(First) Operational experience with LHC Machine Protection

M. Zerlauth

External Review on LHC Machine Protection

Sept 2010

Failures, beam losses and beam dumps during 3.5 TeV operation
What caused the failure and what captured the failure?
Diagnostic tools to analyze beam dump events and evaluate MPS

• What is understood, what remains to be understood?

From this morning...

Activation of MPS in 2010

Every beam dump request exercises (parts of) the machine protection system and is being used to evaluate and improve its performance

LHC Machine Protection System has > 250 user input connections, for most frequent failure cases more than one system will/would request a dump of the particle beams

Majority of the events result in avalanches of interlocks, machine interlock systems play a central role for the identification of initiating event and event sequence

So far in 2010 >= 900 activations of the (armed) Beam Interlock System, mostly @ injection and/or for MPS tests

Some 212 beam dumps happened AFTER the start of the energy ramp, on which we shall concentrate hereafter

User inputs requesting a beam dump in the LHC (since Jan 2010)

A bit of statistics # 1 ...

Activation of (armed) MPS for 2010

A bit of statistics # 2...

- Detailed analysis of beam dumps in the LHC are vital for the further understanding of the machine protection system and for unveiling possible loop holes in the protection (beware of combined or rare/unforeseen events)
- MPS strategy (especially before increasing intensity): Every beam dump needs to be clean and/or understood before next injection
- Key to efficient and easy understanding of beam dumps are
 - Complete and accurate data acquisition within every MPS sub-system, following common standards and naming conventions
 - Common data acquisition systems and repositories, allowing for easy correlation of data
 - Powerful data archiving, extraction and (automated) analysis tools for repetitive tasks
- For MPS system, two of the available data acquisition/extraction tools are mostly in use, specialized for continuous data logging (for relatively slow change rates) and transient data recordings in case of beam dump events

[11]

Main Data Acquisition Systems for LHC

DATA ACQUISITION SYSTEM	PURPOSE	Acquisition Rate	Data Volume	Importance for MPS
SCADA supervisory systems	Real-time supervisory tools (Java, PVSS)	On change	> 10s of kB / day, local archive, then sent to long term storage	Medium – Used daily for supervision of MPS systems
DIAMON	Diagnostic and monitoring of controls infrastructure	infrequent	Few 10s of changes per day	Medium, used for online monitoring of red power supplies, FE processes,
ALARM System	Alarms service (for technical infrastructure,)	infrequent	> 10.000 Alarms per day	Not used (yet), no efficient alarm filtering yet
Measurement Database	Continuous Logging of equipment system	Few Hz	> GB /day, kept for 7 days only	Not used for MPS (but identical concept as Logging DB)
Logging Database	Logging system for equipment systems, slower response time	On change, but typically <1Hz	> 100 GB / day, kept for LHC lifetime	High – Used regularly for performance evaluation
Post Mortem	Transient data analysis after powering or beam dump events	>kHz/MHz, < intervals around interesting events	> 1 GB / beam dump event, kept for LHC lifetime	Very High – Used daily for performance evaluation

Main Data Acquisition Systems for LHC

DATA ACQUISITION SYSTEM	PURPOSE	Acquisition Rate	Data Volume	Importance for MPS
SCADA supervisory systems	Real-time supervisory tools (Java, PVSS)	On change	> 10s of kB / day, local archive, then sent to long term storage	Medium – Used daily for supervision of MPS systems
DIAMON	Diagnostic and monitoring of controls infrastructure	infrequent	Few 10s of changes per day	Medium, used for online monitoring of red power supplies, FE processes,
ALARM System	Alarms service (for technical infrastructure,)	infrequent	> 10.000 Alarms per day	Not used (yet), no efficient alarm filtering yet
Measurement Database	Continuous Logging of equipment system	Few Hz	> GB /day, kept for 7 days only	Not used for MPS (but identical concept as Logging DB)
Logging Database	Logging system for equipment systems, slower response time	On change, but typically <1Hz	> 100 GB / day, kept for LHC lifetime	High – Used regularly for performance evaluation
Post Mortem	Transient data analysis after powering or beam dump events	>kHz/MHz, < intervals around interesting events	> 1 GB / beam dump event, kept for LHC lifetime	Very High – Used daily for performance evaluation

