Beam Dumping system, operational experience and validation

B.Goddard

On behalf of the LHC Beam Dump System teams

The major contributions from J.Uythoven, E.Carlier, C.Bracco, W.Bartmann, L.Ducimetière, V.Senaj, V.Mertens and many others are warmly acknowledged

Overview

- Introduction to dump system
- Operational experience
- Reviews and audits
- Outstanding concerns

LHC beam dump overview (and acronyms)

Summary of main parameters

Parameter	Unit	Value
Extraction kicker (MKD) horizontal deflection	mrad	0.28
MKD ∫B.dl at 7 TeV	T.m	6.53 15 magnets of 1.4 m
Total horizontal deflection (MKD + Q4)	mrad	0.33
Extraction septum (MSD) vertical deflection	mrad	2.40
MSD ∫B.dl at 7 TeV	T.m	56.0 15 magnets of 4.5 m
Dilution horizontal deflection (MKBH)	mrad	± 0.28 4 magnets of 1.9 m
Dilution vertical deflection (MKBV)	mrad	± 0.28 6 magnets of 1.3 m
Total beam line length (start MKD – end TDE)	m	975
Required particle-free abort gap length	μs	3.0
System Safety Integrity Level (SIL)		Three

Main subsystems and acronyms

- Extraction kickers MKD
- Extraction septa MSD
- Dilution kickers MKB
- Dump block TDE
- Vacuum lines TD
- Beam instrumentation BPM, BLM, BTV, BCT
- Triggering and synchronisation unit TSU
- Beam energy tracking system BETS
- Slow control and supervision
- Post operational checks IPOC, XPOC
- Protection devices TCDS, TCDQ, TCSG

Extraction kickers MKD

- Function: deflect beam into extraction septum during abort gap
 - Rise time of 3.0 μ s, pulse length of 90 μ s (1 full LHC turn)
 - Fixed deflection angle of 0.28 mrad (for 450 GeV to 7 TeV: 2 to 30 kV)
- Main components
 - Kicker magnets (15 per beam)
 - Out of vacuum, strip-wound Fe cores, ceramic chambers, 18 kA single-turn coils
 - Generators (1 per magnet)
 - Capacitor discharge through 2 x 30 kV FHCT solid state switches
 - Transmission lines (8 parallel cables per magnet)

7 September 2010

B.Goddard LHC MPS review

Extraction septa MSD

- Function: deflect extracted beam vertically above the LHC
 - Fixed deflection angle of 2.4 mrad (for 450 GeV to 7 TeV)
 - Should have no influence on circulating beam
- Main components
 - Warm "Lambertson" septum magnets (15 per beam, 5 each of 3 types)
 - Classical multi-turn design with 32-48 turns, 880 A current, water cooled
 - Baked vacuum chambers
 - Power convertor (1 per beam for 15 magnets in series)
 - 600 V Thyristor power convertor

Dilution kickers MKB

- Function: sweep beam in Lissajous figure on dump block
 - Separate horizontal and vertical systems
 - Sine and Cosine-like current shapes over 90 μ s (1 full LHC turn)
 - Peak deflection angle of 0.28 mrad (450 GeV to 7 TeV)

Main components

- Kicker magnets (4 H and 6 V per beam)
 - In vacuum, otherwise same technology as MKD
- Generators (1 per magnet)
 - Single 30 kV FHCT solid state switch (resonant circuit for MKBH to dephase waveform)
- Transmission lines (10 parallel cables per magnet)

Beam dump blocks TDE

- Function: safely absorb the full LHC beam energy
- Main components
 - Beam dump core TDE
 - 7.7 m long, 0.7 m \oslash graphite core, with graded density of 1.1/1.7 g/cm³
 - 12 mm wall, stainless-steel welded pressure vessel, at 1.2 bar of N₂
 - ~1000 tonnes of concrete/steel radiation shielding blocks

