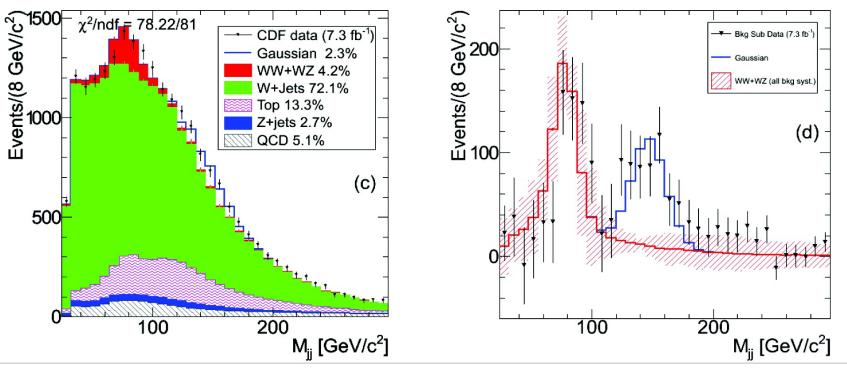
- CDF has reported an excess of events in the dijet mass spectrum above the expected Standard Model contributions
- Does DØ confirm this excess?



Physics at LHC 2011

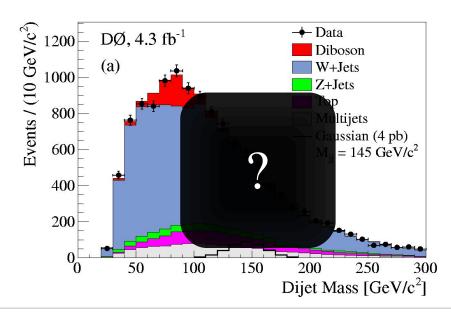
The CDF Excess

- Using 4.3 fb⁻¹ integrated luminosity the CDF data show an excess of 3.2 standard deviations around a dijet mass ~145 GeV
 - Modeled by a Gaussian with width expected from jet resolution
 - If this is a resonance from some new particle, X, then $\sigma(p\overline{p}\rightarrow WX) \approx 4 \text{ pb}$
 - Assumes BR(X \rightarrow jj) = 1.0 and the same efficiency as WH \rightarrow lvbb with m_H=150 GeV


Physics at LHC 2011

The CDF Bump

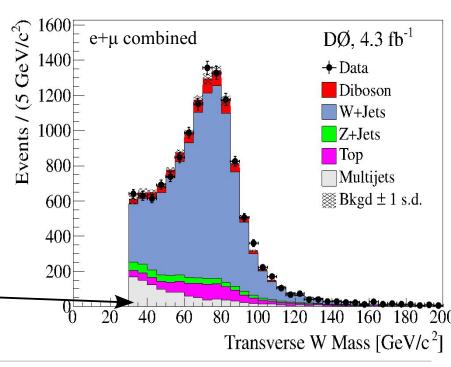
- CDF has updated results using an integrated luminosity of 7.3 fb⁻¹
 - + Significance of excess now exceeds 4 σ


www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html

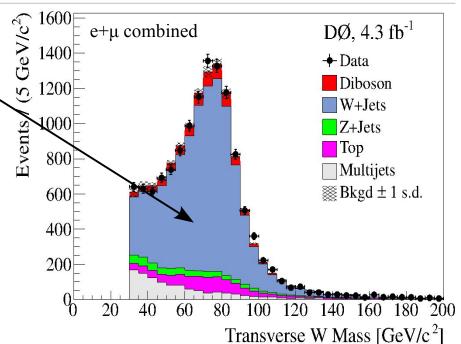
Physics at LHC 2011

- Try to mirror what was done in the CDF analysis
 - Started from ongoing DØ diboson analysis and modified the kinematic selection to replicate the CDF publication
 - Make similar assumptions on modeling an excess
- Study the dijet mass distribution in the DØ data
 - Fit SM contributions to the data
 - Do we have an excess of events around M_{jj} = 145 GeV?
 - Include a model for WX→lvjj
 - How large of an excess do the DØ data support?

Event Selection

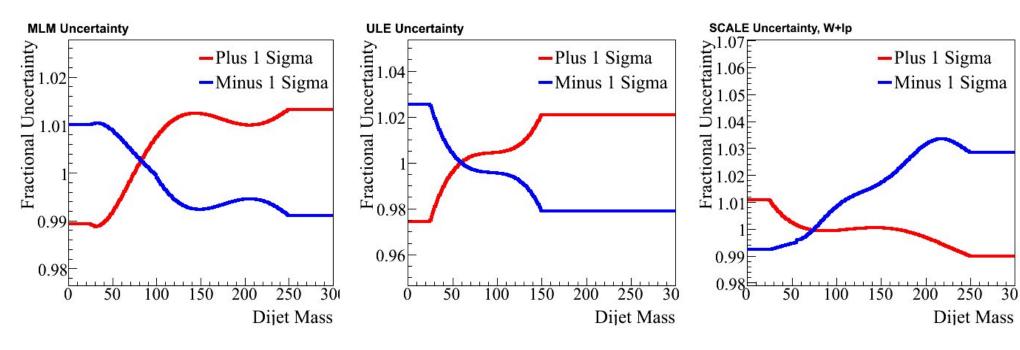

- 4.3 fb⁻¹ of integrated luminosity collected by the DØ detector
 - Events containing $W(\rightarrow lv)$ and 2 jets
 - Require isolated lepton (e or μ): $p_T \ge 20$ GeV, $|\eta| < 1.0$
 - Neutrino: MET > 25 GeV
 - Lepton+Neutrino system: 30 GeV $< m_T(W) < 200$ GeV
 - Veto events with more than one charged lepton
 - Two Jets:
 - $p_T(j_1)$ and $p_T(j_2) \ge 30$ GeV, $|\eta_{detector}| \le 2.5$
 - Veto events with additional jets meeting these criteria
 - Dijet System
 - $p_T(j_1j_2) \ge 40 \text{ GeV}$
 - $|\Delta \eta(j_1, j_2)| \le 2.5$
 - Reduce mis-measured E_T
 - $\Delta \varphi(j_1, MET) \ge 0.4$

