# Asynchronous Dumps

W. Bartmann, <u>C. Bracco</u>, E. Carlier, B. Goddard, V. Kain, M. Meddahi, V. Mertens, J. Uythoven

External Review on LHC Machine Protection 07-09-2010

## Outline

What is an asynchronous beam dump and how to protect the machine

#### System Performance

- HW/SW issues, upgrades
- Tests of asynchronous beam dump (different energy, intensity, with/without orbit offset, with/without energy offset)
- BLM saturation and RC filters

#### TCDQ leakage: simulations with SixTrack

 Abort gap population measurements and cleaning











# How to Protect the Machine in Case of an Asynchronous Beam Dump?



## Other possible failure scenarios

- Spontaneous trigger of one of the 15 MKD dump kickers  $\rightarrow$  re-trigger of the 14 other modules within 1.2µs (450 GeV) 0.7 µs (7 Tev) (see J. Uythoven's and B. Goddard's talk):
  - Generally out of phase with respect to the beam abort gap
- Estimated occurrence: at least once per year, 2 events happened during 5 TeV commissioning without beam.
- Worst failure scenario: high leakage rate from TCDQ+TCSG (bad orbit or protection device position) → possible damage of TCTs
- Not possible to test this pre-trigger scenario during beam commissioning

## TCDQ hw/sw issues

#### • TCDQ setup:

- 0.1 mm resolution acceptable? Now yes, for the 7 TeV nominal operation more critical (see later)
- TCDQ positioning reproducibility: ok (no interlock seen when setting collimators via the sequencer).
- ▶ Positioning errors during ramp acceptable? Now yes. When increasing beam intensity setup tolerances will be reduced → to be checked.
- Use of same CPU for positioning and interlocking potential common mode failure?
- Position vs beam energy SW interlocking safe enough? Is a HW interlock needed (integration within BETS?)

#### TCDQ robustness

- Will be damaged by impact of 28 nominal intensity bunches at 7 TeV (25 ns spaced
- to be resolved in 2012 shutdown by upgrade in progress

## Test with Debunched Beam

#### Method for simulating asynchronous dump

- Switch off the RF
- Let the beam debunch for about 90 seconds (∆E/E = 0.01%) → population of the abort gap

Trigger a beam dump



## Test with Debunched Beam

#### Method for simulating asynchronous dump

- Switch off the RF
- Let the beam debunch for about 90 seconds (ΔE/E = 0.01%) → population of the abort gap

Trigger a beam dump



#### Problems with BLM saturation

- When increasing the beam intensity the BLM at the collimators in point 6 saturate
  - no quantitative information to define the leakage to the TCT in point 5
- RC filters have been installed at the BLM with the highest reading on the TCDQ (TCDQB)
- A new BLM with RC filter has also been installed at the TCSG during the last technical stop (week 35)
- Introduces different BLM HW types issues of configuration management

Abort Gap Population and BLM Calibration

- ▶ 36/120 of abort gap population impacts TCDQ
- Uniform abort gap population (pending deeper analysis!)
- Ie12 p+/Gy response for BLMs at TCTs, TCSG and TCDS
- ▶ Measured response at TCDQ: 1 5 e11 p+/Gy

## Results of Tests Performed (Beam 2)

| 450 GeV           |                        |                         | 3.5 TeV           |                                  |                         |
|-------------------|------------------------|-------------------------|-------------------|----------------------------------|-------------------------|
| Intensity<br>[p+] | Other                  | TCT/TCDQ                | Intensity<br>[p+] | other                            | TCT/TCDQ                |
| 9e9               |                        | No losses at TCT        | 1e10              |                                  | No losses at TCT        |
| 9e9               | ±4mm<br>orbit offset   | No losses at TCT        | 2e10              | Squeeze<br>2m β*<br>2mm offset   | All BLM P6<br>saturated |
| 1.2e10            |                        | No losses at TCT        | 2e10              | Squeeze<br>3.5m β*<br>2mm offset | 4e-4<br>RC filter TCDQB |
| 1e11              |                        | 5e-4<br>RC filter TCDQB | 7e10              | Squeeze<br>3.5m β*               | 9e-4<br>RC filter TCDQB |
| 1e11              | +4mm<br>orbit offset   | 1e-4<br>RC filter TCDQB |                   |                                  |                         |
| 1e11              | -3.5mm<br>orbit offset | 3e-4<br>RC filter TCDQB |                   |                                  |                         |

