## **Anomaly Detection and Failure Prediction**

### Prof. Evgeny Burnaev, e.burnaev@skoltech.ru Skoltech, 2021



Skolkovo Institute of Science and Technology

# ADASE group

- 30 researchers
- DL for
  - 3D Computer Vision
  - Predictive Analytics

~ 100 **papers** in major venues, incl. NIPS, ICML, CVPR, etc.

**The Best Paper Award** for the research on modeling of point clouds and predicting properties of 3D shapes at the Int. Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), 2020

**Geometry Processing Dataset Award** for the work «ABC Dataset: A Big CAD Model Dataset For Geometric Deep Learning», Symposium on Geometry Processing, 2019

**The Best Paper Award** for the research in eSports at the IEEE Internet of People conference, 2019

# ADASE group

- 30 researchers
- DL for
  - 3D Computer Vision
  - Predictive Analytics

~ 100 **papers** in major venues, incl. NIPS, ICML, CVPR, etc.

# Moscow government prize for Scientific Achievements, 2018

"Ilya Segalovich" Yandex prize for Scientific Achievements, 2020 **The Best Paper Award** for the research on modeling of point clouds and predicting properties of 3D shapes at the Int. Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR), 2020

**Geometry Processing Dataset Award** for the work «ABC Dataset: A Big CAD Model Dataset For Geometric Deep Learning», Symposium on Geometry Processing, 2019

**The Best Paper Award** for the research in eSports at the IEEE Internet of People conference, 2019

### Industrial Expertise: since 2007



- > Challenges
- Examples of projects
- Methodology
- Anomaly Detection
- Imbalanced Classification
- Generalization Bounds for Imbalanced Classification
- One-Class SVM
- > Kernels

### > Challenges

- Examples of projects
- > Methodology
- Anomaly Detection
- Imbalanced Classification
- Generalization Bounds for Imbalanced Classification
- One-Class SVM
- > Kernels

What data are already being collected [6]



Heat & power plant - 10<sup>3</sup> observations/ms



Rolled metal production - 10<sup>4</sup> observations/ms

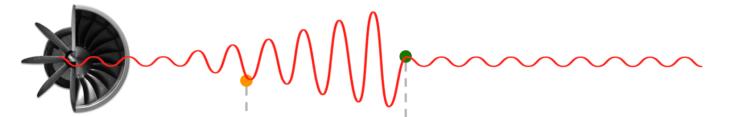


### Modern aircraft – up to 0.5 Tb for one flight

- Less than 1% of data is used, most of the data is not stored and used
- The next generation of Pratt & Whitney engines will produce up to **10 Gb/sec**



- Self-driving Google car up to **1 Gb/sec** 
  - Formula-1 car **1.2 Gb/sec**



| Exploitation                                               | Time to Failure                                   |                  |                           |       |             | Failure                                |
|------------------------------------------------------------|---------------------------------------------------|------------------|---------------------------|-------|-------------|----------------------------------------|
| Years/months                                               | Months                                            | Weeks            |                           | Days  |             |                                        |
| Optimal condition                                          | Vibrations                                        | Signs of<br>wear | Decrease of main KPIs     | Noise | Overheating | Failure (repair or a full replacement) |
| Intelligent<br>Monitoring and<br>Predictive<br>Maintenance |                                                   |                  | Corrective<br>Maintenance |       |             | Failure is prevented                   |
| Other approaches to<br>Maintenance                         | Scheduled Maintenance. Collected data is not used |                  |                           |       |             | Emergency Repair                       |

 $\mathsf{PHM} \Rightarrow \mathsf{New} \text{ service models}$ 

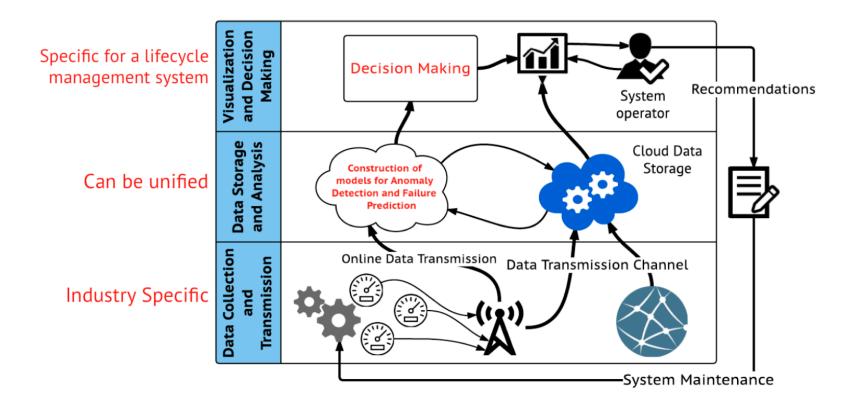
- Often when selecting a strategy it is necessary to optimize multiple targets
- Data Analytics can help to balance the "contradicting" targets

### **Example from Aviation**

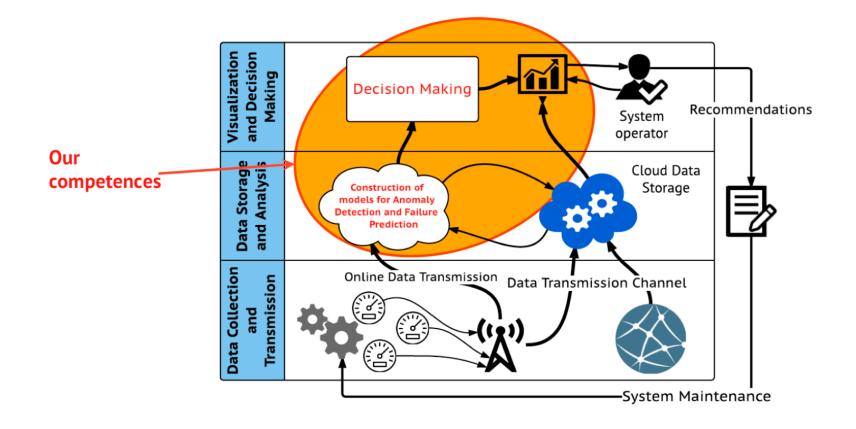
When performing technical maintenance it is necessary to

- Increase the availability of an aircraft
- Reduce maintenance costs
- Minimize a number of operational interruptions
- Increase safety

### Intelligent Maintenance System

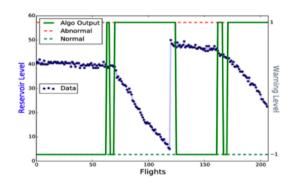


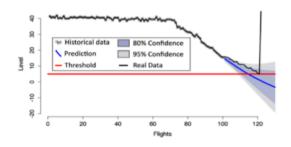
### Intelligent Maintenance System



- > Challenges
- > Examples of projects
- > Methodology
- Anomaly Detection
- Imbalanced Classification
- Generalization Bounds for Imbalanced Classification
- One-Class SVM
- > Kernels

- **Objective:** optimize maintenance of the cooling system
- Subtasks:
  - Determine whether a current refrigerant level is critical
  - Quick leakage detection
  - Prediction of time until achieving a critical level





In collaboration with Datadvance llc.