 $2 \Rightarrow \mathbf{E}_{T}$


- Processes with a high p_T lepton modeled via Monte Carlo generators
 - ► Pythia: WW, WZ, ZZ
 - CompHep+Pythia: single top
 - Alpgen+Pythia: W+jets, Z+jets, tt
 - With Geant-based detector simulation
- Multijet background
 - A jet is mis-identified as a lepton
 - Estimated from multijet enriched data
 - Muon channel: Reverse isolation cuts
 - Electron channel: Release EM quality criteria
 - Corrected for contributions already accounted for by MC
 - Normalization determined by fitting the m_T(W) distribution

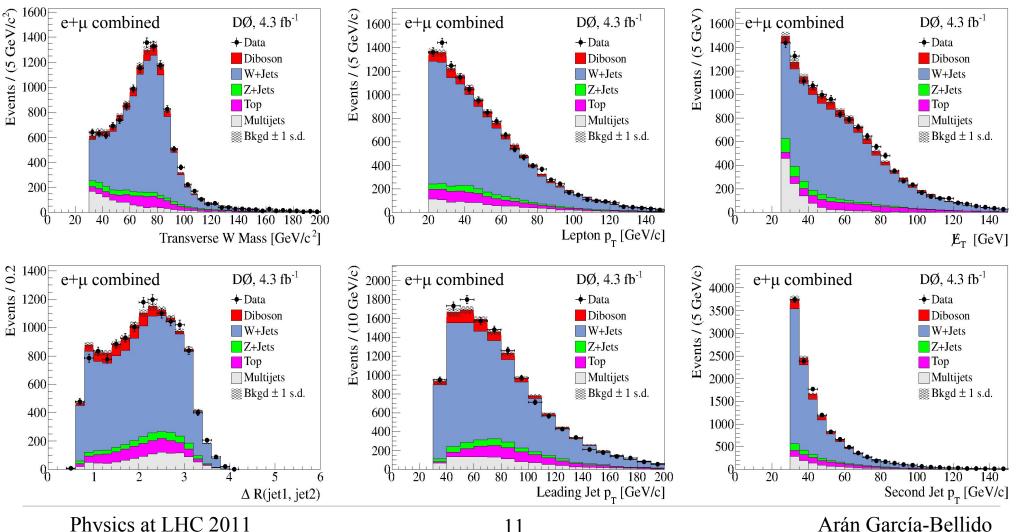
SM Predictions

- Dominated by W+jets (~75%) -
 - Vital to understand this background when looking differences of a few percent
 - MC generators are meant to reproduce the SM, but are only approximations
 - Make assumptions and simplifications
 - Many "knobs" to tune
 - Different generators give different results
- <u>No corrections applied to Alpgen</u> <u>prediction</u>
 - Systematic effects allow for variation of W+jets background shape


Sample composition: fit result

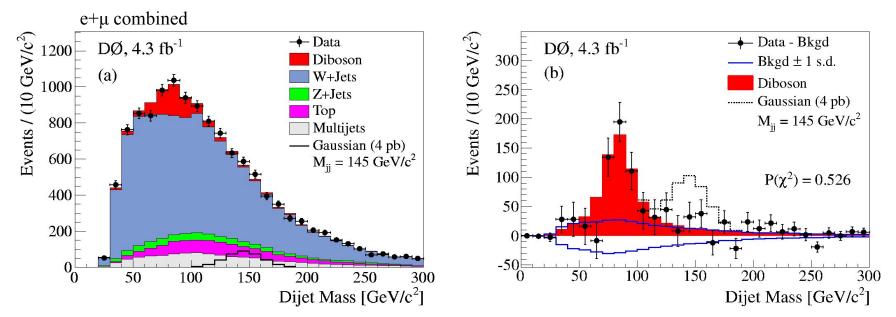
	Electron channel Muon channe		
Dibosons	$434~\pm~38$	$304~\pm~25$	
$W\!+\!\mathrm{jets}$	5620 ± 500	3850 ± 290	
$Z\!+\!{ m jets}$	180 ± 42	350 ± 60	
$t\bar{t} + ext{single top}$	600 ± 69	363 ± 39	
Multijet	932 ± 230	151 ± 69	
Total predicted	7770 ± 170	5020 ± 130	
Data	7763	5026	

- Large NLO/LO k-factor
- Uncertainties due to:
 - P_T threshold for Alpgen MLM matching prescription
 - Parton shower model (Pythia vs. Herwig) and underlying event model (tunes)
 - Renormalization/Factorization scale choice

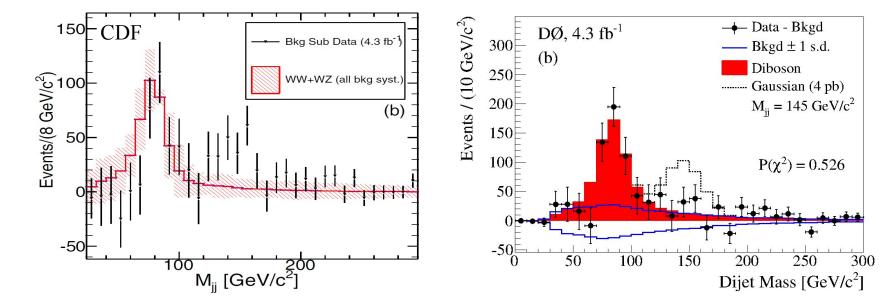

- Fit dijet mass distributions for all SM processes to the data
 - Construct a χ^2 function from the ratio of Poisson likelihoods and include prior information on the systematic uncertainties
 - Float cross sections for Diboson and W+jets contributions