## Results of Tests Performed (Beam 2)

| 450 GeV           |                        |                         | 3.5 TeV           |                                  |                         |
|-------------------|------------------------|-------------------------|-------------------|----------------------------------|-------------------------|
| Intensity<br>[p+] | Other                  | TCT/TCDQ                | Intensity<br>[p+] | other                            | TCT/TCDQ                |
| 9e9               |                        | No losses at TCT        | 1e10              |                                  | No losses at TCT        |
| 9e9               | ±4mm<br>orbit offset   | No losses at TCT        | 2e10              | Squeeze<br>2m β*<br>2mm offset   | All BLM P6<br>saturated |
| 1.2e10            |                        | No losses at TCT        | 2e10              | Squeeze<br>3.5m β*<br>2mm offset | 4e-4<br>RC filter TCDQB |
| 1e11              |                        | 5e-4<br>RC filter TCDQB | 7e10              | Squeeze<br>3.5m β*               | 9e-4<br>RC filter TCDQB |
| 1e11              | +4mm<br>orbit offset   | 1e-4<br>RC filter TCDQB |                   |                                  |                         |
| 1e11              | -3.5mm<br>orbit offset | 3e-4<br>RC filter TCDQB |                   |                                  |                         |

#### 3.5 TeV, 2m b\*, 2mm (=1σ) offset



IR6 saturated IR7 15Gy/s TCTH.4R5.B2 0.6 Gy/s → 2E7 p+

Leakage from TCDQ ~2E-2 from BLMs (but saturated).

#### 3.5 TeV, 2m b\*, 2mm (=1σ) offset



IR6 saturated IR7 15Gy/s TCTH.4R5.B2 0.6 Gy/s → 2E7 p+

Leakage from TCDQ ~2E-2 from BLMs (but saturated).

Measured ~4e9 p+ with abort gap monitor (AGM) at moment of dump (see later for details)

Using abort gap population and, according to our assumptions, the leakage from TCDQ is ~2E-3

# Leakage from dump protection – SixTrack simulations



- All losses come from p+ scattered through TCSG which fill acceptance with scattered primaries
- Total p+ on TCTH is 0.3% of single bunch (8% impacting TCSG in this simulation) or 3.3×10<sup>8</sup> p+
- Peak p+ density is about 0.016% of single bunch (equivalent to  $2.5 \times 10^6$  p+ with nominal  $\varepsilon_{x,y}$ )
- Consistent with expectations full bunch on TCSG would be attenuated by ×10, and have ×180 emittance increase



## Loss Map for Beam 2, 3.5 TeV, 2m $\beta^*$ in IP5

From SixTrack simulations:



Ds = 10 cm @ magnets Ds = 1 m @ collimators (jaw length) Tot<sub>abs</sub> = 8'463'489

#### 1 bunch case

| Collimat<br>or | N [p+]    | %<br>Tot <sub>abs</sub> |
|----------------|-----------|-------------------------|
| TCDQ           | 7'639'643 | 90                      |
| TCSG           | 697'298   | 8                       |
| TCTH           | 22'186    | 0.3                     |
| TCTV           | 875       | 0.01                    |

Statistical error =  $1/\sqrt{N} \rightarrow max$ = 0.03

Nominal bunch (1.1E11 p+): 3.3E8 p+ on TCT

## Loss Map for Beam 2, 3.5 TeV, $2m \beta^*$ in IP5



## Results of Tests Performed (Beam 2)

| 450 GeV           |                        |                         | 3.5 TeV            |                                             |                                  |                         |
|-------------------|------------------------|-------------------------|--------------------|---------------------------------------------|----------------------------------|-------------------------|
| Intensity<br>[p+] | Other                  | TCT/TCDQ                | Intens<br>[p+      | sity<br>]                                   | other                            | TCT/TCDQ                |
| 9e9               |                        | No losses at TCT        | 1e1                | 0                                           |                                  | No losses at TCT        |
| 9e9               | ±4mm<br>orbit offset   | No losses at TCT        | 2e1                | 0                                           | Squeeze<br>2m β*<br>2mm offset   | All BLM P6<br>saturated |
| 1.2e10            |                        | No losses at TCT        | 2e1                | 0                                           | Squeeze<br>3.5m β*<br>2mm offset | 4e-4<br>RC filter TCDQB |
| 1e11              |                        | 5e-4<br>RC filter TCDQB | 7e1                | 0                                           | Squeeze<br>3.5m β*               | 9e-4<br>RC filter TCDQB |
| 1e11              | +4mm<br>orbit offset   | 1e-4<br>RC filter TCDQB | Simulations show a |                                             | how a factor                     |                         |
| 1e11              | -3.5mm<br>orbit offset | 3e-4<br>RC filter TCDQB |                    | ~10 higher losses -<br>measurements in good |                                  | sses -                  |
|                   |                        |                         |                    | dir                                         | rection                          |                         |