#### • Data:

- Time-series of levels of refrigerant
- $\,17$  aircrafts,  $\sim 400$  flights of each
- Results:
  - False positive rate is <1%
  - $-\,$  Rate of correct detection is >99%
  - Average error of prediction before 10 flights until achieving a critical level is < 1 flight

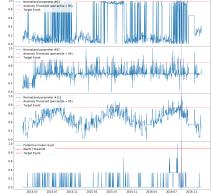
# **Auxiliary Power Unit Failures [5, 6]**

- **Problem:** 
  - Input: multidimensional telemetry data (high/low pressure turbine rotor speed and vibration; burner pressure, exhaust, fuel and oil feed, etc.)
  - ✓ Output: events (APU failures)
- Data: 3 years, ~400 flights per year of telemetry and observed failures for 30 aircrafts, 400+ parameters
- **Objective:** predict future failures with low false alarms

#### □ Challenges:

- ✓ Heterogeneous data and noise,
- ✓ Large volumes of high-dimensional data,
- Imbalanced learning data sample (events are rare)



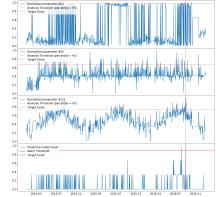


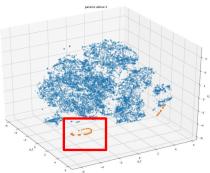
# **Auxiliary Power Unit Failures [5,6]**

### □ Solution and results:

- Anomaly Detection and Early warnings about some types of failures
- ✓ High coverage rates (detected failures)
- ✓ Low False Alarms (for ~9 accurately predicted failures we get ~1 false alarm)



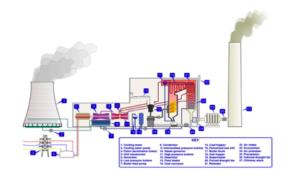


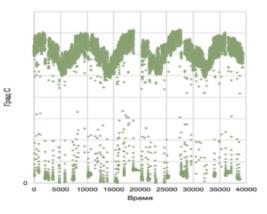


Power Losses in Thermal Power Plant

### • Objective:

- 1. Detect Power Losses in the system
- 2. Localize origins of power losses
- Subtasks:
  - Construct a model of a system in normal regime
  - Model sensitivity analysis w.r.t. a change in a system behavior (potential failures)





- **Data:** 200+ dimensional time-series, one-observation per 10 min.
- Results:
  - Detection of power losses in the system
  - Localization of the power losses origins
  - Results were confirmed by experts

In collaboration with Datadvance llc.

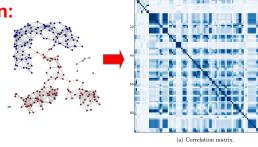
- > Challenges
- Examples of projects
- > Methodology
- Anomaly Detection
- Imbalanced Classification
- Generalization Bounds for Imbalanced Classification
- One-Class SVM
- > Kernels

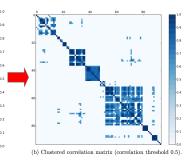
- Multistream/multichannel scenarios with unstructured hypotheses/patterns
- High-dimensionality and Large data volumes
- Composite hypotheses
- Stochastic models with non-stationary and dependent observations of a very general structure
- Prior uncertainty with respect to pre- and post-change distributions
- Parametric assumptions are inefficient
- Imbalanced learning samples

# Methodology (macro-steps) [5,6]

#### 1. Subsystems Identification:

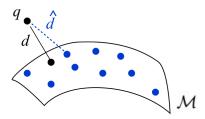
Identification of groups of dependent parameters, corresponding to different subsystems





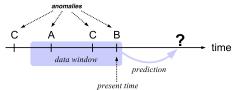
#### 2. Anomaly Detection:

Detection of Anomalies based on Manifold Learning for identified subsystems



#### 3. Events Matching:

Statistical techniques to identify best anomalies preceding warnings (and not happening anywhere else)

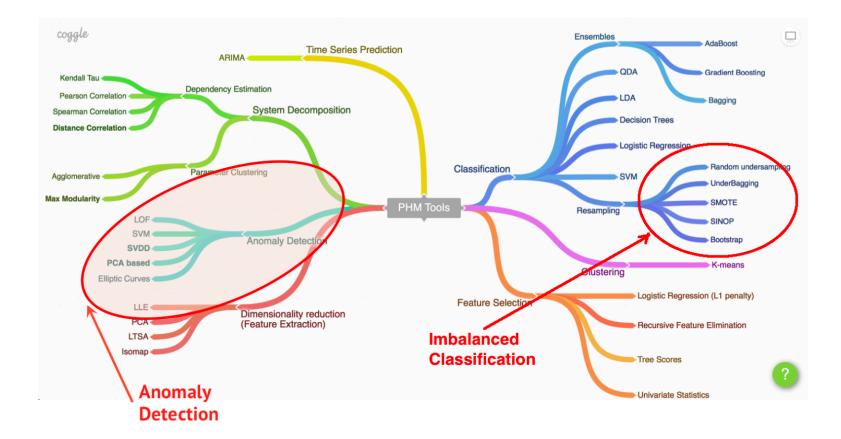


#### 4. Validation:

Apply anomalies detection logics in a new airplane (left apart) to calculate the prediction

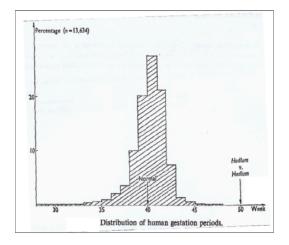


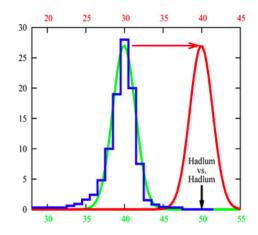
### Methods. Anomaly Detection



- > Challenges
- Examples of projects
- Methodology
- Anomaly Detection
- Imbalanced Classification
- Generalization Bounds for Imbalanced Classification
- One-Class SVM
- > Kernels