Source of systematic uncertainty	Diboson signal	$W{+}\mathrm{jets}$	$Z{+}\mathrm{jets}$	Top	Multijet	Nature
Trigger/Lepton ID efficiency	± 5	± 5	± 5	± 5		Ν
Trigger correction, muon channel	± 5	± 5	± 5	± 5		D
Jet identification	± 1	± 1	± 2	± 1		D
Jet energy scale	± 10	± 5	± 7	± 5		D
Jet energy resolution	± 6	± 1	± 3	± 6		D
Jet vertex confirmation	± 3	± 3	± 4	± 1		D
Luminosity	± 6.1	± 6.1	± 6.1	± 6.1		Ν
Cross section		± 6.3	± 6.3	± 10		Ν
V+hf cross section		± 20	± 20			Ν
$V{+}2$ jets/ $V{+}3$ jets cross section		± 10	± 10			Ν
Multijet normalization					± 20	Ν
Multijet shape, electron channel					± 1	D
Multijet shape, muon channel					± 10	D
Diboson modeling	± 8					D
Parton distribution function	± 1	± 5	± 4	± 3		D
Unclustered Energy correction	$\pm < 1$	± 3	± 3	$\pm < 1$		D
ALPGEN η and $\Delta R(jet1, jet2)$ corrections		$\pm < 1$	$\pm < 1$			D
ALPGEN $W p_T$ correction		$\pm < 1$				D
ALPGEN correction Diboson bias	± 1	± 1	± 1	± 1		D
Renormalization and factorization scales		± 1	± 1			D
ALPGEN parton-jet matching parameters		± 1	± 1			D
Parton shower and Underlying Event		± 2	± 2			D

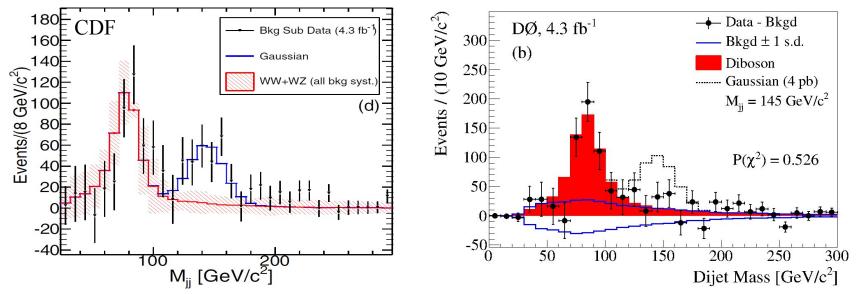
Physics at LHC 2011


• Kinematic distributions after the fit in the dijet mass

Physics at LHC 2011

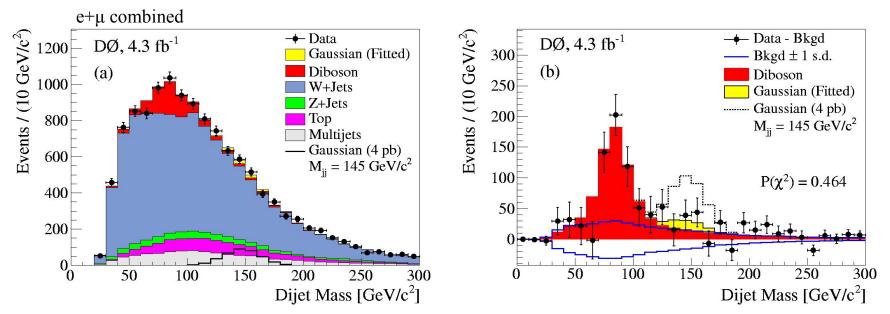

• The dijet mass distributions after fitting the SM processes to the data

• The DØ data are consistent with the SM prediction


• The dijet mass distributions after fitting the SM processes to the data

• The DØ data are consistent with the SM prediction

• The dijet mass distributions after fitting the SM processes to the data

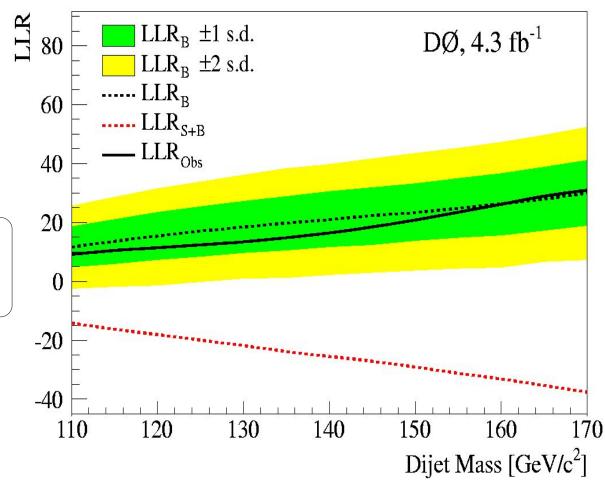


- The DØ data are consistent with the SM prediction
- What if we fit to a resonance like the excess seen by CDF?
 - Quantify whether the DØ data are consistent with such an excess
 - Assume Gaussian distribution, width determined by experimental resolution

Fitting WX

- Fit WX→lvjj template to the data along with SM processes
 - Floating normalizations of WX, diboson, and W+jets

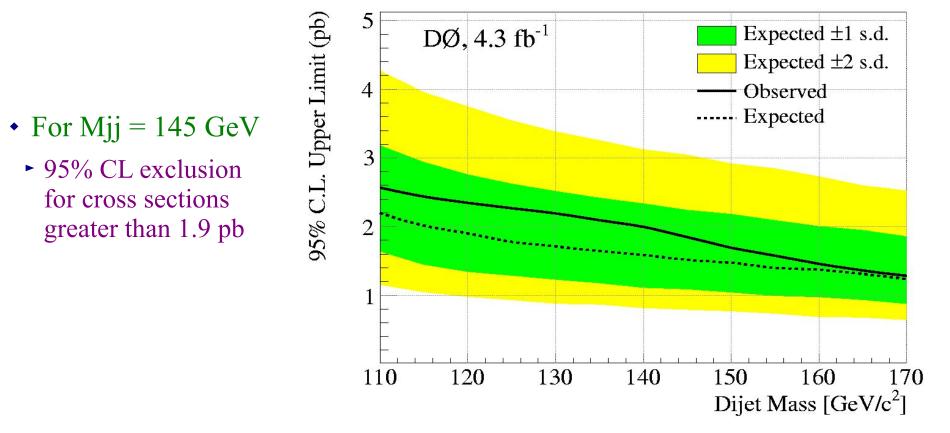
- Fitting a signal is also consistent with no excess
 - How large of an excess is allowed by the DØ data?



