

Introduction to the LHC

M. Giovannozzi

CERN – Beams Department

- General layout
- The cell
- The IRs
- Aperture
- Filling
- Nominal vs. actual beam parameters

Experimental magnets - I

- Toroid -> no impact on beams
 - ATLAS
- Solenoid -> linear coupling
 - ATLAS
 - ALICE
 - CMS
- Spectrometer -> orbit bump closed by means of three dipoles (see later).
 - ALICE (vertical bump)
 - LHCb (horizontal bump)

Solenoids (ATLAS, Alice, CMS) -> linear
coupling $c^{\mp} = -\frac{i}{4\pi} \frac{B_s l}{B\rho} \left(\sqrt{\frac{\beta_y^*}{\beta_x^*}} \pm \sqrt{\frac{\beta_x^*}{\beta_y^*}} \right)$

	$B_s[T]$	B _s L [Tm]	c-, 450 GeV	c-, 7 TeV	θ, mrad
IR1 Atlas	2	12	0.00127	0.00008	4.00
IR2 Alice	0.5	6.05	0.00064	0.00004	2.02
IR5 CMS	4	52	0.00551	0.00035	17.3
			0.00743	0.00048	

Courtesy H. Burkhardt - CERN

Key nominal parameters

		Injection	Collision			
Beam Data						
Proton energy	[GeV]	450	7000			
Relativistic gamma		479 <u>6</u>	7461			
Number of particles per bunch		$1.15 imes 10^{11}$				
Number of bunches		2	808			
Longitudinal emittance (4σ)	[eVs]	1.0	2.5^{a}			
Transverse normalized emittance	$[\mu m rad]$	3.5^{b}	3.75			
Circulating beam current	[A]	0.582				
Stored energy per beam	[MJ]	23.3	362			
Peak Luminosity Related Data						
RMS bunch length ^c	cm	11.24	7.55			
RMS beam size at the IP1 and $IP5^d$	$\mu { m m}$	375.2	16.7			
RMS beam size at the IP2 and $IP8^e$	$\mu { m m}$	279.6	70.9			
Geometric luminosity reduction factor F^{f}		-	0.836			
Peak luminosity in IP1 and IP5	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$1.0 imes10^{34}$			
Peak luminosity per bunch crossing in IP1 and IP5	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$3.56 imes 10^{30}$			

LHC symmetry

- The LHC machine has an height-fold symmetry.
- Eight arcs.
- Sixteen dispersion suppressors to match the arc with the straight sections (geometry and optics).
- Eight long straight sections.
- Tunes:
 - 64.28/59.31 injection
 - 64.31/59.32 collision

MP Review - Massimo Giovannozzi - CERN

beam

waist

The arc cell

MBB

MBA

MCS

MBA

ß (m), ß, (m)

silver mid-cell silver Six dipoles are located in each cell. Each dipole comprises spool pieces made of:

MCS

MBB

MBA

MCS

Sextupoles

MBB

or

MCS BPM VQS

ASCB

Sextupoles, octupoles, and decapoles

Two quadrupoles are located in each cell. Each quadrupole is equipped with:

- **Beam Position Monitor**
 - Dipole corrector (for closed orbit)
- Sextupoles (for chromaticity)

MP Keview

Main dipoles - I

Courtesy E. Todesco - CERN

Systematic field errors in dipoles

MP Review - Massimo Giovannozzi - CERN

- Additional lattice correctors are installed in SSS to correct linear and non-linear effects:
 - Trim quadrupoles: independent tuning of the two rings and compensation of the b2 of main dipoles

Measured phase shift with respect to nominal optics without (red) and with (blue) correction with MQTs

- Skew quadrupoles (some correctors missing in sector 3-4): compensation of linear coupling
- Skew sextupoles (central part of each sector): compensation of a3 effects
- Octupoles: instabilities

LHC layout: IR1/5 - I

LHC layout: IR1/5 - II

LHC layout: IR1/5 - III

β. (m), β. (m)

Highluminosityinsertions:collisionoptics.Betaatinteractionpointequals0.55 m.

MP Review - Massimo Giovannozzi - CERN

LHC layout: IR2/8 - I

- Layout of IR8 is similar apart from a displacement of the IP8 towards IP7 by about 11.25 m
- Injection system and protection devices impose tight constrain on optics (phase advance between key elements)
- Triplets needs to work at higher-than-nominal gradient (220 T/m instead of 205 T/m).
- A stage of strength-reduction at constant beta* is needed before squeeze.

Crossing scheme - I

- To avoid parasi⁺ in implemented
 - IR1/5: the bum
 - IR2/8: the bum
- Crossing planes
 - IR1/2: V-plane
 - IR5/8: H-plane
- Spectrometers :
 - IR2: V-plane, p
 - IR8: H-plane, p

Spectrometers and crossing scheme:

- The real crossing angle is the superposition of:
 - Spectrometer crossing angle (so-called internal angle)
 - External crossing angle (generated by the magnets in the separated region))
- Nominal parameters (IR1/5 for simplicity)
 - Half separation: 2 mm (injection); 0.5 mm (7 TeV)
 - Half crossing angle: 170 μrad (injection); 142.5 μrad (7 TeV).