### Hadlum vs. Hadlum (1949) [Barnett, 1978]





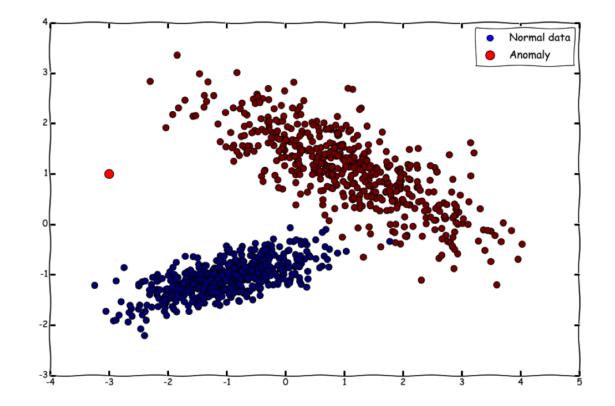
- The birth of a child to Mrs. Hadlum happened 349 days after Mr. Hadlum left for military service
- Average human pregnancy period is 280 days (40 weeks)
- Statistically, 349 days is an outlier

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필]님,

"An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism"

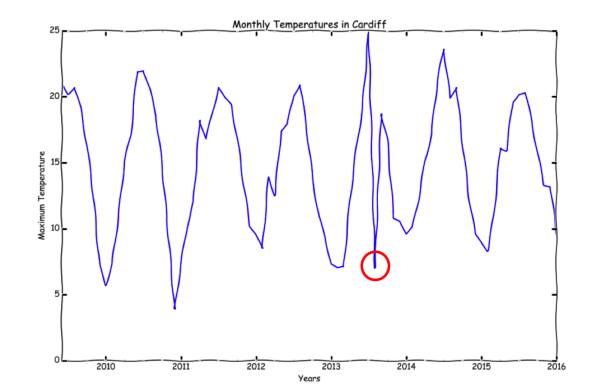
In real world problems definition of anomaly depends on its context

#### • An individual data instance is anomalous w.r.t. the data

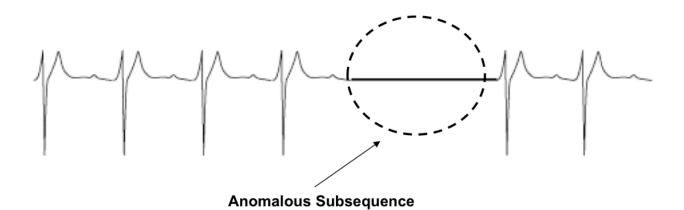


#### Anomaly taxonomy: Contextual Anomalies

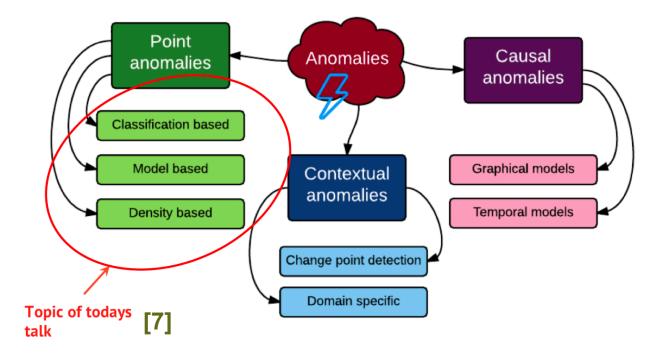
- An individual data instance is anomalous within a context
- Requires a notion of context
- Also referred to as conditional anomalies



- A collection of related data instances is anomalous
- Requires a relationship among data instances
  - Sequential Data
  - Spatial Data
  - Graph Data
- The individual instances within a set of causal anomalies are not anomalous by themselves

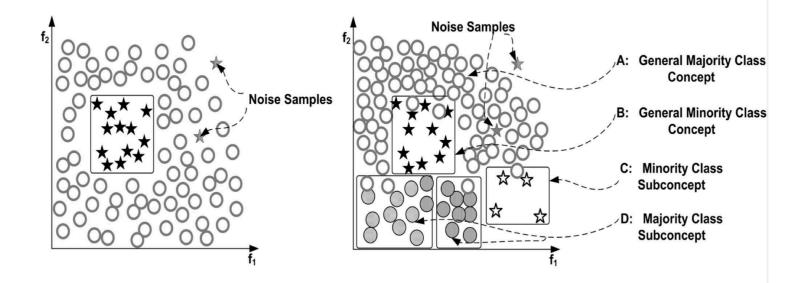


### Anomaly taxonomy



- > Challenges
- Examples of projects
- > Methodology
- Anomaly Detection
- Imbalanced Classification
- Generalization Bounds for Imbalanced Classification
- One-Class SVM
- > Kernels

- Between-class imbalance (relative imbalance)
- Relative imbalance vs. imbalance due to rare instances or "absolute rarity"
  - Within class imbalance
- Data complexity vs. imbalanced data vs. small sample size



- Binary classification: often dataset has "natural" imbalance
- <u>Minor class</u> (of **prime** interest) vs. <u>major class</u>: e.g. classification of "cancerous" vs. "healthy" mammography image
- Standard classifiers (SVM, kNN, log. reg., etc.): classes are equally important ⇒ results are biased towards the major class
- Poor prediction of minor class while the average quality can be good:
  - target events occurs in 1% of all cases
  - classifier always gives a 'no-event' answer
  - it is wrong just 1% of all cases

- Approaches to increase importance of the minor class:
  - Adapt a probability threshold for classifiers,
  - Modify a loss function, e.g., by assigning more weight to the minor class error,
  - Resample a dataset in order to soften or remove class imbalance
- We focus on resampling: allows to use standard classifiers

• Dataset 
$$S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$$
, where  $\mathbf{x}_i \in \mathbb{R}^N$ ,  $y_i \in \{-1, +1\}$ 

• 
$$C_{+1}(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = +1\}$$
 is a major class,

•  $C_{-1}(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = -1\}$  is a minor class, i.e.  $|C_{+1}(S_m)| > |C_{-1}(S_m)|$ 

• Imbalance ratio 
$$IR(S_m) = \frac{|C_{-1}(S_m)|}{|C_{+1}(S_m)|}$$
,  $IR(S_m) \le 1$ 

- Learn a classifier using imbalanced training sample  $S_m$ ,
- The dataset  $S_m$  is resampled using a method r:

