Operation of the CMS Pixel Detector

A. Starodumov, on behalf of the CMS Collaboration

IPP, ETH Zurich, Switzerland

Vertex 2011
June 19-24, 2011, Rust, Austria

Outline

- The CMS Pixel Detector
- Operation of the Pixel Detector
- On-line and off-line calibrations
- Performance of the Pixel Detector
- Conclusions

CMS Pixel Detector, Vertex10

- (Re)Startup Scenario 2010-2011
- $\sqrt{ } \mathrm{s}=7 \mathrm{TeV} \quad$ Fewer intense bunches 1 E 11 p/bunch

Long Physics Run $L_{\text {peak }}=10^{32} \mathrm{~cm}^{-2} \mathrm{~s}$ Pile up from multiple pp interactions $<\mathrm{N}_{\text {int }}>\sim 2-3$

7 June 2010
ensprixels-Karl.Ecklunderice.edu

CMS at LHC

CMS:

- Length $22 m$, diameter $15 m$, weight 12.5 kton
- Magnetic field 3.8 Tesla

LHC:

- 27 km ring, 1232 superconducting (1.9 K) dipoles
- $p-p$ collider, 7 TeV each beam
- nominal luminosity $10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, rate 40 MHz

Pixel Detector:

- Barrel layers: $I=53 \mathrm{~cm}, R=4.2,7.3,11 \mathrm{~cm}$
- Forward disks: $z=34.5,46.5 \mathrm{~cm}, R=6 \div 15 \mathrm{~cm}$
- Area $\sim 1.1 \mathrm{~m}^{2}, 66 \mathrm{M}$ channels

CMS Pixel Detector I

CMS Pixel Detector built of:

- BPix: 768 modules, 11520 ROCs, 48 Mpixels
- FPix: 192 panels, 4320 ROCs, 18Mpixels

Rapidity coverage:

- with 3 pixel hits up to $|\eta|=2.1$
- with 2 pixel hits within $2.1<|\eta|<2.5$

CMS Pixel Detector II

Cables: signal\&power HDI print with TBM

Si sensor 16 ROCs Base strips: $\mathrm{Si}_{3} \mathrm{~N}_{4}$

- BPix has 2 module designs: 16ROCs and 8 ROCs
- FPix has 7 plaquette designs: 2-10 ROCs

Readout Chip

- ROC designed by PSI, manufactured by IBM
- $0.25 \mu \mathrm{~m}$ process, ~ 1.3 million transistors
- ROC size: $8 \times 8 \mathrm{~mm}^{2}$
- 4160 pixels of $100 \times 150 \mu \mathrm{~m}^{2}$ in $r \phi \times z$ (CMS coordinates)
- 26 adjustable DACs per ROC, 4 trim bits per pixel
- Double column drain architecture
- 40 MHz analog readout: analog PH and pixel address

Infrastructure

- Cooling
- coolant $\mathrm{T}=+7.4^{\circ} \mathrm{C}$. Cooling was stable in 2010/11, no problems observed
- in 2012 we may run at $-10^{\circ} \mathrm{C}$ continuously, successful tests at this temperature done in January
- humidity problem observed later in February (to be solved during winter stop, details see later)
- Power
- stable running in 2010/11, no major problems observed
- one remote sensing wire lost that affected 8 BPix modules
- Electronics
- hardware was very stable in 2010/11
- firmware have been modified several time to deal with different problems:

1) high multiplicity events from beam-gas background, 2) internal noise of mezzanine card (corrupted readout), 3) heavy ion events handling

Pixel operation

- CMS downtime since restart in March 2011:
- CMS efficient 92% of time
- Pixel detector contributes 6% of the total inefficiency
- In Spring 2010: contributed 11\% of the total inefficiency
- HI collisions in Nov-Dec 2010:
- CMS efficient 94% of time
- Pixel detector contributes 5% of the total inefficiency

Andrey Starodumov

Operation in HI collisions

- $\mathrm{Pb}-\mathrm{Pb}$ collisions in CMS
- $\sqrt{s}=2.76 \mathrm{TeV}$
- luminosity $\simeq 3 \times 10^{25} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ for 128×128 bunches
- minimum bias collision rate 150 Hz
- Major differences between p-p and HI
- much higher multiplicity (but uniform!)