7 September 2010

B.Goddard LHC MPS review

Beam Energy Tracking System BETS

- Functions: i) provide reference for MKD/B kicker voltages, ii) verify MKD/B voltages, and MSD and Q4 currents
 - Inputs from DCCTs: Main Bend PCs in 4 arcs, MSDs and Q4s in LSS6
 - Inputs from voltage dividers in all MKD and MKB generators
 - Outputs to MKD and MKB generators, and for general LHC SMP energy
- Main components
 - Beam energy meter to acquire, transmit and convert DCCT currents into "energy"
 - Generation of references for MKD/MKBs and charging surveillance, using fail-safe SIEMENS SIMATIC S7-F PLCs
 - Redundant tracking of strengths using dedicated HW in LynxOS-VME crate

7 September 2010

B.Goddard LHC MPS review

BETS

MKD/B trigger synchronisation & distribution

- Function: detect "opening" of beam permit loop or internal fault, generation and distribution of power trigger for MKDs and MKBs synchronised with abort gap
 - Connected to beam permit loops and RF revolution frequency
 - Other inputs from internal surveillance, access system, "direct" BLMs

• Main components:

- Triggering and Synchronisation unit
 - VME-based, with redundant fail-safe logic (two redundant TSUs)
- Trigger fan-out and power triggers
 - Redundant pulse transformers, with pre-charged capacitors
- Retriggering system (in case of spontaneous firing)
 - Re-trigger source sensors in each generator able to trigger all power triggers on the other 14 generators. No synchronisation with the abort gap.
 - More detail in J.Uythoven's talk

Trigger Synchronisation & Distribution

7 September 2010

MKD/B state control and surveillance

- Function: Control equipment state (ON, OFF, STANDBY...), survey FHCT switches, monitor equipment low level status, generate dump request upon fault detection
- Main components:
 - Master PLC (SIMATIC S7-400-F) interfaced through PROFIBUS-DP segment to generator master PLC (SIEMENS S7-300-F master PLC)
 - Safety input and output (S7-300 fail-safe I/O modules) redundant 4-20 mA current loop sensors for analogue acquisition, with redundant digital I/O sensors/actuators.

Vacuum lines

- Function: connect active components together, and separate beam dump N₂ gas from high vacuum
 - First part of vacuum lines are baked out to avoid poisoning LHC NEG
- Main components
 - Vacuum pipes, bellows, pumps, valves and gauges
 - Reduced aperture differential pumping section between MKB and LHC
 - Entrance window for TDE
 - 15 mm thick, 0.6 m \oslash CFC structural plane, with 0.2 mm steel vacuum barrier foil

7 September 2010

B.Goddard LHC MPS review

Beam instrumentation

- Beam TV screens (BTVs) for extracted beam
 - At extraction septum, dilution kickers and dump block (fixed 2600 mm)
- Beam position monitors (BPMs) for circulating and extracted beam
 - Special interlock BPMs near main quads to limit orbit to 4 mm
 - At main quads and extraction septum for circulating beam orbit
 - At extraction septum and dilution kicker for extracted beam
- (Fast) Beam current transformers (FBCTs) for extracted beam
 - Just before dilution kicker (2 for redundancy)
- Beam loss monitors (BLMs) for circulating and extracted beam
 - At all extraction / protection elements, dump block and along dump line
 - 2 special units connected directly to dump trigger (not via interlock system)
- Abort gap monitoring (BRSAs)

B.Goddard

LHC MPS review

System Powering

- In case of power cut beam will clearly need to be dumped because most other equipment will stop working
- Beam dumping system kickers are on 2 parallel, redundant Uninterruptable Power Supplies (UPS)
 - Trigger Synchronisation Unit needs power from UPS to start the trigger of the beam dump
 - All other power is stored in capacitors, ready for trigger (energy stored in system)
 - In the event of total power cut AND UPS failure, dump will trigger through retriggering system
- Tested successfully during commissioning
 - Still to test: full power off without UPS (combined failure)
- In operation in 2010, beam always dumped by FMCMs much more sensitive to general power glitches