— some observations in  $S_m$  are dropped, or

- some new synthetic observations are added to  $S_m$
- The result of resampling is a dataset  $r(S_m)$  with  $IR(r(S_m)) > IR(S_m)$ ,
- Standard classification model f is learned on  $r(S_m)$  to construct a classifier  $f_{r(S_m)}: \mathbb{R}^d \to \{-1, +1\}$

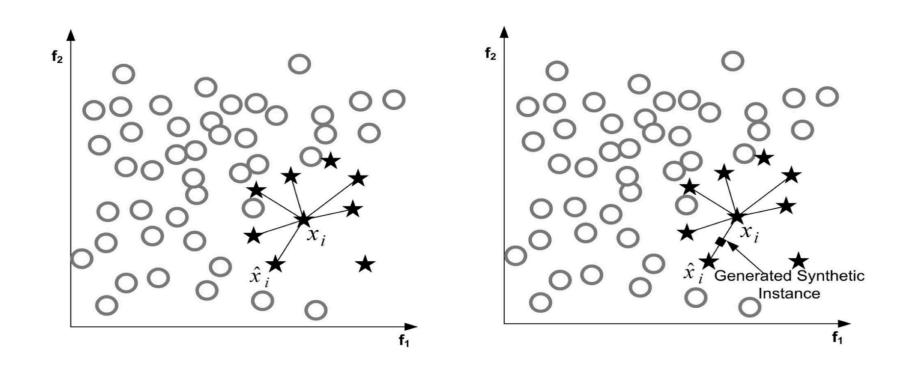
Resampling method r:

- Takes input:
  - dataset  $S_m$ ;
  - resampling multiplier m>1 for resulting imbalance ratio  $\overline{IR(r(S_m))}=m\cdot IR(S_m);$
  - additional parameters, specific for the method
- Add synthesized objects to the minor class (oversampling), or drop objects from the major class (undersampling), or both
- Outputs resampled dataset  $r(S_m)$  with imbalance ratio  $IR(r(S_m)) = m \cdot IR(S_m)$

- ROS, also known as bootstrap oversampling
- No additional input parameters
- It adds to the minor class new  $(m-1)|C_{-1}(S_m)|$  objects
- Each of objects is drawn from uniform distribution on  $C_{-1}(S_m)$

- No additional input parameters
- It chooses random subset of  $C_{+1}(S_m)$  with  $|C_{+1}(S_m)|\frac{m-1}{m}$  elements and drops it from the dataset
- All subsets of  $C_{+1}(S_m)$  have equal probabilities to be chosen

Synthetic Minority Oversampling Technique (SMOTE)



- For each (artificial/real) dataset we varied classifier model, resampling method and multiplier
- We used Bootstrap, RUS and SMOTE with k=5
- We varied resampling multiplier m from 1.25 to 10.0
- We used Decision Trees, k-Nearest Neighbors, and Logistic Regression with  $\ell_1$  regularization
- CV to select classifier parameters
- Resampling multiplier selection:
  - The equalizing strategy
  - CV-search

- $\{r_1, \ldots, r_n\}$  the set of considered methods (e.g. resampling methods)
- $\{S_1, \ldots S_T\}$  the set of tasks (datasets),
- $q_{ti}$  the quality of the method i on the dataset t,
- $p_i(\beta)$  is a fraction of tasks, on which the method i is worse than the best one not more than  $\beta$  times:

$$p_i(\beta) = \frac{1}{T} \left| \left\{ t : q_{ti} \ge \frac{1}{\beta} \max_i q_{ti} \right\} \right|, \ \beta \ge 1$$

#### **Results for Decision Trees classifier**

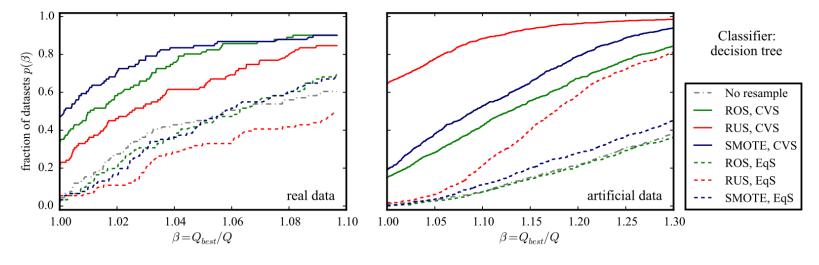


Figure – Dolan-More curves for metric  $Q_{PRC}^{CV}$ 

### Results for *k*-NN classifier

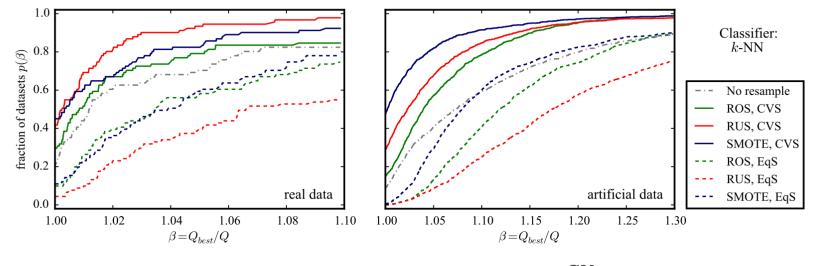


Figure – Dolan-More curves for metric  $Q_{PRC}^{CV}$ 

### Results for $l_1$ -logistic regression

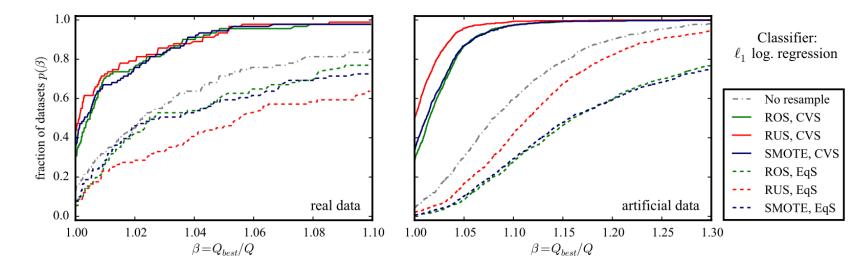


Figure – Dolan-More curves for metric  $Q_{PRC}^{CV}$ 

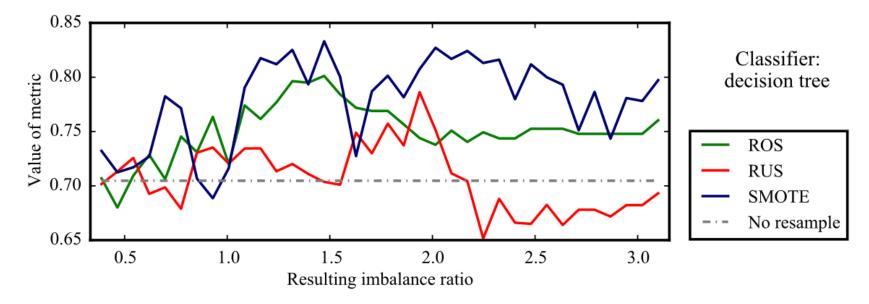


Figure – Value of  $Q_{PRC}^{CV}$  vs. resulting value of  $I\!R$  for dataset "Delft pump 1x3"