# Tolerance at TCDQ

#### Retraction of TCT wrt TCDQ 3.5 TeV

| Contribution                              | [σ]       |
|-------------------------------------------|-----------|
| orbit measurement error at<br>TCDQ        | 0.7       |
| orbit change at TCDQ (SIS<br>interlocked) | 2.5-3.0   |
| TCDQ setting up error                     | 1.0       |
| dynamic beta beat                         | 0.5       |
| TCT setting up error                      | 0.5       |
| total                                     | 5.2 - 5.7 |

Agreement to  $5\sigma$  retraction TCT-TCDQ

Nominal retraction at 7 TeV, 0.55m  $\beta^*$ : 0.5 $\sigma$  = 250  $\mu$ m at the TCDQ !!! Reminder: 100  $\mu$ m resolution.....

#### One more test.....

Beam dump with +4 mm and -3.5 mm orbit offset and 200Hz RF offset (interlock limit)



#### Abort Gap Cleaning: Results From 2009 Test (A. Boccardi, E. Gianfelice-Wendt, W. Höfle, T. Lefevre ...)

Cleaning test of a coasting beam done, on 16-17 Dec.'09

- 4 bunches of 2.5e10 protons
- RF switched off
- After 5 minutes, started cleaning using swept frequency around  $Q_v$



#### Abort Gap cleaning: Ingredients and Status

- BSRA monitor measuring the abort gap population Andrea Boccardi and team.
  - Calibration work in progress almost done-
  - Overall system in commissioning, cannot be declared operational yet data to be taken daily and analyzed
- Transverse damper system: Wolfgang Höfle
  - Modifications implemented on the ADT to reduce the tail of the abort gap cleaning pulse and improve the shape of the pulse
  - Beam 1 and 2 : systems ready and calibrated
  - Cleaning efficiency still to be established, and tested at 3.5 TeV
- Cleaning strategy : simulations performed, strategy defined and tested, more tests required- Eliana Gianfelice-Wendt
- Interlocking in SIS not yet ready
- Overall : system not yet commissioned, experience then needed to make operational
- Risk of TCT damage (for huge population) or Q4 quenches

## Conclusions 1/3

- TCDQ hardware issues: resolution and setup accuracy need to be improved in view of operation with nominal intensity and energy.
- Tolerances: a factor of 10 must be recovered by improving orbit stability, collimator setup and beta-beat.
- One TCDQ CPU? "BETS style" HW interlock needed?
- Problem with saturation of BLM was solved by installing RC filters at the TCDQ and TCSG BLM.
- Asynchronous beam dump tests were performed in several conditions (energy, intensity, squeeze, w/wo orbit and energy offset): leakage from TCDQ to TCT, for beam 2, was measured to be between 1E-4 and 1E-3

# Conclusions 2/3

- Asynchronous beam dump simulations for a single bunch (worst case) at 3.5 TeV (2m β\* in point 5) have been performed with SixTrack for beam 2.
  - Losses at the TCT come from particles scattered at the TCSG, no direct losses of primary protons are observed
  - Simulations allowed to visualize the distribution of particles absorbed at the TCT: peak density is equivalent of 0.016% of full bunch with nominal emittance
- Simulations compared to measurement:
  - Measurements are consistent and not worse than simulations

## Conclusions 3/3

- First Abort Gap Cleaning tests were performed in Dec 09 with encouraging results
- BSRA abort gap monitor: Overall system in commissioning, cannot be declared operational yet
- Transverse damper system: system ready and calibrated, cleaning efficiency still to be established and tested at 3.5 TeV. Interlocking in SIS – not yet ready