- much lower collision/trigger rate
- To cope with larger event size FEDs buffer size increased
- NO problems observed with pixel detector operation in HI collisions
- Pixel performance appeared identical to $p-p$ collisions

Pixel detector status I

- The whole Pixel detector: 96.9% functional ROCs
- FPix 92.8\%: 4320-312=4008 functional ROCs
- BPix 98.4\%: 11520-186=11334 functional ROCs
- Total 'dead' random pixels : <2×10 ${ }^{-4}$ in functional ROCs
- about 6K ($\sim 10^{-4}$) inefficient pixel found with internal calibration
- about 700 ($\sim 10^{-5}$) 'noisy' pixel (masked) found in cosmic ray data

Pixel detector status II

- Major problems in BPix:
- single ROC problems: some recoverable
- broken wires: not recoverable
- token lost: not recoverable
- Major problems in FPix:
- bad address levels due to slow signal rise time: recoverable in FED FW
- no communication with optical transmitter: recoverable if CMS open

06 - Endcap OnTrack cluster positions

Beam-gas background I

- What is beam-background events:
- showers of particles that graze the detector along the beam axis (z)
- occur coincident with bunch crossings
- consistent with beam-gas interactions in the beam pipe
- lead to a huge occupancy in BPix (but concentrated in 1 out of 36 FED channels)
- impose challenges to maintaining event synchronization, especially at high trigger rates

Beam-gas background II

- Where is a problem:
- beam-gas event is large and can block FED(s) for long time
- next event comes at NOT expected time (later)
- FED(s) stays out of synchronization (timeout sent to CMS DAQ)
- Solution:

1 drop the event(s) that not arrive when expected (event 'data2')
2 if N (tunable) consecutive timeouts, stop CMS trigger, so FED can resynchronize itself

Operational temperature

- At certain moment we want T be lower, e.g. $-10^{\circ} \mathrm{C}$
- detector need to be re-calibrated (DAC settings)
- test has been done in January: not completed due to lack of time
- later, in February, observed the RH problem (interlock due to high RH)
- 'Humidity problem'
- it was not observed before winter 2010/11 stop
- RH rises when CMS magnet is switched on (above 2-2.5T)
- one side of detectors affected more than other
- Possible explanation and actions
- hypothesis: it's known that some parts of CMS move on magnetic field turn on/off, this may create an opening in pixel volume sealing
- keep track of RH problem, recover during winter 2011/12 stop

On-line calibrations

- Proper readout defined by several groups of settings:
- at module level: ROC and TBM parameters
- optical readout chain: AOH and DOH parameters
- FED parameters
- Majority of settings stays unchanged until:
- detector temperature will be changed
- significant irradiation will be accumulated
- Some parameters in FEDs regularly re-calibrated:
- adjust offset in optical receivers to keep signal within ADC range: small corrections made automatically, large - by recalibration
- ADC levels needed to decode pixel addresses: mostly as a check
- clock phase: phase of ADC, performed only as a check

On-line calibration: threshold

- Motivation:
- lower threshold - lower pixel charge reconstructable then longer cluster
- longer cluster size - better spacial hit resolution
- Threshold minimization
- minimization done with help of internal calibrate signal (VCal)
- method limitation: x-talk in ROC
- Mean threshold = 2457 electrons
- Mean noise less than 150 electrons
- Conversion (from X-ray calibration): $\mathrm{Q}\left[\mathrm{e}^{-}\right]=65.5 \times \mathrm{VCal}[\mathrm{DAC}]-414$

Off-line calibration: ADC to Charge

- Relate PH (ADC) to deposited charge
- ADC-to-Vcal done once a year (more often for control)
- VCal-to-Charge calibration done in the lab with X-ray sources
- offline ADC-to-Vcal calibration:
- fit single pixel response with linear function
- result of the fit: gain and pedestal
- Granularity of constants used in CMS
- HLT: averaged over ROC column (payload 800kB)
- RECO: gain averaged over ROC column, pedestal per pixel (33MB)

High voltage scan

- HV scan performed on April 2010 and March 2011
- Few modules in BPix and FPix selected to be monitored
- No change observed in the depletion voltage (60-70V)