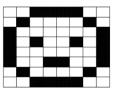
- Influence of resampling on the quality strongly depends on resampling multiplier
- Resampling with CV-search of multiplier provides better results, especially for Decision trees and Logistic regression
- The equalizing strategy (EqS) shows much lower quality, especially in case of *k*-NN and Logistic regression
- Performance of resampling depends on classifier used
- There is no method that would always outperform the others

# **Table of contents**

- > Challenges
- Examples of projects
- Methodology
- Anomaly Detection
- Imbalanced Classification
- Generalization Bounds for Imbalanced Classification
- One-Class SVM
- > Kernels

## Motivation

• We consider a binary classification problem statement



X(U)

Person Bird

Y

- The problem is possibly imbalanced (typical for applications).
   E.g. we should detect cancer/no-cancer using MRI. The number of cases with cancer (minor class) is small
- The main goal of the imbalanced classification is to accurately detect a minor class
- However, standard classification approaches (logistic regression, SVM, etc.) treat all classes as equally important
- As a consequence the resulting classification model is biased towards the major class. E.g., if we predict an event occurring in just 1% of all cases and the classification model always gives a "no-event" answer, then it is wrong in just 1% of all cases

U

### Outline

- 1. To deal with possible class imbalance when constructing a classifier we use a weighted error (risk) to stress the most important class (accurate detection is needed!)
- 2. How to select an appropriate weight value to up-weight a minor class?

- 3. We obtain a **generalization bound** for a **weighted binary classification** and estimate an optimal weight
- 4. Results of computational experiments demonstrate usefulness of the obtained estimate

### **Related works**

- There exist results in classification performance with a weighted loss
- E.g. in [1] a bayesian framework for imbalanced classification with a weighted risk is proposed,
- [2] investigated the calibration of asymmetric surrogate losses,
- [3] considered the case of cost-sensitive learning with noisy labels.
- However, to the best of our knowledge, there is no studied upper bound for the excess risk with explicit dependence on the class imbalance  $\pi$  and the weighting scheme u that quantifies the influence on the overall classification performance

[1] G. Dupret and M. Koda, "Bootstrap re-sampling for unbalanced data in supervised learning," European Journal of Operational Research, 2001.

[2] C. Scott, "Calibrated asymmetric surrogate losses," Electron. J. Statist., 2012.

[3] N. Natarajan, I. S. Dhillon, and et al., "Cost-sensitive learning with noisy labels," JMLR, 2018.

#### Some useful definitions

**Definition:** Empirical Rademacher complexity

$$G$$
 - some family of functions from  $Z$  to  $[a, b]$   
 $S = (z_1, \dots, z_m)$  - fixed sample  
 $\widehat{\mathfrak{R}}_S(G) = \mathop{\mathrm{E}}_{\sigma} \left[ \sup_{g \in G} \frac{1}{m} \sum_{i=1}^m \sigma_i g(z_i) \right]$ 

where  $\,oldsymbol{\sigma}\,=\,(\sigma_1,\ldots,\sigma_m)^{ op}$  - Rademacher variables

#### Some useful definitions

### **Definition:** Rademacher complexity

 $D\,$  - some distribution on  $\,Z\,$ 

$$\mathfrak{R}_m(G) = \mathop{\mathrm{E}}_{S \sim D^m} [\widehat{\mathfrak{R}}_S(G)].$$

Theorem. Generalization bounds based on Rademacher complexity

Let G be a family of functions mapping from Z to [0,1]. Then, for any  $\delta > 0$ , with probability at least  $1 - \delta$ , each of the following holds for all  $g \in G$ :

$$\begin{split} \mathbf{E}[g(z)] &\leq \frac{1}{m} \sum_{i=1}^{m} g(z_i) + 2\mathfrak{R}_m(G) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}} \\ and \quad \mathbf{E}[g(z)] &\leq \frac{1}{m} \sum_{i=1}^{m} g(z_i) + 2\widehat{\mathfrak{R}}_S(G) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2m}} \end{split}$$

$$x \in \mathcal{X}$$
 - input (feature) space $\mathcal{Y} = \{-1, +1\}$  - output (label) space

U

X(U)

$$\mathcal{F} \subseteq \mathcal{Y}^{\mathcal{X}}$$
 - a class of binary classifiers. E.g.  
 $\mathcal{F} = \{f_{a,b}: \ f_{a,b}(x) = 2\mathbb{I}(\langle a, x \rangle + b \ge 0) - 1\}$ 

$${\mathbb P}$$
 - unknown distribution on  $\,\,{\mathcal X}\, imes\,{\mathcal Y}$ 

 $\pi$  - prior probability of a positive class, i.e.

$$\mathbb{P} = \pi \mathbb{P}_{x|y=+1} + (1-\pi) \mathbb{P}_{x|y=-1}$$

Y

$$\mathcal{D} = \{(x_i,y_i)\}_{i=1}^N$$
 - is a training sample,  $\ x_i \in \mathcal{X}, \, y_i \in \mathcal{Y}$ 

 $\mathcal{R}_N(\mathcal{F})$  - is a Rademacher complexity of  $~\mathcal{F}$ 

$$L(\hat{y},y) = \mathbb{I}_{\hat{y} 
eq y}$$
 - is a zero-one loss function $u: (\mathcal{X} imes \mathcal{Y}) o (0,+\infty)$  - some (fixed) weighting function

Theoretical risk

 $\mathbb{E}_{\mathbb{P}}L(f(x),y)$ 

**Optimal classifier** 

$$f^* = \arg\min_{f\in\mathcal{F}} \mathbb{E}_{\mathbb{P}}L(f(x), y)$$

Empirical risk:

$$\mathbb{E}_{\mathcal{D}}u(x,y)L(f(x),y) = \frac{1}{N}\sum_{i=1}^{N}u(x_i,y_i)L(f(x_i),y_i)$$