CERN

Operation – Logging System

Common repository for all equipment systems, allowing for direct correlation of data

Variable searches based on common variable/system naming

Huge data storage capacity, data maintained throughout complete LHC lifetime

Transient data recording after a beam dump (PM)

LHC Post Mortem system is an automated post-operational analysis of transient data recordings from LHC equipment systems

Meant to support machine protection by helping the operations crews and experts in understanding the machine performance and beam dump events and answer fundamental questions:

What happened? (ie the initiating event / event sequence leading to dump/incident)
Did the protection systems perform as expected (automated Post operational checks)?
Assist in trend analysis, statistics of machine performance, ...

Basis is a reliable and performing data transmission and storage layer

Each beam dump generates ~ 1GB of PM data which is automatically analysed in typically < 1 min

PM Server Architecture

🗒 GLOBAL : GPM1 : 19.04.2010 05:14:30 (1271646870396085739)		e ^۲ ב۲	X
Final analysis is finis	ned		
Session confirmation Modules graph Results			;
Dump context		Event sequence	1
Event timestamp: 2010.04.19 05:14:30 CEST	Event Category:	PROTECTION_DUMP	
Acc mode: PROTON PHYSICS	Event Classification:	MULTIPLE_SYSTEM_DUMP	
Beam mode: STABLE BEAMS Energy: 3500280 [GeV] 3500280 GeV FMC	CM RD1 LR1	First input change detected: USER_PERMIT: Ch 14(FMCM_RD1.LR1): A T -> F on CIB.US15.L1.B2	
Intensity B1: 1 [e^10 charges]	Triggered BIC inputs:	Ch 14(FMCM_RD1.LR1), Ch 14(FMCM RD1.LR1), Ch 12(FMCM_RD34.LR3), Ch	
SMP B1 / SMP B2: NOT DEFINED / NOT DEFINED		12(FMCM_RD34.LR7), Ch 14(FMCM_RBXWTV.L2), Ch 3(LBDS-b1), Ch 3(LBDS-b2), Ch 14(FMCM_RD1.LR5)	
	SCEvents:	No power converter events found	
Machine protection features		Comments	=
Event Description: FMCM overall result NOT OK. BIC_IPOC overall result NOT OK. BIC_IPOC analysis finished with warnings.	User:	ession confirmation:	
Highest Beam Losses:			
Magnet Quenches: No magnet quenches found			
nQPS Triggers: <u>No nQPS events found</u>	С	onfirm Discard Release SIS	
BIC IPOC: 😥 FMCM ISA: 😣 PIC IPOC: 🎺			
хрос в1: 😢 хрос в2: 😣			
Safe for injection ?: 🗭 PM Overall: 😣			•
PM buffers			

Analysis of global events...

markus.zerlauth@cern.ch

Beam dump events after start of ramp

In the following, some statistics and observations for the ~200 beam dumps which happened AFTER the start of the energy ramp is shown

Statistics are (largely) based on Post Mortem analysis archives and additional manual analysis of MPS experts

Energy when dumping the beams (after start of energy ramp)

Original Data for following plots courtesy of R.Schmidt

Beam dump events by Category

More than 75% of beam dumps without effects on the beam

Only small fraction of programmed (end of fill) dumps by operations

False beam dumps by MPS will decrease in longer term (initial HW problems in one sub-system)

Additional (hardware and software) measures have been and will be added to further mitigate failure cases with effects on the beam, e.g.

- Fast Magnet Current Change Monitors for nc magnets
- DIDT interlock for beam current
- Additional SIS checks on equipment settings, beam position, etc...