Nominal beta* and squeeze

Nominal beta*:

- IR2: 10 m (injection); 10 m (p collision, smaller value during initial commissioning 0.5 m for Pb collisions)
- IR8: 10 m (injection): 10 m (collision, smaller value during initial commissioning phases)
- IR1/5: 11 m (injection); 0.55 m (collision)
- Squeeze challenges (only few listed):
 - Orbit control
 - Optics control (e.g., quadrupoles hysteresis)
 - Aperture
 - Non-linear aberrations below 1 m beta* MP Review - Massimo Giovannozzi - CERN

Behaviour of optical parameters during squeeze of IR1 - I

Fune split

Behaviour of optical parameters during, squeeze of IR1 - II

IR3/7: Collimation system -

MOMENTUM CLEANING INSERTION

- The magnets in between Q6 (left and right) are normal conducting.
- Difference in dogleg magnets.

BETATRON CLEANING INSERTION

D (m)

IR3/7: Collimation system -

- IR3 features a large normalised dispersion to improve momentum collimation.
- A so-called detuned optics (with nominal dispersion exists).

D (m)

IR3/7: Collimation system -

IR7 features a small dispersion to improve betatron collimation.

β (m), **β**, (m)

 For the details of the collimation system see later talks

IR4: RF and instrumentation \mathbb{H} H P4 .../eng../V6.2.seq, IR4(Aug.2001), Q6at166 DQx=+0.0 Unix version 8.51/07 AĊS 04/09/01 09.00.29 650. 2.3 D (m) m IR4 is used to 585. - 2.0 tune the machine 3155 520. - 1.8 0.5375 455. - 1.5 **RF** equip 390 - 1.3 Instrume 325. - 1.0 transform 2600.8 Some fea 195. - 0.5 Larger-130. - 0.3 Superc 65. - 0.0 0.0 -0.3 Missing 1500 1200 1300 1600 1700 2000 1400 1800 1900 2100 22'00. 1100. 2300. s (m) $\delta_{E}/p_{0}c = 0$

Table name = TWISS

IR6: Beam dumping system

 From the optic quadrupoles
 tight aperture more details).

Aperture - I

- Key quantity used to measure the available beam aperture in the design phase is "n1".
- It is not a simple conversion of the mechanical aperture in beam sigmas!
- It is clearly LHC-oriented.
- The computation is implemented in MAD-X
- Its computation is based on
 - Knowledge of mechanical aperture
 - tolerances on key parameters (alignment, orbit, optics)
 - shape of the beam halo generated by interaction with a primary collimator.

Aperture - II

- $\vec{\Delta}(s) = \vec{d}_{\rm sep}(s) + \vec{d}_{\rm axis}(s) + \vec{d}_{\rm inj}(s)$
- $\vec{u} = (t_r + CO)(\cos\alpha, \sin\alpha) \quad \text{with} \quad \alpha \, \epsilon \, [\, 0 \, , \, \pi/2 \,]$

$$\vec{d}_{\rm disp}(s) = (1+k_\beta) \left[\vec{D} + k_D \frac{D_{\rm x,QF}}{\sqrt{\beta_{\rm x,QF}}} \sqrt{\vec{\beta}} \right] \delta_p$$

$$\overrightarrow{OO'}(s) = \vec{\Delta}(s) + \vec{u} + \vec{d}_{\text{disp}}(s)$$

- Nominal parameters:
 - Beta-beating: 20%
 - Closed orbit tolerance: 4 mn (injection); 3 mm (collision)

MP Review - M

LHC filling

Bunch Disposition in the LHC, SPS and PS

LHC (1-Ring) = 88.924 µs

Nominal vs. actual beam parameters

D

 Beam commissioning needs to be split in stages (which were already outlined in the Design Report) with special beam parameters.

The unforeseen limitations (maximum energy)

RUN AT 3.5 TEV

Backup material

-						
		Injection	Collision			
Interaction data						
Inelastic cross section	[mb]	60.0				
Total cross section	[mb]	100.0				
Events per bunch crossing		-	19.02			
Beam current lifetime (due to beam-beam)	[h]	-	44.86			
Intra Beam Scattering						
RMS beam size in arc	[mm]	1.19	0.3			
RMS energy spread $\delta E/E_0$	$[10^{-4}]$	3.06	1.129			
RMS bunch length	[cm]	11.24	7.55			
Longitudinal emittance growth time	[hours]	30^a	61			
Horizontal emittance growth time	[hours]	38 ^a	80			

Total beam and luminosity lifetimes ^b					
Luminosity lifetime (due to beam-beam)	[hours]	-	29.1		
Beam lifetime (due to rest-gas scattering) ^c	[hours]	100	100		
Beam current lifetime (beam-beam, rest-gas)	[hours]	-	18.4		
Luminosity lifetime (beam-beam, rest-gas, IBS)	[hours]	-	14.9		
Synchrotron Radiation					
Instantaneous power loss per proton	[W]	$3.15 imes 10^{-16}$	1.84×10^{-11}		
Power loss per m in main bends	$[Wm^{-1}]$	0.0	0.206		
Synchrotron radiation power per ring	[W]	$6.15 imes 10^{-2}$	$3.6 imes10^3$		
Energy loss per turn	[eV]	$1.15 imes 10^{-1}$	$6.71 imes10^3$		
Critical photon energy	[eV]	0.01	44.14		
Longitudinal emittance damping time	[hours]	48489.1	13		
Transverse emittance damping time	[hours]	48489.1	26		