Limit Setting

- Frequentist approach
 - Test statistic: Ratio between S+B fit and Bonly fit

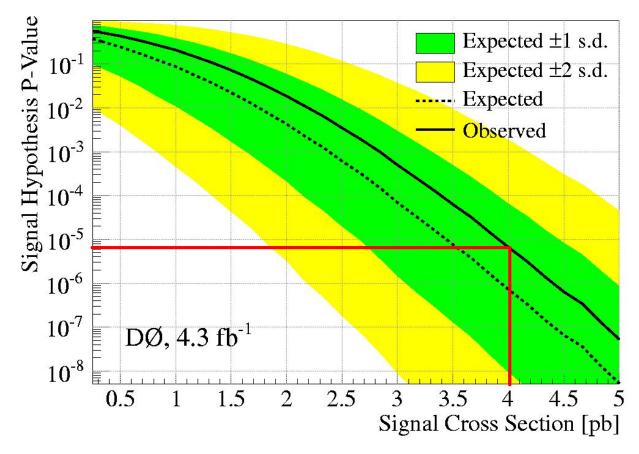
$$LLR = -2\log\left(\frac{P(D; S+B)}{P(D; B)}\right) =$$
$$= \chi^{2}(D|S+B) - \chi^{2}(D|B)$$


- D = observed number of events S = predicted number of signal events B = predicted number of background events
- Compare observed LLR to the predicted LLR distributions over the range of dijet mass

Limits on WX

• 95% CL upper limits on WX \rightarrow lvjj as a function of reconstructed M_{jj}

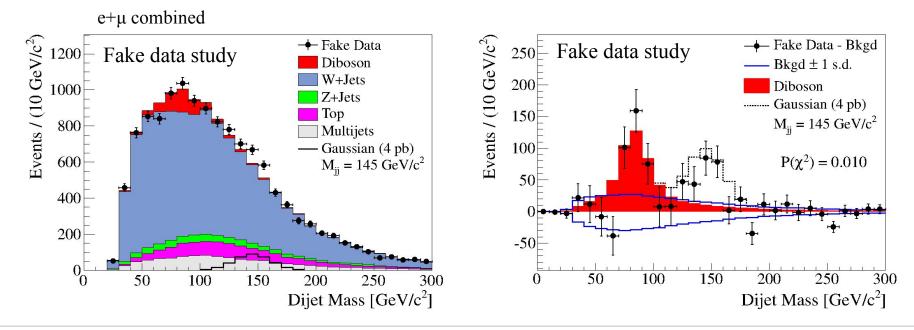
• Can also ask: How strongly is an excess at 145 GeV ruled out?


Physics at LHC 2011

Limits on WX

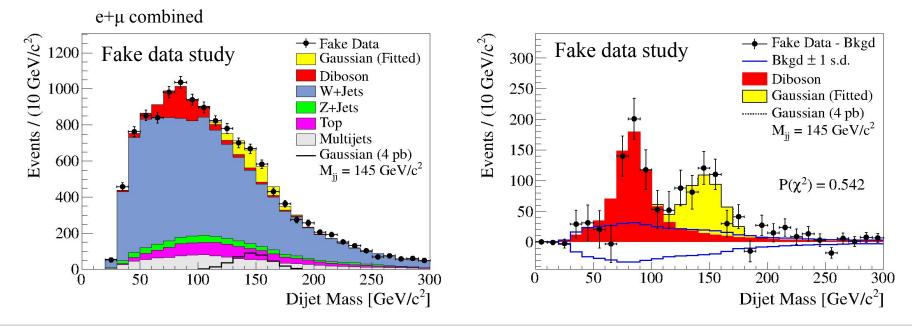
• How strongly do the DØ data rule out an excess at 145 GeV?

- For a cross section of 4 pb as reported by CDF
 - ► Exclude at 99.999% CL
 - 4 standard deviations

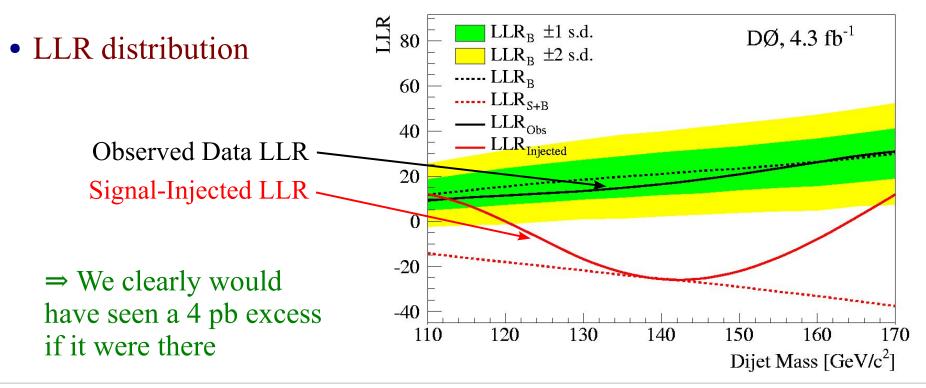


 \Rightarrow The DØ data are not consistent with the excess seen by CDF

Tests with Signal Injection


- What if there really were a 4 pb dijet mass resonance at 145 GeV?
 - What would it look like?
 - Make a signal-injected mock "data" sample
 - Composed of data + WX template @ 145 GeV
 - Confirm that our studies would find that signal
- Fitting the SM processes to the signal-injected data:

Tests with Signal Injection

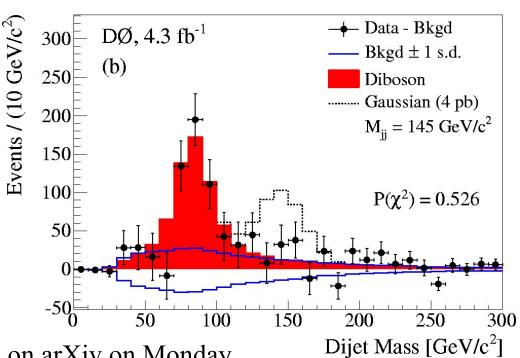

- What if there really were a 4 pb dijet mass resonance at 145 GeV?
 - What would it look like?
 - Make a signal-injected mock "data" sample
 - Composed of data + WX template @ 145 GeV
 - Confirm that our studies would find that signal
- Fitting the SM + WX template to the signal-injected data:

Tests with Signal Injection

- What if there really were a 4 pb dijet mass resonance at 145 GeV?
 - What would it look like?
 - Make a signal-injected mock "data" sample
 - Composed of data + WX template @ 145 GeV
 - Confirm that our studies would find that signal

Differences Between CDF and DØ

- Detector and Object Reconstruction
 - Different jet cone algorithms
- Monte Carlo generators

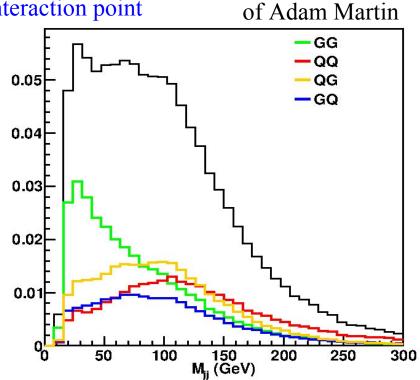

CDF: PDF set: CTEQ5L Pythia version: v6.326 Pythia tune: tune A Alpgen version: v2.1 DØ: CTEQ6L1 v6.409 "DØ tune A" (like tune A, but for CTEQ6L1) v2.11_wcfix

- Alpgen parameters and uncertainties
 - DØ assigns uncertainties on kinematic modeling, parton-jet matching, parton shower model, renormalization/factorization scale, PDF

Summary

- Used the same selection as the CDF analysis
- Studied the dijet mass spectrum in the range 110 170 GeV
 ⇒ DØ data are consistent with the SM predictions
 - We verified that:
 - We would see a 4 pb excess if it were in the DØ data
 - We get consistent results with or without kinematic Alpgen corrections
 - For a resonance at 145 GeV
 ⇒ Exclude 1.9 pb at 95% CL
 ⇒ Exclude 4 pb at 99.999% CL

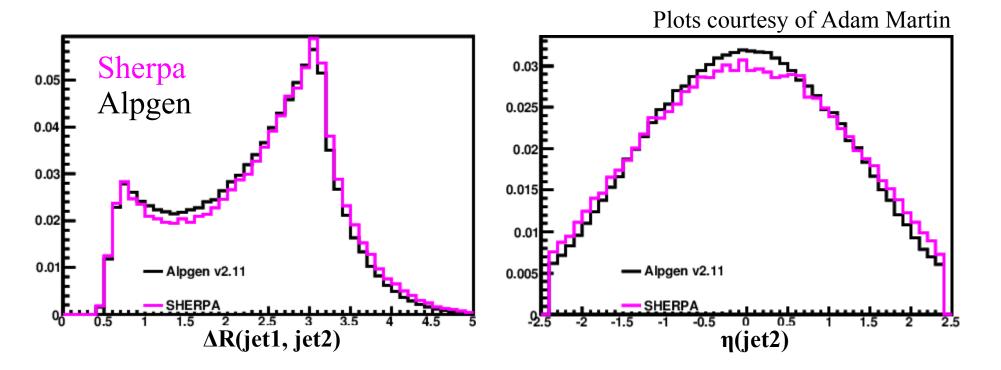
Submitted to Phys. Rev. Lett., available on arXiv on Monday Di http://www-d0.fnal.gov/Run2Physics/WWW/results/final/HIGGS/H11B/



Thank you

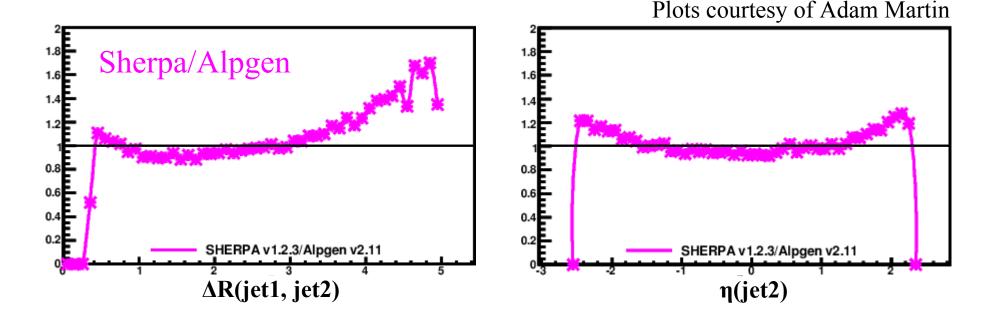
Event Selection

- Jets:
 - Reconstruction:
 - ► DØ iterative mid-point cone algorithm with radius R=0.5
 - Must be a hadronic shower and not contain noisy calorimeter cells
 - At least two tracks originating from the primary interaction point
 - Jet Energy Scale
 - Measured in γ +jet and dijet events
 - Correct energy to particle-level
 - Correct for detector response, out of cone showering, overlap with pileup energy
 - Relative Data/MC Correction
 - Measured in Z+jet events
 - Different correction depending on quark vs. gluon content

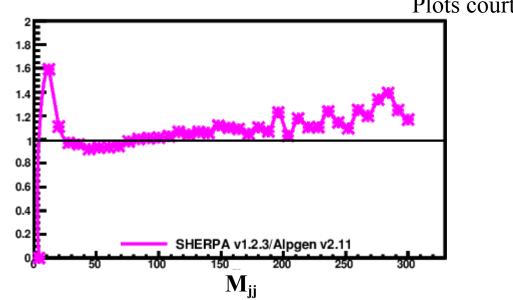

Arán García-Bellido

Plot courtesy

W+jets Modeling


- We know that Alpgen is not the final answer in modeling W+jets
 - Different generators have different predictions

- We know that Alpgen is not the final answer in modeling W+jets
 - Different generators have different predictions



• In analyses with looser cuts (*e.g.*, WH→lvbb) we see clear discrepancies of exactly this type

- We know that Alpgen is not the final answer in modeling W+jets
 - Different generators have different predictions

Plots courtesy of Adam Martin

• In analyses with looser cuts (*e.g.*, WH→lvbb) we see clear discrepancies of exactly this type