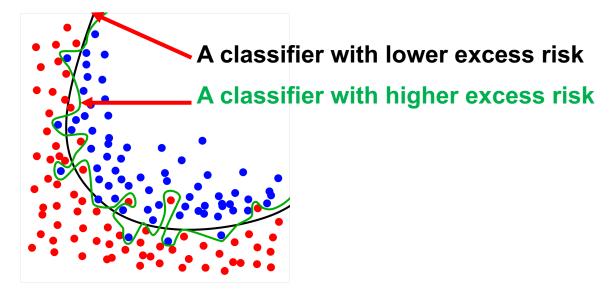
**Empirical classifier** 

$$\hat{f} = \arg\min_{f\in\mathcal{F}} \mathbb{E}_{\mathcal{D}} u(x,y) L(f(x),y)$$

We would like to derive an upper bound for the excess risk:

$$\Delta(\mathcal{F},\mathbb{P}) = \sup_{f\in\mathcal{F}} \left( \mathbb{E}_{\mathbb{P}} L(f(x), y) - \mathbb{E}_{\mathcal{D}} u(x, y) L(f(x), y) \right)$$

The excess risk characterizes a generalization ability of the classifier



### **Generalization bound**

To derive explicit expressions we use an additional assumption

$$u(x,y)=(1+g_+(w))\mathbb{I}_{\{y=+1\}}+(1+g_-(w))\,\mathbb{I}_{\{y=-1\}}$$
 some positive weighting functions  $\,g_+(w)$  and  $\,g_-(w)$ 

**Theorem [4]**: With probability  $1 - \delta$ ,  $\delta > 0$  for  $\mathcal{D} \sim \mathbb{P}^N$  the excess risk  $\Delta(\mathcal{F}, \mathbb{P})$ 

is upper bounded by

for

$$\overline{\Delta}(w) = 3\left(g_+(w)\pi + g_-(w)(1-\pi)\right) + \mathcal{R}_N(\mathcal{F}) + \left(2 + g_+(w) + g_-(w)\right)\alpha_N,$$
  
where  $\alpha_N = \sqrt{\frac{\log \delta^{-1}}{2N}}.$ 

### Generalization bound: optimal weight selection (I)

So, the upper bound on the excess risk is equal to

 $\overline{\Delta}(w) = 3 \left( g_+(w)\pi + g_-(w)(1-\pi) \right) + \mathcal{R}_N(\mathcal{F}) + \left( 2 + g_+(w) + g_-(w) \right) \alpha_N$ 

By collecting the terms with  $\, w \,$  in  $\, \overline{\varDelta}(w)$  we get

$$g_{+}(w) (3\pi + \alpha_{N}) + g_{-}(w) (3(1 - \pi) + \alpha_{N})$$

We set  $g_+(w)=w$  and  $g_-(w)=1/w$ 

The optimal weight

$$w^* = \sqrt{\frac{3(1-\pi)+\alpha_N}{3\pi+\alpha_N}} \approx \sqrt{\frac{1-\pi}{\pi}}$$
, where  $\alpha_N \approx 0$  for  $N \gg 1$ 

### Generalization bound: optimal weight selection (II)

Finally:

- We weight examples from the positive class with a weight 1+w
- We weight examples from the negative class with a weight 1+1/w
- The optimal weight to minimize the upper bound of the excess risk is equal to

$$w^* \approx \sqrt{rac{1-\pi}{\pi}}$$

For such optimal weight value the upper bound of the excess risk is equal to

$$\overline{\Delta}^* = 6\sqrt{\pi(1-\pi)} + \mathcal{R}_N(\mathcal{F}) + \alpha_N \left(2 + [\pi(1-\pi)]^{-\frac{1}{2}}\right)$$

Therefore, in imbalanced case (  $\pi\approx 0$  or  $\pi\approx 1$  ) for  $N\gg 1$  and "standard functions classes" we get that

$$\overline{\Delta}^* \approx 0$$

## **Empirical evaluation**

We expect that for the optimal weight value a classifier achieve better accuracy on the test when when being trained by minimizing the weighted empirical loss

#### **Protocol of experiments:**

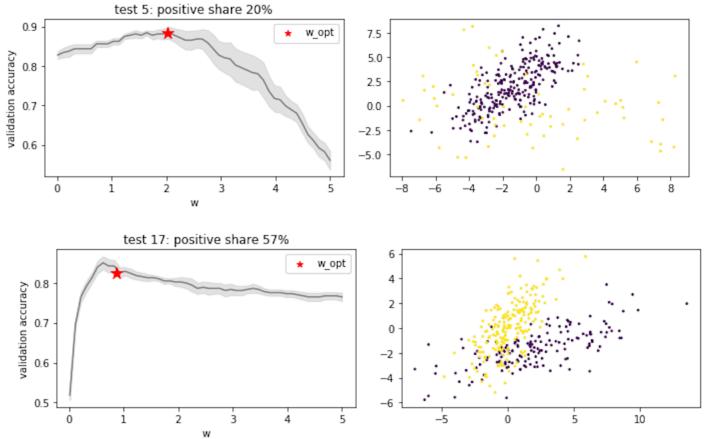
- Consider different values of the weight  $w \in \{w_1, \ldots, w_K\}$
- Train a classifier  $f_w(x)$  by minimizing a weighted empirical loss

for a particular weight value  $w=w_i$ 

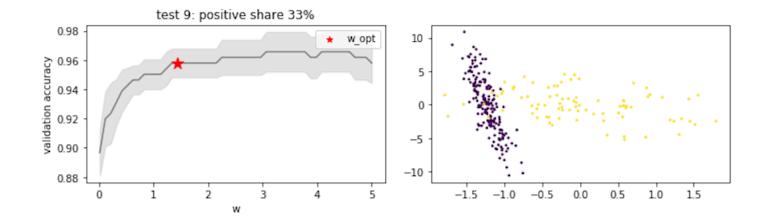
- Estimate accuracy on the test set and find the weight for which accuracy is the highest
- Compare the best obtained weight with the theoretical weight calculated using the

