TORCH: A large-area detector for precision time-of-flight measurements at LHCb

Neville Harnew
University of Oxford
ON BEHALF OF THE LHCb
RICH/TORCH COLLABORATION

Outline

The LHCb upgrade

■ TORCH concept & principles

■ R&D → commercial MCPs & customized readout electronics

Conclusions and future

The LHCb Experiment

- LHCb is an experiment to the search for new physics in CP violation and rare decays of heavy flavours
- Optimized for the strongly forward peaked heavy quark production at the LHC
- Covers only ~4% of solid angle but captures ~40% of heavy-quark production cross section

The need for good PID: 2010 data

- Example of direct CP violation measurement
 (> 3σ) observation
- Separate samples into B^0 and \bar{B}^0 using particle identification from RICH

Upgraded LHCb experiment & PID

- Plan to upgrade in 2017/18: LHCb will increase data by an order of magnitude (from 5 fb⁻¹ \rightarrow 50 fb⁻¹)
- Major trigger upgrade necessary for higher luminosity → read out complete experiment at 40 MHz to CPU farm (software trigger)
- \blacksquare Current PID is provided by 2 RICH detectors, 3 radiators : aerogel, $C_4F_{10},\ CF_4\to RICH$ system will be retained but with photodetectors replaced
- Aerogel is less effective at high lumi due to its low photon yield & high occupancy. Propose to replace the aerogel with time-of-flight based detector (TORCH)

TORCH concepts & principles (1)

- TORCH (Time Of internally Reflected CHerenkov light)
- TORCH will provide positive identification of kaons up to p ~ 10 GeV/c, i.e. below the K threshold in the C₄F₁₀ gas of RICH-1
- Δ TOF (π -K) = 35 ps at 10 GeV over ~10 m flight path \rightarrow aim for ~15 ps resolution per track
- Cherenkov light production is prompt → use quartz as source of fast signal

Cherenkov photons travel to the end of the bar by total internal reflection → time their arrival

TORCH concepts & principles (2)

 For fast timing measurement, need to correct for the chromatic dispersion of quartz: refractive index given by

$$n_{group} = n_{phase} - \lambda (dn_{phase}/d\lambda)$$

- Photons emitted with Cherenkov angle cos θ_{c} = 1/ β n_{phase}
- Photons with different λ emitted with different cos θ_c
- Measure Cherenkov emission angle at the top of the bar → reconstruct path length of photon through quartz

 \rightarrow Measure arrival time: (t - t_0) = L n_{group}/c

- 1 cm thickness of quartz produces ~ 50 detected photons/track (assuming a reasonable quantum efficiency of the photon detector)
 - → ~ 70 ps resolution required per detected photon

Angular measurement

- Need to measure angles of photons, so their path length can be reconstructed (see also Dr. J.Schwiening PANDA, Dr. K.Nishimura Belle II ToP, this session)
 - ~ 1 mrad precision required on the angles in both planes

+ Coarse segmentation (~1cm) sufficient for the transverse direction (θ_x)

Focusing system

- To measure the angle in the longitudinal direction (θ_z)
 - Use a focusing block
 - Measure the position of photon on the photodetector plane
- Linear array of photon detectors dimensions match the Planacon MCP from Photonis

TIPP 2011 Conf N. Harnew

TORCH modular design

- Dimension of quartz plane is $\sim 5 \times 6 \text{ m}^2$ (at z = 10 m)
- Unrealistic to cover with a single quartz plate \rightarrow evolve to modular layout

- 18 identical modules each 250 × 66 × 1 cm³
 → ~ 300 litres of quartz in total
- MCP photon detectors on upper edge
 18 × 11 = 198 units
 Each with 1024 pads
 → 200k channels total

Photon detection

- Micro-channel plate (MCP) Planacon XP85022 comes close to matching requirements. Currently available with 32×32 anode pads.
- Test result from K. Inami et al [RICH2010]: $\sigma(t) = 34.2 \pm 0.4$ ps

- Anode pad structure can in principle be customed:
 We require a layout of 8 × 128
 → in discussion with manufacturers (Photek, UK).
- Lifetime of MCP is an issue

TIPP 2011 Conference, 9-14th June 2011, Chicago

TORCH R&D: in progress

- Photon detectors: evaluate performance of existing MCP devices: 8×8-channel MCPs (Burle Planacons)
 - * single photoelectron response, efficiency and time jitter
 - design and development of suitable anode pad structure
- Develop readout electronics
 - speed 40 MHz rate, resolution, cross-talk
- Simulation
 - detailed simulation of TORCH
 - tagging performance
- Letter of Intent submitted to the CERN LHCC [CERN/LHCC 2011-001]