W+jets Modeling

- In other analyses we use data-driven corrections to fix the modeling of these variables with known discrepancies between predictions
 - Jet η , $\Delta R(jet1, jet2)$, and $p_T(W)$
 - However, the relatively tight selection used in this analysis reduces the necessity for these corrections
 - Removes much of the problematic phase space (low p_T(W))
- The CDF analysis did not apply corrections to the Alpgen modeling
 ⇒ To parallel their analysis, we perform the analysis without these corrections
 - Still including uncertainties one the modeling of these variables
- However, to show that these corrections would not alter the conclusion
 ⇒ We also present results with these corrections

- Fit dijet mass distributions for all SM processes to the data
 - Construct a χ^2 function from the ratio of Poisson likelihoods and include prior information on the systematic uncertainties

$$\chi^{2}(\theta, S, B; D) = 2 \sum_{i=0}^{N_{bins}} (B_{i} + S_{i} - D_{i}) - D_{i} \ln \left(\frac{B_{i} + S_{i}}{D_{i}}\right) + \sum_{k=0}^{N_{syst}} \theta_{k}^{2}$$

D = observed number of events

 $S(\theta_k)$ = predicted number of signal events

 $B(\theta_k)$ = predicted number of background events

 θ_k = number of standard deviations systematic k has been pulled away from nominal

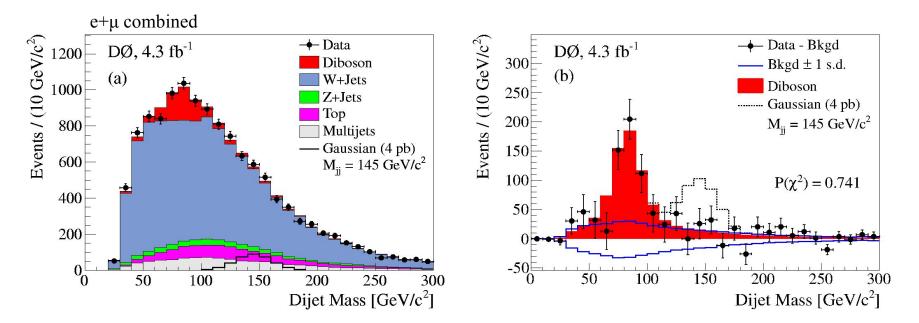
- Fit dijet mass distributions for all SM processes to the data
 - Construct a χ^2 function from the ratio of Poisson likelihoods and include prior information on the systematic uncertainties

$$\chi^{2}(\theta, S, B; D) = 2 \sum_{i=0}^{N_{bins}} (B_{i} + S_{i} - D_{i}) - D_{i} \ln \left(\frac{B_{i} + D_{i}}{D_{i}}\right)$$

$$n\left(\frac{B_i + S_i}{D_i}\right) + \left(\sum_{k=1}^{N}\right)$$

D = observed number of events

 $S(\theta_k)$ = predicted number of signal events


 $B(\theta_k)$ = predicted number of background events

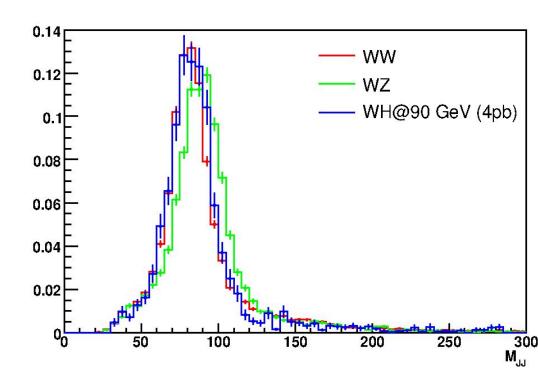
 θ_k = number of standard deviations systematic k has been pulled away from nominal

- Templates can vary within systematic uncertainties, constrained by Gaussian priors
- Can "float" a parameter by removing the θ^2 prior constraint
 - Float cross sections for Diboson and W+jets contributions

- The dijet mass distributions after fitting the SM processes to the data
 - With Alpgen modeling corrections applied

Modeling $WX \rightarrow lvjj$

- Assume a Gaussian distribution in dijet mass with a width determined by the DØ experimental resolution
 - A simplified model, but a reasonable approximation for a narrow resonance
 - Apples-to-apples comparison to CDF's claim of the excess being consistent with a cross section of ~ 4 pb
 - Width estimated from WW→lvjj
 - $\bullet \ \sigma_{jj} = \ \sigma_{W \to jj} \times \sqrt{m_{jj} / m_{W \to jj}}$


► For
$$M_{jj} = 145 \text{ GeV} \Rightarrow \sigma_{jj} = 15.7 \text{ GeV}$$

Modeling $WX \rightarrow lvjj$

- Estimate efficiency from WH→Wbb
 - Assume BR($X \rightarrow jj$) = 1.0
 - Use efficiency from m_H=150 GeV for the Gaussian template with mean of 145 GeV
 - ► To be consistent with CDF
 - Assign systematic uncertainties
 - Jet energy scale uncertainty changes mean by ±1.5 %
 - Jet Resolution uncertainty changes normalization by ±5% and width by ±3%

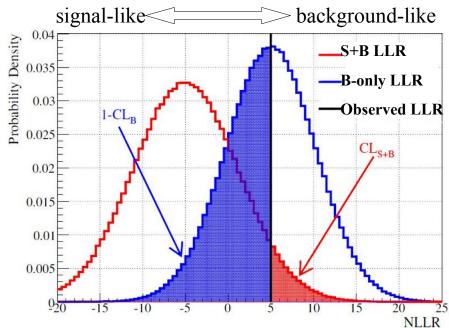
Limit Setting

- Frequentist approach
 - If the experiment is repeated many times, what fraction would find a more extreme result?
 - Need to simulate repeating the experiment many times
 - Generate ensembles of pseudo-experiments allowing statistical and systematic fluctuations
 - Two hypotheses: Background only and Signal+Background

Limit Setting

- Frequentist approach
 - If the experiment is repeated many times, what fraction would find a more extreme result?
 - Need to simulate repeating the experiment many times
 - Generate ensembles of pseudo-experiments allowing statistical and systematic fluctuations
 - Two hypotheses: Background only and Signal+Background
 - Test statistic: Ratio between S+B fit and B-only fit