formula 
$$w^* \approx \sqrt{\frac{1-\tau}{\pi}}$$

### **Results: 2d toy problems**

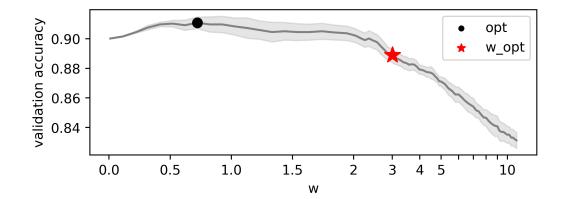


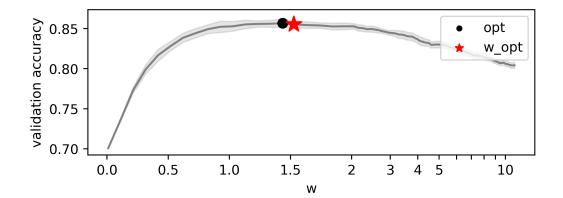
### **Results: 2d toy problems**

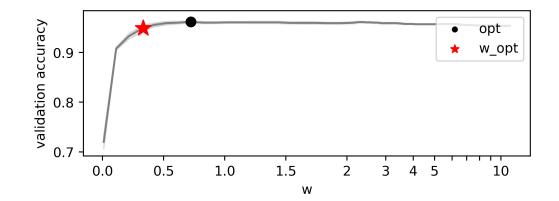


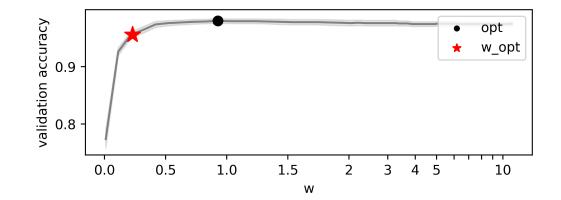
- Datasets were taken from Penn Machine Learning Benchmarks repository: we selected diabetes, german, waveform-40, satimage, splice, spambase, hypothyroid, and mushroom, that have various types of data and features
- To obtain a specific balance between classes in experiments, we used undersampling of an excess class. Using this method, we varied the positive class share among the following values: 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99

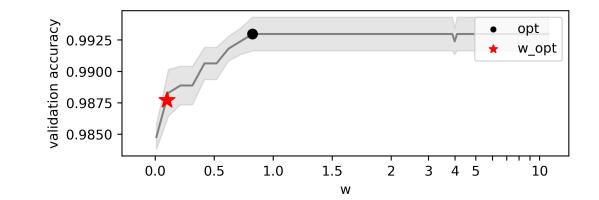
• To measure the performance of the method, we conducted 5-fold cross-validation of a Logistic Regression classifier

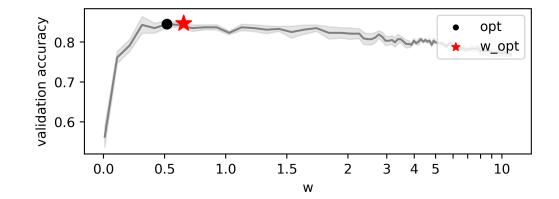


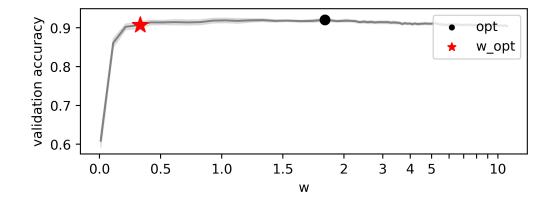


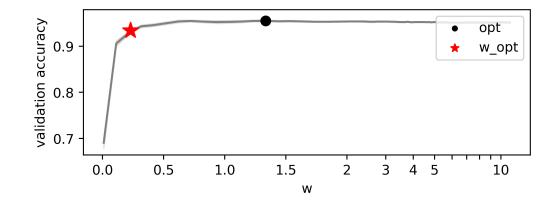


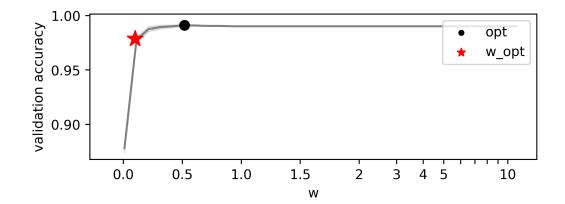












# **Table of contents**

- > Challenges
- Examples of projects
- > Methodology
- Anomaly Detection
- Imbalanced Classification
- Generalization Bounds for Imbalanced Classification
- One-Class SVM
- > Kernels

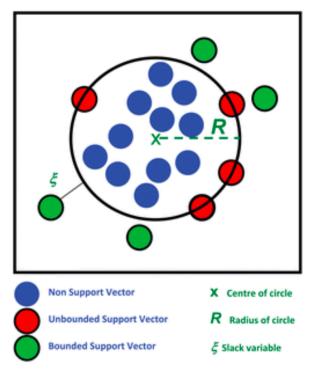
- Let  $S = {\mathbf{x}_1, \dots, \mathbf{x}_m}, \mathbf{x}_i \in \mathbb{R}^p$  be an unlabeled sample (possibly containing some anomalies)
- ${\ensuremath{\, \bullet }}$  We want to learn  $f: {\ensuremath{\mathbf x}} \to \{-1,1\}$  using the sample

$$\mathbf{x} = \begin{cases} \text{normal, if } f(\mathbf{x}) = +1, \\ \text{anomaly, if } f(\mathbf{x}) = -1, \end{cases}$$

Support Vector Data Description

$$R + \frac{1}{m\nu} \sum_{i=1}^{m} \xi_i \to \min_{R,a,\xi}$$
  
s.t.  $\|\phi(\mathbf{x}_i) - a\|_2^2 \le R + \xi_i$   
 $\xi_i \ge 0$   
 $R \ge 0$ 

- $\nu$  is an upper bound on the fraction of anomalous patterns in the sample S
- $\phi(\mathbf{x}_i)$  is the mapping to a high dimensional space



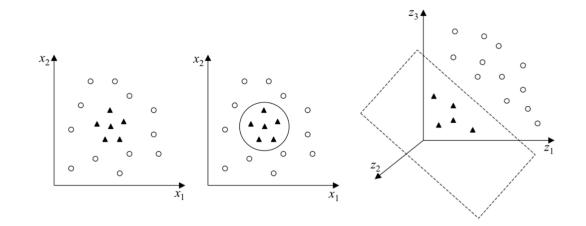
We consider the dual problem

$$\sum_{i=1}^{m} \alpha_i \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_i) - \sum_{i,j=1}^{m} \alpha_i \alpha_j \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) \to \max_{\alpha}$$
$$s.t. \quad \sum_{i=1}^{m} \alpha_i = 1$$
$$0 \leq \alpha_i \leq \frac{1}{m\nu}, \quad i = 1, \dots, m$$