Redundancy /protection of failures by 2 independent channels (for circulating beam) works very nicely (e.g. interlocks from magnet powering fast enough to avoid effects on beam, beam cleaning / BLM very well set so no quenches yet, etc...

Beam dumps NOT affecting the beam

Beam dumps by interlocks affecting the beam

What saved us (who dumped the beam)?

Typical LHC Experiment Protection System

 One Beam Condition Monitor (BCM) on each side of IP: Stand-alone system using a few polycrystalline CVD diamond pads Post-Mortem analysis capability

FPGA-based dump logic: input: measured rates output: UserPermit signal Unmaskable input to local BIC On trigger, dump both beams

 BCM protects against circulating beam failures, not against injection and extraction failures, though it will be ON during injection (for fast feedback).

Courtesy of M.Ferro-Luzzi

- All Experiment protection systems are operational Teething/learning issue: overprotection by ATLAS BCM low threshold (startup 2009, solved by replacing with ATLAS BLM)
- No threshold-exceeding beam losses in experiments observed so far during stable beams
- So far, beam conditions are excellent, negligible background rates
- Observations (to be watched out / followed up):
 - ALICE gaseous detector trips (correlated with beam presence, but no correlation with beam loss could be established)
 - LHCb seeing increasing losses when piling up bunch injections
 - Much less this year than in 2009, but still visible
 - IR BPMs currently not reliable ("soft" protection issue, used to monitor beam drifts => especially relevant for VELO/LHCb, but not crucial)

Fast Beam Losses – UFOs?

So far 7 beam dumps due to fast beam losses (<1% of beam intensity) have been observed, events on both beams and most of the machine

Date	Location	S (m)	Sector	Beam	Plane	Beta (m)	Max RS01 (G/s)	Risetime (ms)	Fill	No bunches	Intensity	Length (h)
07-07-2010 20:22:19	MBB.8L7**	21380	67	2	v	120	0.08	2.3	120x	9	8.4E+11	0
30-07-2010 07:26:38	Q4.R5	15160	56	2	н	274	0.08	1.25	1253	25	1.9E+12	13.15
07-08-2010 02:14:38	Q11.L4	11224	34	1	н	179	0.09	1.2	1264	25	2.1E+12	0.53
08-08-2010 01:10:46	Q15.L5	14342	45	1	v	184	0.07	1.25	1266	25	2.1E+12	1.97
14-08-2010 19:13:36	Q6.R5*	15222	56	1	v	211	0.092	0.8	1284	25	2.3E+12	3.48
23-08-2010 13:50:28	Q22.R3	9354	34	2	н	180	0.082	0.75	1298	48	3.7E+12	12.97
26-08-2010 17:25:56	Q25.R5	16179	56	1	н	180	0.125	0.8	1303	48	4.5E+12	13.08

Mechanism for the losses in not understood, but all events show a similar signature, finally dumping beams in 2.5ms running sum of BLM (increasing losses until the beam dump, non exponential increase, suggesting a maximum and possible decay in case of > BLM threshold)

Losses seen at all aperture limits (IR3/IR7, LSS6), confirming real beam loss and at the same time nicely demonstrating BLM redundancy

*Roman pot event

** 5 pre-cursors / in squeeze

markus.zerlauth@cern.ch

Event 30th July 2010, 07:26:38, Q4.R5

8	C Vnit:	Gray/s 💌 Sca	ıle: Log 💌 Integra	tion Time: 40 us 🔻	Start 1900 - End 2047	Losses: Max	Display: Acquisition	on 💌 →REF
	Sectors Filter Octant Fi	lter 🛛 Dump Filter 🔹 List Fi	ilter 🛛 Regex Filter 🗍 Beau	m Permit Filter				
	Filter (3548 / 3887)							
	Location	Туре	Section	Sector	Beam	Transverse Position	Position on Element	Observed Element
	✓ Quad	✓ IC	✓ LSS	🗹 1 - 2 🗹 5 - 6	Ream 1	✓ External	✓ Entrance	
	✓ Other		✓ DS	🖌 2 - 3 🖌 6 - 7	E beam t	✓ Internal	✓ Center	%
	✓ 2 Elements			🗹 3 - 4 🗹 7 - 8		🖌 Тор		
	✓ Mobile	SEM	✓ ARC	🗹 4 - 5 🛛 🗹 8 - 1	✓ Beam 2	✓ Bottom	✓ Exit	