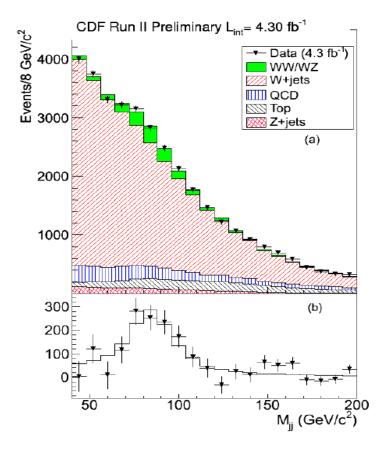
$$LLR = -2\log\left(\frac{P(D; S+B)}{P(D; B)}\right) = \chi^{2}(D|S+B) - \chi^{2}(D|B)$$


D = observed number of events S = predicted number of signal events B = predicted number of background events

 Construct the LLR probability distribution for each hypothesis and see how they compare to the observed LLR

Limit Setting

- Set upper limits on the cross section for this model
 - CL_{S+B} = probability of measuring a more background-like result when signal is actually present
 - $1 CL_B$ = probability of measuring a more signal-like result when there is actually no signal
- 95% CL limit
 - Could use CL_{S+B}
 - The cross section where $CL_{S+B} = 5\%$
 - But what if $1 CL_B$ is also small?
 - ► The observed LLR is also inconsistent with the background only hypothesis!
 - Use $CL_S = CL_{S+B}/(1 CL_B)$
 - The cross section where $CL_s = 5\%$
 - Protects against setting limit too tight when the background is poorly modeled



Fermilab W&C

Cross sections measurement

- Use a fit to dijet mass to extrapolate the WW/WZ contribution
- We estimate 1582 ± 275 (stat.) ± 107 (syst.) events for a significance of 5.2 σ .
- The resulting cross section is

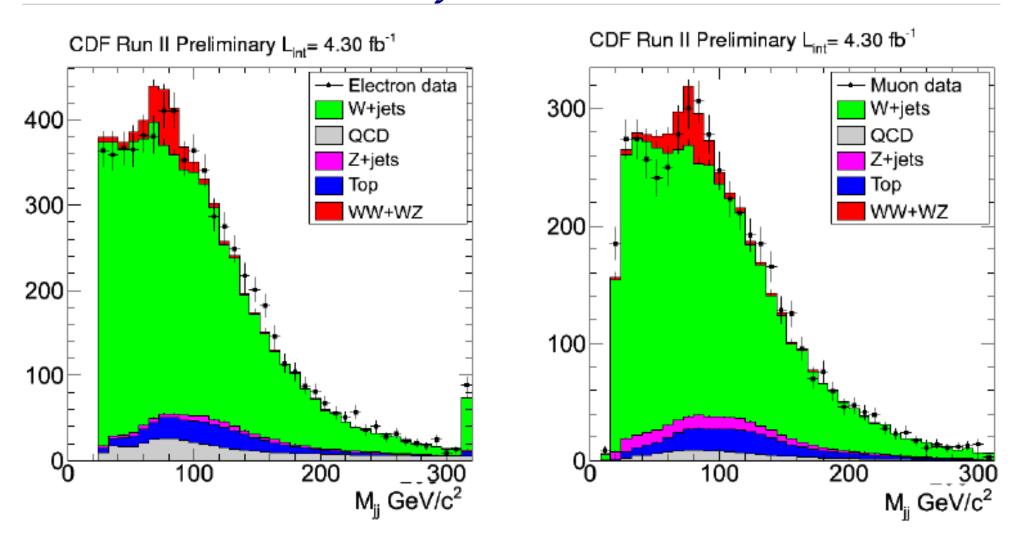
 $\sigma(WW/WZ) = 18.1 \pm 3.3$ (stat.) ± 2.5 (syst.) pb

that is in agreement with SM expectation $(15.9 \pm 0.9 \text{ pb}).$

V. Cavaliere (University of Illinois at Urbana-Champaign) Seminar

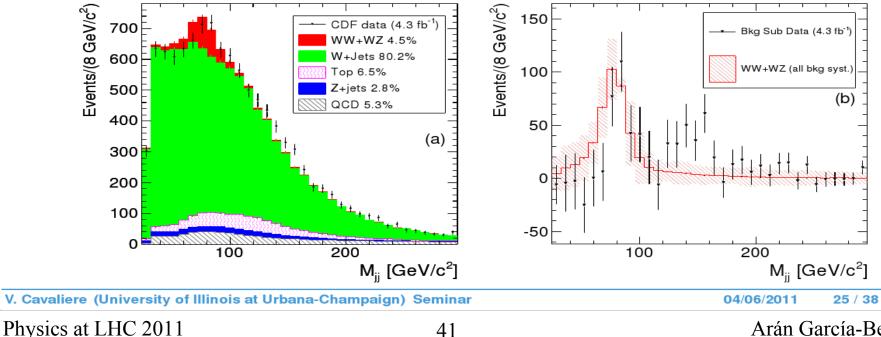
04/06/2011 9 / 38

CDF Dijet Mass Excess


Moving to different kinematical region

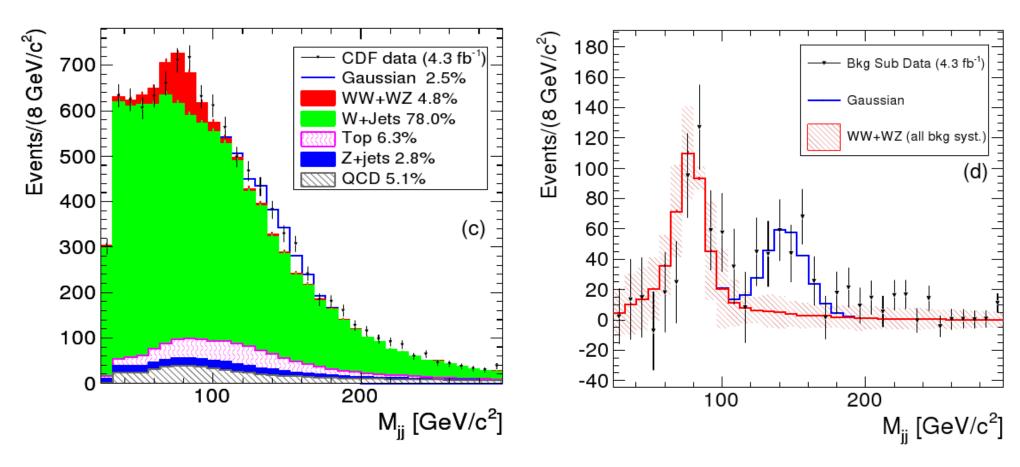
- Using exactly the same kinematical cuts as the diboson analysis but:
- We require both jets to have $E_T > 30 \text{ GeV}$
 - Energetic jets are measured with better accuracy.
 - Modeling in this region is expected to be more accurate
 - A possible heavier particle would be characterized by more energetic jets
- Sample modeling using same processes with different relative contribution
- All cuts chosen "a priori"