Pixel efficiency

- Barrel Pixel detector in 2010:
- the initial average protons per bunch and the number of bunches (colliding in CMS) are shown in green
- expected dynamic efficiency loss due to increased bunch charge and number of bunches (occupancy increase)
- overall decrease in efficiency in all layers of $0.2 \%-0.4 \%$
- Forward Pixel detector in 2010
- Efficiency on the Fpix stays within the systematics uncertainty of 0.002

BPix efficiency

- ROC efficiency represented per layer
- hatched area represents inactive modules
- ladder index changes along ϕ, module index changes along z
- Systematic uncertainty on ROC efficiency is 2×10^{-3}
- Statistical uncertainty on ROC efficiency is $10^{-4} \div 10^{-3}$
- Inefficiency concentrated in single ROCs

Time delay scan

- Timing affects cluster size (charge collection efficiency) due to time walk
- low pulses exceed threshold later than large pulses
- adjust timing to latest possible with respect to LHC clock
- Methods used
- determine maximum cluster size plateau with step 6 ns
- make fine scan with high statistics near the end of plateau (2ns)

Cluster charge distribution

- LHC collision data @ 7 TeV
- corrected to incident angle hit cluster charge for tracks with $p_{\perp}>2 \mathrm{GeV}$
- MC simulation provides accurate description of data
- peak position correct to $2-4 \%$, width $10-15 \%$

Pixel hit resolution

- Intrinsic position resolution with overlap method
- pairs of consecutive hits of track in the same layer
- difference of measured hit positions
- difference of extrapolated hit positions
- difference of two differences
- reduced sensitivity to alignment and extrapolation errors
- 1316 overlap regions analyzed (8.3M hit pairs)
- Good agreement data-MC: $\pm 1 \mu m$
- Intrinsic hit position resolution:

$$
\begin{aligned}
& \sigma_{\text {trans }}=11.2 \pm 0.1 \mu \mathrm{~m} \\
& \sigma_{\text {long }}=26.8 \pm 0.1 \mu \mathrm{~m}
\end{aligned}
$$

Lorentz angle measurements

- Lorentz shift makes clusters wider
- hence, better hit position resolution
- need to be known for data and in MC

1 Minimum cluster size in cosmics data

- measure cluster width vs incident angle

2 'Grazing angle' in collision data

- measure e^{-}drift length vs production depth

Pixel data applications

- Pixel data has many applications apart of physics:
- PV allows to monitor beam spot position and width
- photon conversion or NI points are used for material distribution studies
- follow Giacomo Sguazzoni talk on CMS Tracker performance
- Physics Example: $b \bar{b}$ angular correlations based on SV:
- final goal to measure different $b \bar{b}$ production mechanisms: FC, GS and FE, and test pQCD LO and NLO x-sections and their evolution with energy
- algorithm allows to distinguish $2 b$-particles even if $2 b$-jets are merged and hence sensitive to small $\Delta \phi_{b \bar{b}}$

Conclusions

- Smooth operation of pixel detector in 2010/11, both in p-p and HI
- Pixel detector provides high quality data used in various physics analysises
- Performance of the detector under control
- Changes in 2010
- 'unattended' operation of the detector: only central crew and expert on call
- beam-gas background problem understood and downtime caused reduced
- functional fraction 96.7% (1.5% lost in 2010), some to be recovered
- downtime caused by pixel detector improved (already very small), work ongoing to recover remaining losses
- Preparation to cooler operation has started
- tests of the detector operation and calibration at $-10^{\circ} \mathrm{C}$
- RH problem under investigation, working on possible solutions

Back up slides

Organization

- Pixel field manager: one person
- On call experts (former shift leaders)
- since summer 2010 we do not have permanent pixel shifter at P5 (3 persons a day)
- only one person (on call expert is responsible for the operation)
- now we have about 20 people to perform this task
- Pixel DAQ
- pixel DAQ SW, run control (interface to the central DAQ): 2-3 persons
- pixel configuration DB: 2-3 persons
- pixel DCS common with strip group: 3 persons from pixel side and 2-3 from strips
- pixel DQM: 2 persons