Passive protection devices TCDS/TCS/TCDQ

- Function: dilute/absorb asynchronously swept bunches to prevent damage to downstream components (see talk C.Bracco)
 - Protection of both local elements (MSDs, Q4) and far-away elements (arc aperture, triplets, collimators)
- Main components:
 - Fixed 6 m long TCDS diluter to protect extraction septum MSD
 - Mobile 6 m long TCDQ diluter to protect Q4, arc aperture and triplets
 - Mobile 2 jawed TCS collimator after TCDQ
 - Fixed TCDQM mask to protect SC Q4 coils

7 September 2010

Post operational checking systems

• Function: check that beam dump operation worked correctly

- Important component in reliability of overall system
- particularly for detecting faults in redundant branches in triggering and generators
- inputs from sensors in generators, from beam instrumentation and from other logged equipment parameters
- interfaces with LHC finite state machine control (sequencer), logging, alarms (all via standard LHC high level SW methods)

• Main components:

- generator current waveform acquisition systems (compact PCI crates with digitisers for 2 different types of current transducers)
- internal Post Operational Checks (IPOC) software running on cPCI FEs to filter, analyse and log data from generators
- external Post Operational Checks (XPOC) Java software running in LHC control system
- Extremely important for ensuring system is "good as new" before use
 - Requires discipline in use i.e. take seriously

MKD waveform analysis for IPOC and XPOC

Reliability analyses and failure rates

• Reliability of full system was analysed (Ph.D. R.Filippini)

- Detailed analysis of subsystems
- 'Quantitative' numbers on safety and availability
- Also partly extended to LHC machine protection system as a whole
- Safety
 - Critical subsystems (triggering, energy tracking) looked at in great detail
 - Figures confirm that dump should reach SIL4 as required
 - Dump 'unsafety' 4.8×10^{-7} per year of operation
 - Increases to 2×10^{-4} per year without post-mortem diagnostics (hidden failures)
 - Several design choices made using results of reliability analysis
 - Some highlighted areas still to be followed up
 - Redundancy in link from beam permit (interlock) loop
- Availability
 - Expected number of false dumps from dump system seems reasonable
 - 8 3 false dumps per year (41 6 from whole MPS)

Operational experience

Statistics with beam 1 march to 31 August 2010

Total dumps, XPOC fails and internal faults

23

Total of Internal Faults B1 + B2: 32

- Vacuum: Vacuum glitches MKB interlock, filtered
- IPOC ADC: cards failing, all cards replaced
- PTU PC: problem Capacitor, all exchanged
- Main PC: Stability problem
- PC: 5 V or 15 V, replaced
- Switch: surveillance problem, switch was ok

231 XPOC fails (excluding 397 tests)

- Beam losses main cause of failure uncaptured beam, injection
 - Thresholds now being updated to improve rate of un-necessary fails
 - Need abort gap cleaning!
- Data transmission an issue BCT fixed, BLM fixes in place
- Need to be careful not to miss the (few) most critical fails (MKD)

XPOC trend and error leading to generator exchanges

- To date, (Sub)systems always changed before real failure due to early indication by XPOC:
 - 5 MKD generators exchanged to date after 'bad trends' detected with XPOC.
 - Inspection has shown contact erosion problems
 - Trending tool available; used for offline checks

XPOC development

- New modules: BTVDD, BPMD, BCT, TSU
 - New modules help understanding if things go wrong
- PM GUI being extended with more detailed information
- XPOC users GUI being overhauled new version deployed
- Reset by EIC in case of false XPOC due to unbunched beam
 Some weakness here needs better procedure

Operational experience

Commissioning steps and results

Pre-beam system commissioning and dry runs

- Beam dump system extensively tested without beam in 2007-2009
 - Individual system tests made according to documented test procedures
 - Interfaces to other systems commissioned
 - Operated from control room, with extensive dry runs
 - Driven through operational cycle (arm, ramp, inject and dump)
 - 8 month reliability run, accumulated 20'000 pulses (5-10 years of beam operation). Debugged small issues, confirmed reliability analysis assumptions
 - Recommissioning tests after system upgrades (switch cooling system)
 - Tested in extensive dry run pediods by OP group
- Essential debugging phase for HW, controls, SW and procedures

