External Review on LHC Machine Protection CERN, Geneva, CH September 6th-8th, 2010

Introduction to the LHC collimation system

S. Redaelli, BE-OP

R. Assmann, R. Bruce, D. Wollmann, BE-ABP

for the LHC Collimation team

Introduction Z Layout and hierarchy **Collimator interlocking Collimation** operation **Conclusions**

Introduction

LHC enters in a *new territory* for handling ultra-intense beams in a super-conducting environment!

- → Control losses 1000 time better than the state-of-the-art!
- → Need collimation at all machine states: injection, ramp, squeeze, physics
- → Major role in passive machine protection

Layout of Phase I collimation system

Two warm cleaning insertions **IR3: Momentum cleaning** 1 primary (H) 4 secondary (H,S) 4 shower abs. (H, V)**IR7: Betatron cleaning** 3 primary (H,V,S) 11 secondary (H,V,S) 5 shower abs. (H, V)

Local cleaning at triplets

8 tertiary (2 per IP)

- Passive absorbers for warm magnets
- Physics debris absorbers
- Transfer lines (13 collimators) Injection and dump protection (10)

Total of 108 collimators (100 movable). Two jaws (4 motors) per collimator!

List of acronyms

CERN
M

Phase	Acronym	Material	Length [m]	Number	Locations	INJ	ТОР	Purpose
	Scrapers							
2	тснѕ	tbd	tbd	6	IR3, IR7			Beam scraping
2	тснѕ	tbd	tbd	2	IR3, IR7			Skew beam scraping
	Collimators							
1	ТСР	C-C	0.2	8	IR3, IR7	Y	Y	Primary collimators
1	TCSG	C-C	1.0	30	IR3, IR7	Y	Y	Secondary collimators
1	TCSG	C-C	1.0	2	IR6	Y	Y	Help for TCDQ set-up
2	TCSM	tbd	tbd	30	IR3, IR7			Hybrid secondary collimators
4	TCS4	tbd	tbd	10	IR7			Phase 4 collimators
	Diluters							
1	TDI	Sandwich	4.2	2	IR2, IR8	Y		Injection protection
1	TCLI	С	1.0	4	IR2, IR8	Y		Injection protection
1	TCDI	С	1.2	14	TI2, TI8	Y		Injection collimation
1	TCDQ	C-C	6.0	2	IR6	Y	Y	Dump protection
	Movable Absorbers				IR1, IR2,		Y	Tertiary collimators
1	TCT	Cu/W	1.0	16	IR5, IR8 IR1, IR2,		Y	Tertiary collimators
					IR5, IR8			
1	TCLA	Cu/W	1.0	16	IR3, IR2 ,	Y	Y	Showers from collimators
1	TCL/TCLP	Cu	1.0	4	R4 , R8		Y	Secondaries from IP
3	TCL/TCLP	Cu	1.0	4	IR1, IR5		Y	Secondaries from IP

In all machine phases, the cold aperture must be in the shade of several layer of collimators. Largest losses are concentrated in warm regions!

Leakage in cold aperture must be below quench limit (and damage level for warm)!

The cold aperture sets the scale for the collimator settings. Different for injection and top energy with squeezed beams (*see next slide*).

Only primary and secondary collimator are robust (Carbon). Absorbers and tertiary collimators (Tungsten) must be protected by the protection devices.

Cleaning and passive protection rely on the good hierarchy of collimator families.

This is achieved with a **beam-based setup** of the collimators to centre the jaws around the beam orbit for a given optics (not discussed here).

LHC aperture and collimator settings

Good setup: hierarchy respected

Collimator hierarchy around the ring is verified after setup with **dedicated loss maps** induced by artificially high loss rates: record beam losses around the ring while crossing betatron resonances. Loss maps compared against

simulations to assess system performance.

Bad setup: hierarchy violated

Considerations on hierarchy

- The collimator hierarchy must always be respected with unsafe beams:
 - to ensure **cleaning** (no quenches);
 - to ensure protection (no damage)

Only robust collimators (TCPs, TCSGs) might be exposed to high loss.