Detector status: known problems

Detector component	\# ROCs	Problem
FPix_BmO_D1_BLD9_PNL2	24	low signal amp. (bad TBM)
FPix_Bml_D1_BLD11_PNL2	24	one ROC without analog output, whole panel lost
FPix_BmO_D2_BLD8_PNL2	24	bad Address Levels (slow rise-time)
FPix_BmO_D2_BLD8_PNL1	21	bad Address Levels (slow rise-time)
FPix_BmO_D2_BLD7_PNL1	21	bad Address Levels (slow rise-time)
FPix_BmO_D2_BLD9_PNL1	21	bad Address Levels (slow rise-time)
FPix_Bml_D2_BLD10_PNL1	21	bad Address Levels (slow rise-time)
FPix_BmI_D1_BLD6_PNL1	21	no signal
FPix_Bpl_D2_BLD4_PNL1	21	no I2C to AOH, need to open CMS
FPix_Bpl_D2_BLD4_PNL2	24	no I2C to AOH, need to open CMS
FPix_Bpl_D2_BLD5_PNL1	21	no I2C to AOH, need to open CMS
FPix_Bpl_D2_BLD5_PNL2	24	no I2C to AOH , need to open CMS
FPix_Bpl_D2_BLD6_PNL1	21	no I2C to AOH , need to open CMS
FPix_Bpl_D2_BLD6_PNL2	24	no I2C to AOH, need to open CMS
BPix_BpI_SEC5_LYR3_LDR12F_MOD2	16	no HV
BPix_Bpl_SEC8_LYR3_LDR22H_MOD4	8	no HV
BPix_BpO_SEC1_LYR2_LDR1H_MOD4	8	no HV
BPix_BpO_SEC8_LYR2_LDR16H_MOD4	8	no HV
BPix_BpO_SEC7_LYR2_LDR13F_MOD3 TBM-B	8	token lost
BPix_Bml_SEC2_LYR3_LDR4F_MOD3	16	token lost
BPix_BpO_SEC4_LYR2_LDR8F_MOD1 TBM-A	8	bad ROC
BPix_BmI_SEC3_LYR2_LDR5F_MOD3 TBM-A	8	bad ROC header
BPix_BmI_SEC3_LYR2_LDR5F_MOD3 TBM-B	8	ROC cannot be programmed
	16	dead module
BPix_Bpl_SEC8_LYR1_LDR9F_MOD2	16	no trigger
BPix_BmO_SEC4_LYR2_LDR8F_MOD4 TBM-A	8	bad ROC
BPix_BmI_SEC3_LYR1_LDR4F_MOD4 TBM-B	8	no signal (wire bond?)
BPix_BpO_SEC7_LYR3_LDR19F_MOD2	16	tocken lost
BPix_BpI_SEC1_LYR3_LDR3F_MOD2	16	cann't be programmed
BPix_BmI_SEC5_LYR3_LDR13F_MOD2	16	remote sensing wire ${ }_{\text {® }}$

Infrastructure status II

- Detector Control System (DCS)
- monitor power (LV and HV), T and RH: stable functioning
- several thing still have been modified (like staged BPix turn on)
- calibration of humidity and dew-points have been made at the beginning of 2011
- Data Quality Monitor (DQM)
- with data taking experience permanently improving the monitoring
- due to unattended pixel operation since summer 2010, central DQM shifters have been provided with clear plots and instructions
- Pixel on-line SW (POS)
- written very well from the beginning
- all needed calibrations of the detector work very reliably
- concerns about man power to support the SW on a long term bases

Cluster size

- Cluster size distributions: note different geometry of forward and
barrel pixel detectors
- BPix:
- local X corresponds to global $r \phi$ (short clusters)
- local Y corresponds to global z (long clusters)
- FPix: all tracks almost perpendicular to sensor - in both directions clusters are short
- MC simulation describes data quite well

Thresholds

- Procedure:
- The mean absolute threshold on each ROC is computed from a subset of pixels on the ROC (2%)
- The absolute threshold of each pixel is obtained from an SCurve calibration covering two bunch crossings
- An SCurve is the hit efficiency as a function of injected charge (VCal).
- The threshold is taken as the VCal corresponding to 50% efficiency
- Conversion: \#electrons=65.5×VCal - 414 (X-ray calib.)

DACs optimization

- Few operational parameters are T dependent
- some DACs tuned dynamically, so no need for a special procedure
- others should be re-adjusted
- BPix
- 2 sets of DACs for $+17^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$ taken at PSI
- T dependence approximately linear
- new DACs obtained by linear interpolation from 2 sets
- FPix
- DACs tuned in P5 using special calibration procedures
- Thresholds are minimized in BPix/FPix: 2740/2480 e^{-}