Definition and doc. of commissioning steps

- Well-defined and well-documented commissioning procedures
 - LHC-TDE-HCP-0001EDMS: 761461 Hardware commissioning tests for the beam dump system
 - LHC-TDE-TP-0001 EDMS: 761458 Reliability tests for the beam dumping system
 - LHC-OP-MPS-0007 EDMS: 896392 MPS Aspects of the Beam Dump System Commissioning
- Basis for commissioning plans
- Test results tracking system
 - Tests coded
 - Result tracking patchy not consistently monitored

MPS-Summary MPS Task List 2000	∃System : LBDS-Beam1 (12)								
MPS Task List 2009	Beam instrumentation - 1	25/02/2010 25/	/02/2010	896392	Jan Uythoven	Requires higher intensity.	Pt6	S - After Shutdown; R -	Pending
Team Discussion	(LBDS BTVs intensity initk SIS)							Relevant repairs	
Sites Reople and Groups	Dump trajectory 450GeV - RF interlock	21/05/2010 21/	/05/2010	896392	Jan Uythoven	Functionality tested but not operational, waiting for sequencer task to check the status before ramping	None	S - After Shutdown; R - Relevant repairs	Pending
Recycle Bin	TCDQ - TCS jaws	19/03/2010 19/	/03/2010	896392	Jan Uythoven	To be repeated at high energy	None	S - After Shutdown; O - Optics Change	In progress
	XPOC - extracted beam thresholds	21/05/2010 21/	/05/2010	896392	Jan Uythoven	Ok for everything except the energy.	None	S - After Shutdown; O - Optics Change	In progress
	LBDS synch abort gap, RF freq	26/05/2010 26/	/05/2010	896392	Jan Uythoven	Bucket 1 ok, last bucket: we have not been able to test (impossible to inject in this bucket)	None	S - After Shutdown; R - Relevant repairs	In progress
	Aperture P6 - protons lost at TCDS	19/03/2010 19/	/03/2010	896392	Jan Uythoven		None	R - Relevant repairs	Pending
	BI - BPMD	26/05/2010 26/	/05/2010	896392	Jan Uythoven	Calibration ongoing	None	S - After Shutdown; R - Relevant repairs	In progress
	BI - testing interlock BPMs	26/05/2010 26/	/05/2010	896392	Jan Uythoven	Dependence on bunch structure to be tested	None	S - After Shutdown; R - Relevant repairs	In progress
	BI - abort gap monitor	26/05/2010 26/	/05/2010	896392	Jan Uythoven	Being commissioned	None	S - After Shutdown; O - Optics Change; R - Relevant repairs	In progress
	Beam intensity - abort gap	19/03/2010 19/	/03/2010	896392	Jan Uythoven		None	S - After Shutdown; O - Optics Change; R - Relevant repairs	In progress
	Beam intensity - XPOC	26/05/2010 26/	/05/2010	896392	Jan Uythoven	ok upto the actual intensity	None	S - After Shutdown; O - Optics Change; R - Relevant repairs	In progress
	Abort gap deaning	19/03/2010 19/	/03/2010	896392	Jan Uythoven		None	S - After Shutdown; O - Optics Change; R - Relevant repairs	Pending