- Collimator settings are given in terms of local beam size and beam position.
- Once settings are established, the preservation of hierarchy depends critically on:
 - the **mechanical precision** of collimator positions \rightarrow detailed discussion later;
 - some machine parameters such as orbit and optics.
- Contrary to other machines, the collimator alignment is done infrequently and we rely on the reproducibility of settings.

Dedicated collimator alignment campaigns are done for each machine configuration (injection, flat top, squeeze, stable beams) and then we rely on the reproducibility of machine.

- Presently using settings established on June 12th (~ 3 months ago)
- **Consequences** of this infrequent setup:
 - tight constraints on **reproducibility** of machine parameters!
 - require regular **monitoring** of cleaning performance \rightarrow talk by D. Wollmann.
- Note that if one runs with violated hierarchy the risk is not immediately apparent but might only show up if there are problems like an asynchronous dump.

Considerations on hierarchy

tion

talk by D. Wollmann.

rsk is not immediately apparent

Tke an asynchronous dump.

of machine.

- The collimator **hierarchy** must always be respected with unsafe beams:
 - to ensure **cleaning** (no quenches);
 - to ensure **protection** (no damage)

Only robust collimators (TCPs, TCSGs) might be exposed to high loss.

- Collimator settings are given in terms of **local beam size** and **beam position**.
- Once settings are established, the preservation of hierarchy depends **critically** on:
 - the **mechanical precision** of collimator positions \rightarrow detailed discussion later;
 - some machine parameters such as orbit and optics.

Contrary to other machines, the collimator **alignment** is done **infrequently** and we These aspects will be treated in detail in rely on the reproducibility of settings.

the next talks. Dedicated collimator alignment campaigns are done for each (injection, flat top, squeeze, stable beams) and then we

- aspects of machine protection of collimators and operation of the system. Presently using settings established or
- **Consequences** of this infrequent set
 - tight constraints on repre
 - require regular monito
- Note that if one runs with **viola** but might only show up if there a

Introduction I Layout and hierarchy **Collimator** interlocking Positioning survey Interlock strategy - MP tests **Collimation** operation **Conclusions**

Collimator positioning system

- Settings: 4 stepping motors for jaw corners 1 motor for tank position.
- Survey: 7 direct measurements: 4 corners + 2 gaps + tank
 - 4 resolvers that count motor steps
 - 10 switch statuses (full-in, full-out, anti-collision)

<u>Redundancy</u>: motors+resolvers+LVDT's (*Linear Variable Differential Transformer*) =

14 position measurements per collimator

W Two regimes: discrete ("actual") and time-functions (internal clock at 100 Hz)

- Inner and outer thresholds as a function of time for each motor axis and gap (<u>24 per collimator</u>). Triggered by timing event (e.g. start of ramp).
- <u>Redundancy</u>: maximum allowed gap versus energy (2 per collimator)
- Additional request to implement beta-squeeze factor for TCT interlocking.

Sequence implemented in the collimator application software: "Hit" 12 interlock limits (inner+outer for 6 LVDT's): "Hit" the 2 limits of maximum gap values ver Monitor on-line: (1) collimator status and (2) statu Result report automatically generated. Hit" the 2 limits of maximum gap values ver Monitor on-line: (1) collimator status and (2) statu Result report automatically generated. Hit" the 2 limits of maximum gap values ver Monitor on-line: (1) collimator status and (2) statu Hit" the 2 limits of maximum gap values ver Hit" the 2 limits of

Documentation

Specifications MPS Commissioning Procedure THE COMMISSIONING OF THE LHC MACHINE PROTECTION SYSTEM MPS ASPECTS OF THE COLLIMATION SYSTEM COMMISSIONING proecdures. Abstract This document describes the set of tests which will be carried-out to validate for operation the machine protection aspects of the LHC collimation system. The area concerned by these tests extends over 7 out of the 8 long straight sections. These tests include the Hardware Commissioning, the machine check-out and the tests with beam, to the extent that they are relevant for the machine protection functionality of collimation Quick jump to: Prepared by : Checked by : Approved by : Roger Bailey **Ralph Assmann** Rüdiger Schmidt Andy Butterworth Michel Jonker Bernd Dehning, **Roberto Losito** Brennan Goddard, Stefano Redaelli Eva Barbara Holzer, Verena Kain, **Thomas Weiler** Mike Lamont.