Show Dump Indicators

Event 8th August 2010, Q15.L5

2	R ⊂ ▼ ↓ Unit: Gray/s	•	Scale: Lo	og 🔻	Integ	ration Tim	ie: 40	us 🔻	Start	1900 📩 E	nd 2047	* L	osses: N	Nax 🔻	Displa	y: Acquisiti	on	▼ +REF
	Sectors Filter Octant Filter Dump F	ilter Lis	st Filter	Regex F	iter Be	eam Perm	it Filter											
	Filter (3548 / 3887)																	
	Monitor	40 us	80 us	320 us	640 us	2560 us	10 ms	82 ms	655 ms	1.3 s	5.2 s	20.9 s	83.8 s	Туре	Section	Left Right	Octant	Beam
	BLMQI.04R6.B2I20_MQY	Dump	Dump	Dump	Dump	Dump	Ok	Ok	Ok	Ok	Ok	Ok	Ok					
_	BLMQI.04R6.B1E20_MQY	Dump	Ok	Ok		Dump	Ok	Ok	Ok	Ok	Ok	Ok	Ok	✓ IC	✓ LSS	✓ Left		✓ Beam 1
1 L	BLMQI.15L5.B1I10_MQ	Ok	Ok	Ok	Ok	Dump	Ok	Ok	Ok	Ok	Ok	Ok	Ok				226	
	BLMEI.04L6.B1E10_TCDSA.4L6.B1	Dump					Dump	Ok	Ok	Ok	Ok	Ok	Ok	🗾 LIC	🖌 DS			
	BLMEI.04R6.B2I20_TCDSA.4R6.B2	Dump					Dump	Ok	Ok	Ok	Ok	Ok	Ok				∠ 3 ∠ 7	
	BLMEI.04R6.B1E10_TCDQA.B4R6.B1	Dump				Dump	Ok	Ok	Ok	Ok	Ok	Ok	Ok	SEM	ARC	Right		✓ Beam 2
																	V 4 V 8	
														·				

markus.zerlauth@cern.ch

MPS external Review

Event 23.08.2010 13:50:38, on MQ22.R3

S	a ⊂ ▼ ↓ Unit: Gray/s	•	Scale:	.og 🔻	Inte	gration Ti	me:	40 us 🔻	Start	1900	End 20	47 📩	Losses:	Max 🔻	Displa	y: Acquisiti	on	→ REF	
	Sectors Filter Octant Filter Dump F	ilter L	ist Filter	Regex	Filter E	Beam Peri	nit Filter												
	Filter (3548 / 3887)																		
	Monitor	40 us	80 us	320 us	640 us	2560 us	10 ms	82 ms	655 ms	1.3 s	5.2 s	20.9 s	83.8 s	Туре	Section	Left Right	Octant	Beam	
	BLMQI.04L6.B1E20_MQY	Ok	Ok	Dump	Dump	Dump	Ok	Ok	Ok	Ok	Ok	Ok	Ok 4						
-	BLMQI.04R6.B2I20_MQY	Dump	Dump	Dump	Dump	Dump	Ok	Ok	Ok	Ok	Ok	Ok	Ok	IC N N	P 155	✓ Left		Beam 1	
1	BLMQI.04R6.B1E20_MQY	Dump	Dump	Dump	Dump	Dump	Ok	Ok	Ok	Ok	Ok	Ok	Ok				226		
	BLMQI.22R3.B2E30_MQ	Ok	Ok	Ok	Ok	Dump	Ok	Ok	Ok	Ok	Ok	Ok	Ok	🖌 LIC	🖌 DS				
	BLMQI.22R3.B2E10_MQ	Ok	Ok	Ok	Ok		Ok	Ok	Ok	Ok	Ok	Ok	Ok			_	2327	_	
	BLMEI.04L6.B1E10_TCDSA.4L6.B1							Ok	Ok	Ok	Ok	Ok	Ok	SEM	ARC	Right		Beam 2	
	BLMEI.04L6.B1E10_TCDSB.4L6.B1			Ok	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Ok	Ok	-			₩4₩8		
	,																		1