		LHC Project Document No.	
			- 12 of 2
		Page	e 12 of 2
2	Test "disable PM event".	Test is not safety critical, but essential to guarantee efficient testing during shudown and hardware commissioning. In addition it is required for specific scenarios later on (righet & during and circulate & during, programmed dumps of single beams later on).	s
		Serioning due the disable post mortem event 2 ms before the beam permit (loops will be broken (e.g. in timing tables before programmed dump) must prevent the creation of the global post mortem event.	
3	Test of programmed dump through timing system.	LBDS needs to be armed. Send "Dump_B1/B2" events and check that correct LBDS is triggered.	S,R
4	Test timing trigger for TCDO movement	Check of synchronised start of movement of TCDQ with TCSG and cleaning collimators	S,R
CONI ovi coi pla Pro du Th	e connections between th erall machine protection s mmissioning [10] - during inned. ocedural issues connected mps during nominal LHC e permit loops therefore h	LBDS and the BIS are extremely important for th ystem. The connection will be tested during the BI the machine checkout a set of final acceptance te to the BIS loops also have safety implications. Em ydes for physics runs should always dump both be ave to be linked as soon as the arming is finished.	ie S ists are iergency eams.
CONI ov cor pla Pro du Th	e connections between the erall machine protection s mmissioning [10] – during inned. ocedural issues connected mps during nominal LHC of e permit loops therefore h Action	LBDS and the BIS are extremely important for th ystem. The connection will be tested during the BI the machine checkout a set of final acceptance te to the BIS loops also have safety implications. Em ydes for physics runs should always dump both b ave to be linked as soon as the arming is finished. Description and criteria	e S ests are eargency earns. When
Th ovi coi pla Pro du Th	e connection between the rall machine protection s mmissioning [10] – during mmed. ocedural issues connected mps during nominal LHC (p permit loops therefore h Action Check local/remote modes	LBDS and the BIS are extremely important for th ystem. The connection will be tested during the BI the machine checkout a set of final acceptance te to the BIS loops also have safety implications. Em ycles for physics runs should always dump both b ave to be linked as soon as the arming is finished. Description and criteria Switch to LOCAL mode and check that USER_PERMIT is FALSE from LBDS, and that the BIS loop cannot be armed	ergency eams. When S,R
Th ovv cor pla Pro du Th 2	e connections between th rall machine protection s missioning 10] – during nmed. edural issues connected mps during nominal IHC eduring nominal IHC Action Check local/remote modes Toggle state of IHC Beam permit between TRUE and PALSE.	LBDS and the BIS are extremely important for th ystem. The connection will be tested during the BI the machine checkudt a set of final acceptance te to the BIS loops also have safety implications. Em ycles for physics runs should always durup both bu- ave to be linked as soon as the arming is finished. Description and criteria Switch to LCAL mode and check that USER_PERMT is FALSE from LBDS, and that the BIS loop cannot be armed Verify that LBOS system triggers correctly. Check on BIC supervision application that the BIS loop System triggers correctly. Check on BIC supervision application that the BIS hoop System triggers correctly. Check on BIC supervision application that the BIS hoop System triggers correctly. Check on BIC supervision application that the BIS hoop safe the state transitions in the history buffers of the ring BIC and the durp. Make sure the tunestamp difference does not exceed 130 us.	ergency earns. When S,R S,R
CONI Th ovv corpla Produt Th 2 3	Check behaviour for Inited and uninked permit loops.	LBDS and the BIS are extremely important for th ystem. The connection will be tested during the BI the machine checkout a set of final acceptance te to the BIS loops also have safety implications. Em ycles for physics runs should always dump both ba ave to be linked as soon as the arming is finished. <u>Description and criteria</u> Switch to LOCAL mode and check that USER_PERTIN'IS FALSE from LBDS, and that the BIS loop cannot be armed Verify that LBDS system triggers correctly. Check on BIC supervision application that the sasociated user input stafe follows as expected. Compare the timestamp difference does not exceed 130 use if the timestamp difference. Link the permit loops. Through the sequencer, dump one beam. Check that the the dump is triggers. Link the permit loops through the sequencer, dump one beam. Check that the the dump to triggers load one dum ywills keeping the other unarmed and triggering one dum ywills keeping the other dumm armed.	When S,R S,R S,R S,R S,R
CONI Th ovv pla Pre du Th Pre du Th 2 3	Check behaviour for Iniké and rALSE. Check behaviour for Iniké and rALSE. Check arming sequence with full beam permit loop	LBDS and the BIS are extremely important for th ystem. The connection will be tested during the BI the machine checkout a set of final acceptance te to the BIS loops also have safety implications. Em ycles for physics runs should always durup both bi- ver to be linked as soon as the arming is finished. Description and criteria Switch to LOCAL mode and check that USER, PERMIT is FALSE from LDDS, and that the BIS loop cannot be armed Verify that LBOS system triggers correctly. Check on BIC supervision application that the associated user input state follows as expected. Compare the timestamp difference does not exceed 130 us. Record the value of the timestamp difference. Link the permit loops through the sequencer, dump one beam. Check that the other dump is triggered. Link the permit loops. It must be possible to arm Link the permit loops. R must be possible to arm Link the permit loops. Runs the possible to arm Link the permit loops from the sequencer. Yverify that the TSJ can stay locked with the BIS frequencies traveling around the whole ring.	serverse