Tracking web page on collimation project site

LHC Collimation Project	LHC	LHC Collimation Project 🛛 😔 🔯									
Home of the Project for the LHC Collimation System											
<u>Top</u>	Project Team	Notes	Collimator List	Sounds/Movies	Meetings						
Links	Papers	Talks (WG)	Layout IR3/7	Collimator DB	Pictures						
MP Tests											

The LHC Collimation system is a system designed to provide beam cleaning and limited passive protection to the LHC. The precise control of the jaw positions versus time and beam position has important relevance for machine protection of the LHC. The system is **protected by various interlocks** against wrong positioning. These interlocks are subject to thourough testing as part of MP procedures.

The results of machine protection (MP) tests for the LHC collimation system are documented in EDMS reports and in the MTF database system (also used for production and quality control of collimators). Here we provide easy links to the relevant documents for all installed collimators, which are treated through the LHC collimation project.

Test position interlock	Test energy-gap interlock	Test local mode interlock
Test power cut interlock	Test reboot interlock	Test temperature interlock
Test RBAC interlock	Test MCS-Collimation role	

http://lhc-collimation-project.web.cern.ch/lhc-collimation-project/mp-tests.htm

			EDMS			EDMS Portal Navigator Search Help News Login
Collimator	MPP test results	: EDMS Doc. No.	E Document Inf	formation Page		Search User: GUEST
Slot	2009	2010		Number: 1052542 v.1	MP test – CERN - TCLA-6L3-B2 Adriana Rossi	2110
TCDD-4L2		https://edms.cern.ch/document/		In Work	Specification - Quality 2009-11-19	PUBL
TCDIH-29012	https://edms.cern.ch/document/1052530/1					
TCDIH-29050	https://edms.cern.ch/document/1052525/1		Summary Sub-Documents Ap Actions:	pproval & Comments 🐧 Used in 🦜 Access Rights 🐧 V	/ersions & other info 🔪	
TCDIH-29205	https://edms.cern.ch/document/1052526/1		Description, External Refe	erence and Keywords		
TCDIH-20465	https://edms.cern.ch/document/1052522/1		Description External Reference	Machine Protections tests on L	HC Collimators	
TCDIII-23403	https://edms.cem.ch/document/1052522/1		Keywords			
ICDIH-8/441	https://edms.cern.ch/document/105252//1					
TCDIH-87904	https://edms.cern.ch/document/1052528/1		Files of the Document			
TCDIH-88121	https://edms.cern.ch/document/1052529/1		MPP_TCLA-6L3-B2_CI	B-0J33-03-B2_2009-11-04-15-10	png (22 Kb)	
			Sub-Documents			
	's tan and have A. Dana'		Associated URL (CDD Dray	wing Folder, Library)		
MIF ma	intenance by A. Rossi					
	-		Context			
			What's next ?	Change Status action expected	d from the originator, once all the	e files have been uploaded.
			Contract	List of Local Administrators for	any questions regarding this do	cument (access rights, lifecycle)
			I GREAT			

More on documentation

Results of collimator collimator machine protection commissioning linked to from the MPP we page.

/ / / / / / / / / / / / / / / / / / / /			лео				1.200 / 300	10. j.c.	1988
Home BE OP OP Wiki	i OP Application and Documentation	Machine S	tatus 🚺 Mach	nine Checkout 📘 l	HC Work Activities	LHC Safety			
View All Site Content Overview Beam Commissioning	MPS Task List 2010 New • Actions •								-
BIS: Chanel-Status BIS: Disabled Channels	Test Name	Start Date (53)	End Date	EDMS Document	Contact Person	Results	Locations Tested	Repetition	Status
MPSC Procedure Tasks	Phase : Machine Checkout (48))							
MPS Task List 2010 Calendar Planning Full Monty MPS-Summary MPS Task List 2009	System : Collimation (2) Verification of position interlocks (functions) by violating limits	01/01/2009	01/01/2009	889345	Stefano Redaelli	Completed and ok (covered by discrete case): http://lhc-collimation-project.web.cern.ch/lhc- collimation-project/mp- tests.htm#positioninterlocks Missing one global test with synchronized ramps (limit functions triggered without collimator movements).	All	S - After Shutdown	Completed, with minor global tests missing
Team Discussion Sites People and Groups Discussion	Safe update of collimator sensor, using RBAC	01/01/2009	01/01/2009	889345	Stefano Redaelli	Done. See http://lhc-collimation- project.web.cern.ch/lhc-collimation- project/mp-tests.htm#rbac. Missing: deployment of the maps by op mode (if needed).	All	S - After Shutdown	Completed, with minor global tests missing
	System : Injection (1)								
	System : Injection-Beam1 (14)								
	Bystem : Injection-Beam2 (17)								
	Suction (I RDS-Ream1 (6)								