23.08.2010 13:50:38

- Show Lane

markus.zerlauth@cern.ch

Event 23.08.2010 13:50:38, on MQ22.R3

8		Unit: Gray / s 💌	Scale: Log 💌	Integration Time:	40 us 🔻	5	tart 1900 - End 2047 -	Losses: Max 💌	Display: Ac	quisition 💌 📲
	Sectors Filter Octant Filter	Dump Filter List Filter R	egex Filter Beam Permit Filter]						
	Filter (228 / 3887)									
	Location	Туре	Section	Left Right	Octant		Beam	Transverse Position	Position on Element	Observed Element
_	✓ Quad	₩ IC	V LSS	✓ Left	1	5	Beam 1	✓ External	✓ Entrance	
Ì	✓ Other	✓ LIC	⊮ DS	_	2	6		🖌 Internal	✓ Center	%
	✓ 2 Elements				3	7 🖌		🖌 Тор		
	✓ Mobile	SEM	ARC	≥ Right	4	8	Eeam 2	✓ Bottom	✓ Exit	

🖌 Show Dump Indicators

23.08.2010 13:50:38

Fast Beam Losses – UFOs?

Losses during wirescan

Dump on 08-08-2010 (01:10)

Dump on 07-08-2010 (02:14)

Current hypothesis of (dust) particles / UFOs falling through the beam

Comparison with loss patterns during a wire scan confirms similarity of shape and timescales

Additional installation of diamond detectors in IR7 done during last technical stop (PM triggered) to get bunch to bunch resolution of losses

Long BLM PM Buffer Data

Current proposal:

In case of two additional events, increase BLM thresholds on cold MQs by a factor of 2

0.1 يو 0.09 ئ

0.08

So far no real quench with circulating beam, but (very) few beam induced magnet quenches at injection

All cases would have recovered without firing of quench heaters

Example of Quench(ino) event from 18/4/2010 @ 22:33:

- Happened at injection energy, when injecting beam 1
- Injected bunch had 8E9 protons (transfer line BCT)
- Defocusing quadrupole magnets in sector 12 were mistakenly at 350A instead of injection current (760A)
- Beam loss over first turn
- PM indicates BPM.Q19R1 at =6mm, same for Q21.R1
- Losses starting in cell 18R1

Quench(ino) event from 18/4/2010 @ 22:33

Courtesy of R.Appleby

Beam 1

Beam 1

Quench(ino) event from 18/4/2010 @ 22:33

Courtesy of R.Appleby

Event sequence for event on 18/4/2010

- •Beam dump request as expected from BLM in IR1
- •20 ms later (time to develop and detect the quenchino), 2nd trigger by powering interlocks/QPS

