

Status of LHC Operations

R. Assmann for the LHC commissioning team and LHC teams & groups

LPCC 23.7.2010

- Stable beams for requested 100 nb-1 plus more
- Increasing intensity to > 10¹² p at injection
- Issues during stable beams
- Optimizing conditions in collision
- Analysis of record physics fill
- Intensity outlook
- Conclusion

Stable Beams for Requested 100 nb⁻¹

2010/07/19 11.54

LHC 2010 RUN (3.5 TeV/beam)

*ALICE: low pile-up since 01.07.2010

ca. 70 nb-1 in last fill!

- Approach with high bunch intensity paid off (investment of commissioning time)
- → 9e10 p per bunch
- → up to 13 bunches

Collision Scheme (LPC, M. Ferro-Luzzi)

	d	Beam1		В	eam2	
8 collisions per IP llision in IR1/5: displaced collision in IR1/5: displaced collision in IR1/5:	-11.25 m					8911
lision in IR1/5:	-11.25 m	bucket	9941	and b	ucket	9911
Q COMSide displaced collision in IR1/5:	-11.25 m	bucket	10941	and b	ucket	10911
displaced collision in IR1/5:	-11.25 m	bucket	11941	and b	ucket	11911
good collision in IR1/5:	0 m	bucket	1	and b	ucket	1
good collision in IR1/5:	0 m	bucket	1001	and b	ucket	1001
good collision in IR1/5:	0 m	bucket	2001	and b	ucket	2001
good collision in IR1/5:	0 m	bucket	3001	and b	ucket	3001
good collision in IR1/5:	0 m	bucket	17851	and b	ucket	17851
good collision in IR1/5:	0 m	bucket	18851	and b	ucket	18851
good collision in IR1/5:	0 m	bucket	19851	and b	ucket	19851
good collision in IR1/5:	0 m	bucket	20851	and b	ucket :	20851
good collision in IR2:	0 m	bucket	1	and b	ucket	8911
good collision in IR2:	0 m	bucket	1001	and b	ucket	9911
good collision in IR2:	0 m	bucket	2001	and b	ucket	10911
good collision in IR2:	0 m	bucket	3001	and b	ucket	11911
good collision in IR2:	0 m	bucket	8941	and b	ucket	17851
good collision in IR2:	0 m	bucket	9941	and b	ucket	18851
good collision in IR2:	0 m	bucket	10941	and b	ucket	19851
good collision in IR2:	0 m	bucket	11941	and b	ucket 2	20851
good collision in IR8:	0 m	bucket	8941	and b	ucket	1
good collision in IR8:	0 m	bucket	9941	and b	ucket	1001
good collision in IR8:	0 m	bucket	10941	and b	ucket	2001
good collision in IR8:	0 m	bucket	11941	and b	ucket	3001
good collision in IR8:	0 m	bucket	17851	and b	ucket	8911
good collision in IR8:	0 m	bucket	18851	and b	ucket	9911
good collision in IR8:	0 m	bucket	19851	and b	ucket	10911
good collision in IR8:	0 m	bucket	20851	and b	ucket	11911
not colliding at all:		bucket	6001			
not colliding at all:				b	ucket	5001

23.7.2010

Increasing intensity to $> 10^{12}$ p at injection

- No interlock masking allowed at high intensities, even at injection.
- Transfer line trajectories drifting away.
- Incoming tails from SPS.
- Improved setup of transfer lines, injection protection and collimation required.
- B. Goddard, C. Bracco, M. Meddahi and team

Increasing intensity to > 10¹² p at injection

Increasing intensity to > 10¹² p at injection

Collimation Team

Increasing intensity to $> 10^{12}$ p at injection

Issues During Stable Beams

- We are learning continually and solver issue after issue:
 - Losses during stable beams
 - □ Orbit
 - □ Transverse damper
 - □ RF noise

Takes place at collimators in cleaning insertions → OK

Losses only in first 4 bunches from bucket 1 onwards!

Lifetime 12.7. – "Regular" Drops

Not easily avoidable losses in operation...

Orbit control in IR: After normal correction

Bumps in IR's
Real?
YES → Correct
NO → Leave it in

17

Orbit control in IR: H correction IR1

Orbit control in IR: Problem with Crossing Angle

→ Non-closure when putting crossing angle...

Orbit in the ramp fill 1232

- Orbit correction became unstable seemed to be coming from IR4.
- Orbit FB switches off.
- Switch on worked, instability disappeared!

Ghost bunches

- Small ghost bunches around main bunches reported by the experiments.
 - □ Intensity at the level of 0.1% of the main bunch.
- Ghost bunches confirmed measurements of the RF group.
 - \square Bunches extend up to \approx -80 ns. Spacing is 5 ns.
 - □ Abort gap population is below 5E6 p/bucket (exceptor for messy 80 ns).
- Problem: Collision of ghost bunches with one of nominal bunches

Losses from RF bucket

Losses from RF bucket

Losses from RF bucket

Transverse Damper in Stable Beams

Damper noise reduction beam 2

Optimizing conditions in collision

- Various measures done in parallel...
- Beam-beam investigation ongoing.
- Equalize beam parameters:
 - □ Blow-up of longitudinal emittances to have nominal values.
 - □ Blow-up of transverse emittances to have nominal values.
 - □ Equalize bunch currents and B1/B2 currents by more stringent injection process, good 450 GeV orbit correction.
 - ☐ Minimize losses at flat top (crossing angle in steps, skip chromaticity measurement for best fill, only manual IP scans, ...).
- Use of transverse damper with reduced noise at 3.5 TeV.
- Increased B1/B2 tune split: $0.003 \rightarrow 0.005$

Record physics fill: Intensities

Record physics fill: Peak luminosity

Record physics fill: Bunch Specific Luminosity

Record physics fill: Lumi Measured & Calculated

Effective Average Emittance Growth

Beam-beam tune shift

Beam-beam parameter

Intensity outlook

- LHC performs already outstanding...
- We are high already:
 - □ Presently we have established: ~ 0.7 MJ
 - Remember: Beams are much smaller at LHC and 3.5 TeV!
 - □ Transverse energy density is already ~ 7 MJ/mm² at some relevant locations. Far beyond previous CERN experience (ISR), HERA and Tevatron!
- We want to increase from 0.7 MJ to 1.4 MJ the next days.
- Then plan for multi-week stable period without changes!
- What limits the increase in intensity?
 - □ No immediate danger, otherwise we would have to drop intensity.
 - □ I have shown that we have still frequent non-conform issues.
 - □ Use stable period to sort them out and then push ahead!
 - Must always be prepared for infrequent problems (irregular dumps)!

- LHC operation has made significant progress:
 - Optimized working point for physics.
 - All performance parameters well known and controlled!
 - Record fill with expected luminosity, very small intensity losses and very small emittance blow-up!
 - □ Can run at design beam-beam parameter!
 - □ LHC stored energy is at ~ 0.7 MJ: about 30% of world record!
 - □ LHC stored energy density is at ~ 7 MJ/mm² → this is ~3 times world record. Highly destructive beam!
- Push intensity up factor ~2 in next days/week.
- Still issues:
 - □ learning with highly destructive beams!
 - □ Regularly see and solve non-conform issues (orbit, procedures, ...).
 - □ Want stable run period (~4 weeks) for solving them.
- Then push into 10-30 MJ regime!

Thank you for your attention!