System aperture

- In general all beams dumped cleanly with low transverse losses, up to 50 bunches per beam and for all energies and emittances
- Dumps from extreme (interlocked) orbits all clean
- Dumps with maximum RF trim all clean
- Dumps with simulated 14/15 MKD kickers all clean
- All related MP tests passed sucessfully

Measured apertures in dump region

B.Goddard LHC MPS review

Measurement phase [deg]

9200

9300

9400

9500

9600

Measurement phase [deg]

Kicker sweep and energy tracking

• Sweep is almost perfect

- Kicker performance & optics well understood

MSD strength error with energy

- Corrected transfer function and deployed
- Now much closer to expectation

Interlocked Beam Instrumentation

- Interlock BPMs to ensure beam position in tolerance for dump
 - Were setup once in the beginning of the 2010 run.
 - Adjusted after 15th May when lost 2 ramps on BPM interlocks
 - Checked with dump from positions at limit of interlock position and maximum angles
 - Working reliably may need to tune the algorithm for counting bunches out of tolerance, and should retest with larger numbers of bunches (done only for single bunches and 2 bunches so far)
- Direct Interlocked BLM (channel not via BIS)
 - Not tested yet

Problems encountered

MKD generator performance / exchange

• Found GENERAL problem with erosion of contacts – degradation

- Performance degradations detected by XPOC
- Recall and repair program
 - Check all contacts and connections, reassemble with improved procedure (torque etc)
 - Need to make modifications in laboratory
 - Replace 2 spares at each technical stop 2010
 - With 4 spares available in 2011, can replace up to 4 generators at each technical stop
- MKD switch erratics (2) seen during tests at 7 TeV and 5 TeV...
 - Reinforces need for the HT holdoff upgrade

Contact erosion series diode stack not sufficiently tightened

Contact erosion on Exit Box Replaced on 18 out of 30 generators installed

MKB

- Generators (2008 2009)
 - Damaged multi-contact on the multi-chip diode which is in parallel with the GTO stack. Solution: multicontact replaced by soldering. Done
- Magnets (2008 2009)
 - Breakdown on araldite insulators between forward and return path of MKB magnet. Solution: insulators replaced by ceramic ones (MKI type). Done
 - Damaged ground connection of MKB coil. Solution: redesign of the contact and stronger contact tightening. Done
 - Cracks of the MKB coil insulation. Solution: coils ends remoulded with different araldite filler (silica rather than dolomite). Done
- Vacuum pressure false interlock due to noise on signal solved by filtering and voting solution, but still need to find out why noisy signal

Other systems

- TCDQ movement inversion for one beam
 - Detected with low intensity beam
 - Procedural error in HW commissioning solved
- High level SW compatibility between TCDQ and TCSG
 - Completely different low levels adds complication. Rationalize?
- TSU generating a few % of asynchronous dumps
 - Fault found in internal logic for receiving RF synchro signal solved
- Problems with acquiring BI data for XPOC
 - Various issues with BCT, BLMs and servers solved

Reviews and audits

MPS related 'exercises'