🗎 BIC/E	EVENT_SE	EQ						∭ of Ø' [
		HEADER		SUMMARY										
System		BIC		pmAnalysisModuleVersion 0.4.3										
Class		EVENT_SEQ		Analysis result description First USR_PERMIT	32									
Source		ISA		Triggered BIC inputs Ch 4-BLM_UNM(L1	2), Ch12-PIC_MSK(L2.B)	2), Ch 5-Pl								
Event st	tamp	22:33:40.281 18/04/10		Beam 1 propagation delay to LBDS 63000 ns										
Version		0.4.3		Beam 2 propagation delay to LBDS 63000 ns										
Encodin	ng	BIC/EVENT_SEQ		OVERALL 38 BICs triggered v	alid PM data									
Qualifier	r													
Analysis	s flags	[NORMAL]												
•••••		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		4									
		1.4.0	D # (0)	EVENTOVERVIEW		· · ·								
Index	Loc.Per	mit AVB Time	Delta(USec)	LICED DEDMIT: OF A DIM LINM: A T > E	BIC name	Index	CIPULIES DE P1 truo	ta valid						
525		22.33.40+281130	0			2								
520		22.33.40+201130	0			2	CID LIA92 L9 D1 true							
528		22.33.40+201130	0		CIB US1511 B1	4	CIB LLISS R5 R2 true							
1596		22:33:40+201130	20883	V USER PERMIT Ch 5-PIC LINM: A T-> F	CIB UA23 L2 B2	5	CIB US1511 B1 true							
1597		22:33:40+302019	20003	USER_PERMIT: Ch 5-PIC_UNM: RT-S F	CIB UA23 L2 B2	6	CIBLIS1511 B2 true							
1598		22:33:40+302020	20884	USER_PERMIT: Ch 12-PIC_MSK: A T -> F	CIB UA231 2 B2	7	CIB SB7 S7 B1 true							
1599		22:33:40+302020	20884	USER_PERMIT: Ch 12-PIC_MSK: B T -> F	CIB UA23 L2 B2	8	CIB SB7 S7 B2 true							
1600		22:33:40+302020	20884	USER PERMIT: Ch 5-PIC_UNM: AT -> F	CIB UA23 L 2 B1	9	CIB USC55 L5 true							
1601		22:33:40+302020	20884	USER PERMIT: Ch 5-PIC UNM: B T -> F	CIB.UA23.L2.B1	10	CIB.UA87.R8.B1 true							
1602		22:33:40+302021	20885	USER PERMIT: Ch 12-PIC MSK: A T -> F	CIB.UA23.L2.B1	11	CIB.UA87.R8.B2 true							
1603		22:33:40+302021	20885	USER PERMIT: Ch 12-PIC_MSK: B T -> F	CIB.UA23.L2.B1	12	CIB.USC55.L5true							
1608		22:33:40+302082	20946	USER PERMIT: Ch 5-PIC_UNM: AT -> F	CIB.UA27.R2.B2	13	CIB.US15.R1.B1 true							
1609		22:33:40+302082	20946	USER PERMIT: Ch 5-PIC UNM: B T -> F	CIB.UA27.R2.B2	14	CIB.US15.R1.B2 true							
1610		22:33:40+302082	20946	USER_PERMIT: Ch 5-PIC_UNM: A T -> F	CIB.UA27.R2.B1	15	CIB.UJ33.U3.B2 true							
1611		22:33:40+302082	20946	USER_PERMIT: Ch 5-PIC_UNM: B T -> F	CIB.UA27.R2.B1	16	CIB.UJ33.U3.B1 true							
1612		22:33:40+302083	20947	USER_PERMIT: Ch 12-PIC_MSK: A T -> F	CIB.UA27.R2.B2	17	CIB.UA63.L6.B2 true							
1613		22:33:40+302083	20947	USER_PERMIT: Ch 12-PIC_MSK: A T -> F	CIB.UA27.R2.B1	18	CIB.UA63.L6.B1 true	=						
1614		22:33:40+302084	20948	USER_PERMIT: Ch 12-PIC_MSK: B T -> F	CIB.UA27.R2.B2	19	CIB.SR3.S3.B2 true							
1615		22:33:40+302084	20948	USER_PERMIT: Ch 12-PIC_MSK: B T -> F	CIB.UA27.R2.B1	20	CIB.SR8.INJ2.1 true							
1620		22:33:40+303098	21962	LUSER_PERMIT: Ch 5-PIC_UNM: B T -> F	CIB.US15.R1.B2	21	CIB.SR3.S3.B1 true							
1621		22:33:40+303098	21962	USER_PERMIT: Ch 5-PIC_UNM: B T -> F	CIB.US15.R1.B1	22	CIB.SR2.INJ1.1 true							
1622		22:33:40+303098	21962	USER_PERMIT: Ch 5-PIC_UNM: A T -> F	CIB.US15.R1.B1	23	CIB.UA67.R6.B2 true							
1623		22:33:40+303099	21963	USER_PERMIT: Ch 5-PIC_UNM: A T -> F	CIB.US15.R1.B2	24	CIB.SR2.INJ1.2 true							
1624		22:33:40+303099	21963	USER_PERMIT: Ch 12-PIC_MSK: A T -> F	CIB.US15.R1.B2	25	CIB.UA67.R6.B1 true							
1625		22:33:40+303099	21963	USER_PERMIT: Ch 12-PIC_MSK: B T -> F	CIB.US15.R1.B2	26	CIB.CCR.LHC true							
1626		22:33:40+303099	21963	LUSER_PERMIT: Ch 12-PIC_MSK: A T -> F	CIB.US15.R1.B1	27	CIB.UA47.R4.B1 true							
4017		100-00-40-00000	104.060			28	CIB.UA23.L2.B2 true							
	_					29	CIB.CCR.LHC true							
FILTER						30	CIB.UA47.R4.B2 true							
	loam Da	mit Loon Dosm Dosmit	Local Dormit	/ Lear Darmit User Darmit Clitch / Software	Mask v Maskod Dormit	31	CIB.UA23.L2.B1 true							
	beam_Per	mit_coop Beam_Permit	Local_Permit	w user_Permit i User_Permit_Glitch w Software	Mask wasked_Permit	32	CIB.UA43.L4.B2 true							
	🗌 Disab	led_Permit 📄 Channel_Ena	ble 🔲 Test 📃 Po	wer 🗌 Self_Test 📃 Time 📃 Safe_Beam_Flag 📃 Mar	ker 📃 Injection BICs	33	CIB.UA43.L4.B1 true							
			Channel A 🔽 Char	nel B 🔽 Beam 1 🔽 Beam 2 📃 Generator		34	CIB.1276.07.82 true							
		V				35	CIB.TZ76.07.B1 true							
						30	CIB.SR8.INJZ.2 true							