CDF Dijet Mass Excess

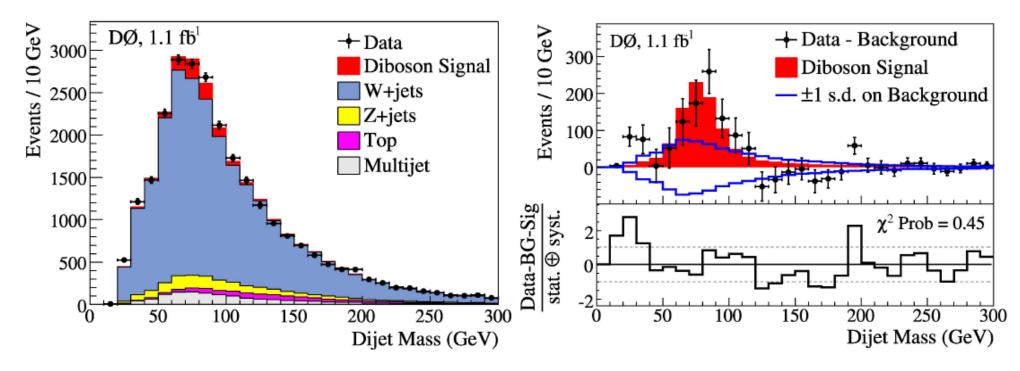


CDF Dijet Mass Excess

Fitting procedure



- Combined χ^2 fit to the dijet mass distribution in electron and muon samples.
- 5 templates:
 - W + jets (uncostrained, normalization determined from the fit)
 - QCD (normalization constrained to its fraction with 25 % error)
 - Z + jets (normalization constrained to the measured cross section)
 - top & single top (normalization constrained to the theoretical cross section)
 - WW/WZ (normalization constrained to the theoretical cross section)

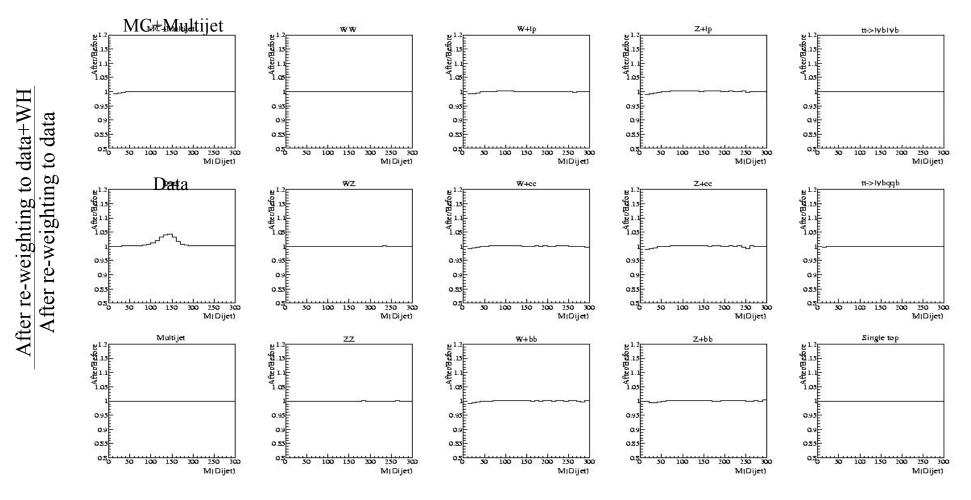

CDF Dijet Mass Excess

Physics at LHC 2011

DØ lvqq Measurement

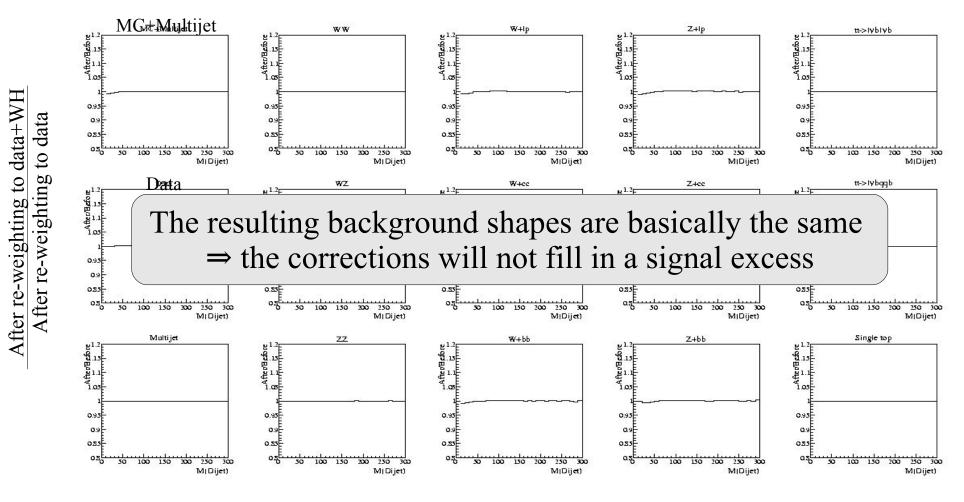
W+jets Modeling

- A concern: Could these data driven re-weightings hide an excess?
 - Instead of correcting to data, correct to data+WH ($m_H = 150$, $\sigma = 4$ pb)
 - See if the resulting re-weighted MC has filled in the WH resonance in data
 - Plot the ratio of MC:


After correcting to data+WH

After correcting to data

Check for Re-weighting Bias


• Would data driven re-weightings cause background to fill in the excess?

Check for Re-weighting Bias

• Would data driven re-weightings cause background to fill in the excess?