- External Machine protection system review 11-13th April 2005
- External Beam dump system review 28-29th January 2008
- External Beam dump system review follow-up 15th June 2009
- Internal Beam dump system review 4th May 2010
- Internal Machine protection system review 17-18th June 2010
- External TSU and FPGA code (external company) ongoing
- MPS system checks with and without beams 2009-2010
 - Following procedures edms document 896392
 - Progress filled in on the Web
 - Conclusions fed into Internal review

External LBDS review follow-up 15th June 2009

- 27 out of 47 recommendations of the initial review of January/February 2008 were implemented at that time
- Others implemented 2009.
- Remaining concerns:
 - Potential faulty timing transmission RF
 - Done: Now check in place in sequencer
 - FPGA code review and FPGA test bench
 - Code review **on-going** for TSU.
 - Depending on experience will do for other systems (BETS)

Issues from LBDS internal review 4th May 2010

- 1. F_rev check in sequencer before arming: DONE
- 2. Formal validation procedures of system after technical stop: DONE
- 3. Damaged re-trigger resistors (see before): replacement DONE
- 4. Erosion of contacts: replacement program for next two years ONGOING will take long time but trends visible on XPOC
- 5. BLMs needed to quantify some MP tests already made: DONE
- 6. Protected sequences and unskippable tasks ONGOING
- 7. TCDQ software issues for movement DONE
- 8. TCDQ position settings check can't be done, software precision issue DONE
- 9. Debunched dumps at 450 GeV with 1e11 p⁺ & analyse: DONE
- 10. Set-up TCSG/TCDQ at 450 GeV and 3.5 TeV: DONE
- 11. Aperture measurements in Point 6: DONE
- 12. BLM calibration: DONE TCDQ DONE TCT
- 13. MPS test: system off and RF frequency interlock: DONE
- 14. Understand why 15 x 1 MKD knob did not cleanly extract: Done

Summary

Beam Dump Performance

- System performance looks generally solid
 - No dumps which would have caused damage with unsafe beam
 - No asynchronous dump happened since TSU fix 2009
 - Many dumps with unbunched beam to check performance of protection see talk of Chiara
 - Expected about two asynch. dumps per year zero to date with beam
 - All bunch patterns (${\leq}50$ bunches) dumped cleanly at 450 GeV and 3.5 TeV
 - Synchronisation extremely stable
 - All failures detected by surveillance or XPOC, requiring expert acknowledge
 - Reset now allowed by EiCs for well-defined circumstances... monitor this
- System generally well understood
 - Initial teething troubles diagnosed and fixed
 - MPS checks passed
 - Dump figure as expected
 - Aperture as expected

Outstanding commissioning work

• Beam validation still needed:

- "Direct BLM" trigger check
- Checks of BPM interlock with larger numbers of bunches, and trains
- New XPOC modules to fully deploy and test
- Dump protection (see talk Chiara's talk)
 - Dump protection validation for 3.5 m b* with crossing angles
 - Reducing β^* ...

Abort gap monitoring and cleaning to commission

- Commissioning time needed
- Decisions still to make on interlocking philosophy

• System response to full power cut without UPS

Needs reconfiguration of powering – should be done at start of long shutdown

Remaining concerns

• MKD generator contact erosion

- But <u>so far</u> always slow trend caught by XPOC
- Replacement program started but will go on through 2011
 - Replacement of 2 generators each ~6 weeks procedures now fully in place
- MKD corona discharge along switch and erratics above 5 TeV
 - Solution prototyped and being installed 2010/2011
- Effect of radiation on switches at high voltages
 - Big unknown measurements to be made with test pieces
 - Upgrade of GTO stack design not possible in 2012 shutdown long term
- Cooling of MKD generators not sufficient when running for a longer period at 7 TeV beam energy
 - May need to increase interlock tolerances needs operational experience
- Human Factor can be Weakest Link
 - Sequencer, unskippable tasks etc. have to guarantee hardware settings applied to system, that previous XPOC was ok etc.
 - Procedures: test tracking, access/intervention recovery, generator exchange, resetting XPOC, resetting faults dump equipment, ...

fin

Interdependencies

7 September 2010

B.Goddard LHC MPS review