MCP tests - time resolution experimental setup

MCP tests - experimental setup

Dark box

Single channel NIM electronics

Planacon MCP

Laser light source

Planacon 8x8: pulse height spectrum - fit

- Run at gain ~ 5×10⁵ e⁻
- Blue laser, μ~0.51
- Fit according to Poisson distribution

$$P_{\mu}(N) = \mu^{N} \frac{e^{-\mu}}{N!}$$

$$P_{\mu}(0) = e^{-\mu} = \frac{A_{0}\sigma_{0}\sqrt{2\pi}}{total \ surface}$$

 Gaussian pedestal P(0) and resolution functions

$$y = A_0 e^{-\frac{1}{2} \left(\frac{x - x_0}{\sigma_0}\right)^2}$$

$$P_{\mu}(N) = \frac{\mu^N}{N!} e^{-\mu} = \frac{A_N \sigma_N \sqrt{2\pi}}{total \ surface}$$

$$\sigma_N = \sqrt{N} \sigma_1$$

Planacon 8x8: time resolution distribution

Readout electronics

 Starting with 8-channel NINO chips and HPTDC (high resolution mode), developed for the ALICE TOF

Jitter measured to be 14-20 ps RMS

Test-beam studies foreseen for later

this year

TORCH expected performance

- Simple simulation of the TORCH detector & interfaced to a full simulation of LHCb, plus pattern recognition
- Obtain a start time t₀ from the other tracks in the event originating from the primary vertex
- The intrinsic arrival time resolution per p.e. is 50 ps giving a total resolution per detected p.e. of 40 ps [MCP] ⊕ 50 ps [intrinsic] ≈ 70 ps, as required
- Excellent particle ID performance achieved, up to and beyond 10 GeV/c (with some discrimination up to 20 GeV/c)

TIPP 2011 Conference, 9-14th June 2011, Chicago

Conclusions & future plans

- TORCH is a novel detector concept proposed for the upgrade of LHCb.
- Given a per-photon resolution of 70 ps, excellent $K-\pi$ separation can be achieved up to 10 GeV/c and beyond (with TOF resolution of ~15 ps per track)
- R&D is in progress, starting with the photodetector and readout electronics
- Impact of the TORCH is under study with detailed simulation
- Letter of Intent for the LHCb upgrade already submitted; Technical Design Report in ~2 years' time.

Spare slides from here on

PID calibration samples

MCP tests - pulse height experimental setup

Specifications of 8×8-channel MCPs

XP85012/A1

- MCP-PMT planacon
- 8x8 array, 5.9/6.5mm size/pitch
- * 25um pore diameter, chevron type (2), 55% open-area ratio
- MCP gain up to 106
- Large gaps:
 - PC-MCPin: ~4mm
 - MCPout-anode: ~4mm
- 53mm×53mm active area,
 59mm×59mm total area -> 80%
 coverage ratio
- Total input active surface ratio
 <44%
- bialkali photocathode
- rise time 600ps, pulse width1.8ns

TOF over 9.5m flight distance

Aerogel & high lumi running

 Flavour tagging (distinguishing B from B
) is one of the primary requirements for low-momentum particle ID in LHCb (2-10_GeV) currently provided by aerogel

HPTDC-NINO Board status

Board layout

Layout completed, under final review

Sourcing components for 14 boards

Readout electronics - general assembly drawing

Spread of arrival times

- 1 cm thickness of quartz is enough to produce ~ 50 detected photons/track (assuming a reasonable quantum efficiency of the photon detector)
 - → ~ 70 ps resolution required per detected photon
- However, spread of arrival times is much greater than this, due to different paths taken by photons in the bar

Photon arrival time

Effect of edges

- Reflection off the faces of plate is not a problem, as the photon angle in that direction (θ_z) is measured via the focusing system
- In the other coordinate (x)
 position is measured rather than
 angle
 - → reflection off the sides of the plate gives ambiguities in the reconstructed photon path
- Only keep those solutions that give a physical Cherenkov angle
 → only ~ 2 ambiguities on average
- Effect of the remaining ambiguities is simply to add a ~ flat background to reconstructed time distribution

Pattern recognition

 Event display illustrated for photons from 3 different tracks hitting plane