MPS external Review

Quench limit vs BLM thresholds

QPS signals on quenching magnets showing threshold crossing of 100mV before recovering (until heater firing becomes effective)

Few quenchinos and current experience shows that BLM thresholds are well set (even too conservative?)

Few 'quench' tests will be performed to determine 'real' quench limit vs current BLM thresholds

- Some of the tests will not quench a magnet, but just measure the voltage below the QPS threshold. Proposed tests:
 - Single turn test at injection in cell 14R2 (special QPS diagnostics installed)
 - Closed orbit bumps (cell 14R2) at injection and at 3.5TeV (intensities for the 3.5 TeV test tbd after 450GeV test)
 - Wire scan at 3.5TeV (probing the time scales of ~1 ms)
 - Quench test from collimators (losses in the cleaning insertion)
 - Quench test of Q4 in IR6 (important to define the abort gap population limits)

So far the LHC Machine Protection Systems have been working extremely well

Most failures are captured before effects on beam are seen, No quenches with circulating beam (with > 3MJ per beam and 10mJ for quenching a magnet)

Experiments are well protected, no issue with background so far

Most beam dumps are understood (except fast losses)

No evidence of possible loopholes or uncovered risks

MPS systems nicely captured even rare / 'unexpected' events, e.g.

- Fast beam losses (seen at all aperture limits, confirming BLM redundancy)
- Controls problems resulting in wrong transmission of beam energy (captured by RF interlock and eventually Collimators) -> implicit protection
- End of fill test by scraping with primary collimator in IR7 the beam 2 tails. Moving it into the beam with 10 micron step every 4 seconds (see collimation talks)
- Thunderstorms (correlated failures of > equipment systems)

Thanks a lot for your attention

Many thanks to a number of colleagues for their contributions to the talk (R.Schmidt, M.Ferro-Luzzi, R.Appelby,...)