One problem encountered with beam...

One bug found in the control system: limit functions were zeroed in some cases and did not play the correct ramp profiles. System still safe: beams dumped (but the bug caused a delay of ~3 min in the interlock trigger). This happened twice before we could trace the bug and fix it.

S. Redaelli, MP review, 06-09-2010

Introduction I Layout and hierarchy **Collimator interlocking Collimation operation** - Present run scenario - Performance **Conclusions**

Collimator "relaxed" settings

	Unit	Plane	Set 1	Set 2	Set 3	Set 4
Condition			Injection	Injection	Collision	Collision optics,
			optics	optics	optics,	colliding,
					separated	crossing angle
Energy	[GeV]		450	3500	3500	3500
Primary cut IR7	[σ]	H. V, S	5.7	5.7	5.7	5.7
Secondary cut IR7	[σ]	H, V, S	6.7	8.5	8.5	8.5
Quartiary cut IR7	[σ]	H, V	10.0	17.7	17.7	17.7
Primary cut IR3	[σ]	Н	8.0	12	12	12
Secondary cut IR3	[σ]	Н	9.3	15.6	15.6	15.6
Quartiary cut IR3	[σ]	Н, V	10.0	17.6	17.6	17.6
Tertiary cut experiments	[σ]	H, V	15-25	40-70	15	15
TCSG/TCDQ IR6	[σ]	н	7-8	9.3-10.6	9.3-10.6	9.3-10.6

Relaxed configuration are possible with **squeezed beams** because at 3.5 TeV the **triplet aperture is larger**: 17 sigmas instead than the nominal 8.5 sigmas $\rightarrow RB s$ talk "**Relaxed settings**": during **ramp**, only TCP gap scale like $\sqrt{(energy)}$. Other collimators maintain a constant retraction in mm \rightarrow allows more margins. This gives more operational margin against the protection device retraction: ~ 5 sigmas! Beam-based settings last established in mid June - stable operation since then. Limit thresholds associated to each set of settings.

Smooth transition between different sets, all driven through collimator sequences.

Operation during inj, ramp & squeeze

Time-dependent limit functions

Limit functions (24 per collimator!!) are loaded for all ring collimators. Constant limits remain active also for collimators that do not move (TCTs). Function execution is triggered by the ramp timing event.

Gap energy limits

Redundant interlock, independent on trigger: it uses the safe machine parameters. Beam dumped if a collimator does not start moving during the ramp (and sits happily within time-dependent limits).

Measured cleaning at 3.5 TeV, β*=3.5m

S. Redaelli, MP review, 06-09-2010

Conclusions

Introduced the key concepts of the LHC collimation system

Most complex build so far: 108 collimators, 400 degrees of freedom; Cleaning needed all the time \rightarrow Collimators are "ramped" and "squeezed"; Two-jaw design \rightarrow safer because beams cannot drift away.

Reviewed the implemented machine protection features.

Highly redundant positioning control.
More than 2000 interlock thresholds ensure the correct positioning.
More than 500 individually interlocked temperature sensors.
All interlocks were tested individually: large amount of work before beam operation payed off to achieve a smooth and safe operation.

Reviewed the operation of the system.

Present modus operandi: infrequent system setup + reproducible machine. Outstanding performance: no quenches in operation with up to ~3MJ. Collimation hierarchy needs constant monitoring!

More details in the companion talks that follow...

Details of cleaning performance in the last months of operation; Closer look at the experiments regions (critical: TCT / triplet protection); Various machine protection aspects of the present operation.