We don't need to use explicit expression for  $\phi(\cdot)$ , we need only a definition of a dot product. We can use a kernel trick

$$K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$

#### Kernel Trick. Kernel Examples



For 
$$\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$$
, let  $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$ . Then  
 $K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$   
 $= x_1^2(x_1')^2 + 2x_1x_2x_1'x_2' + x_2^2(x_2')^2 = (x_1x_1' + x_2x_2')^2 = (\mathbf{x} \cdot \mathbf{x}')^2$ 

| Name       | Equation                     | hyperparameters        |
|------------|------------------------------|------------------------|
| Linear     | $x \cdot y$                  | —                      |
| Polynomial | $(\sigma^2 x \cdot y + d)^k$ | $\sigma^2$ , $d$ , $k$ |
| RBF        | $\exp(-\sigma^2 \ x-y\ ^2)$  | $\sigma^2$             |
| Sigmoid    | $	anh(\sigma x \cdot y + d)$ | $\sigma>0$ , $d>0$     |

• We can write out the solution of the primal problem using the solution of the dual problem

$$a = \sum_{i=1}^{m} \alpha_i \phi(\mathbf{x}_i), \quad R = \|\phi(\mathbf{x}_j)\|_2^2 - 2(a \cdot \phi(\mathbf{x}_j)) + \|a\|_2^2,$$

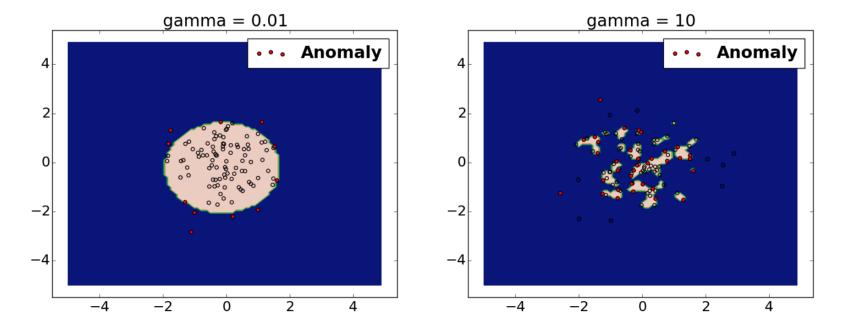
where we can use any  $\mathbf{x}_j$ , such that  $\alpha_j > 0$ 

• Here 
$$\|\phi(\mathbf{x})\|_2^2 = K(\mathbf{x}, \mathbf{x})$$
,  $(\phi(\mathbf{x}) \cdot a) = \sum_{i=1}^m \alpha_i K(\mathbf{x}_i, \mathbf{x})$  and  $\|a\|_2^2 = \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$ 

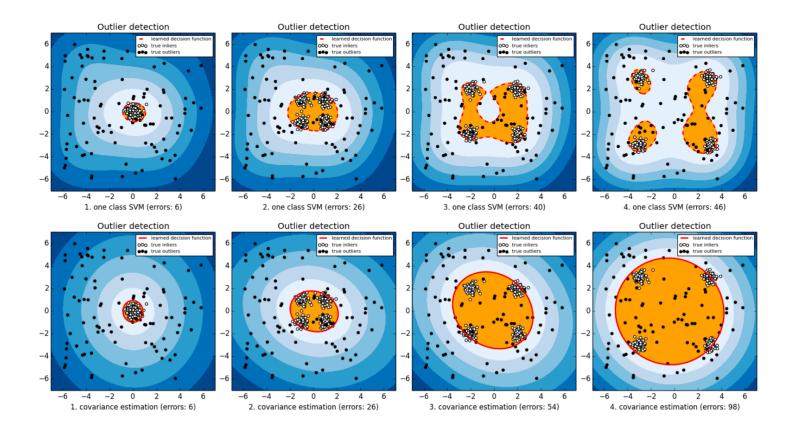
• The **decision function** has the form

$$f(\mathbf{x}) = \operatorname{sign} \left\{ R - K(\mathbf{x}, \mathbf{x}) + 2 \sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i) - \|a\|_2^2 \right\}.$$

#### Results can significantly depended on a kernel hyperparameters



#### Example of the decision function



1. Supervised Learning

• Sample 
$$S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$$

• We want to learn  $f: \mathbf{x} \to y$  using the sample S

- 2. Supervised Learning with Privileged Information (Vapnik, 2009)
  - Sample  $S^* = \{(\mathbf{x}_1, \mathbf{x}_1^*, y_1), \dots, (\mathbf{x}_m, \mathbf{x}_m^*, y_m)\}$
  - We want to learn  $f: \mathbf{x} \to y$  using the sample  $S^*$
  - Privileged Information:
    - in the form of additional patterns  $\mathbf{x}^{\ast}$
    - is not available at the test time
  - Example:
    - image classification problem
    - as the privileged information we can use a textual image description
    - such information is not available during the test phase

- Original patterns  $(\mathbf{x}_1, \dots, \mathbf{x}_m) \subset \mathbb{R}^p$
- Additional patterns  $(\mathbf{x}_1^*,\ldots,\mathbf{x}_m^*) \subset \mathbb{R}^q$
- We train a decision rule on pairs of patterns  $\{(\mathbf{x}_i, \mathbf{x}_i^*)\}_{i=1}^m \in \mathbb{R}^{p+q}$ , but when making decisions we can use only test patterns  $\mathbf{x} \in \mathbb{R}^p$

$$R + \frac{1}{m\nu} \sum_{i=1}^{m} \xi_i \to \min_{R,a,\xi}$$
  
s.t.  $\|\phi(\mathbf{x}_i) - a\|_2^2 \leqslant R + \boldsymbol{\xi}_i$   
 $\xi_i \ge 0$   
 $R \ge 0$ 

- The slack variables  $\xi_i$  characterizes the distance from the patterns  $\mathbf{x}_i$  to the separating boundary  $\|\phi(\mathbf{x}_i) a\|_2$
- We assume that using the privileged patterns  $(\mathbf{x}_1^*, \dots, \mathbf{x}_m^*)$  we can refine the location of the separating boundary
- We model a slack variable  $\xi$  as

$$\xi = \xi(\mathbf{x}^*) = (\phi^*(\mathbf{x}^*) \cdot w^*) + b^*,$$

where  $\phi^*(\cdot)$  is a feature map in the space of privileged patterns

We incorporate the privileged information

$$\begin{split} \nu m R + \frac{\gamma}{2} \|w^*\|_2^2 \\ + \sum_{i=1}^m \left[ (w^* \cdot \phi^*(\mathbf{x}_i^*)) + b^* + \zeta_i \right] &\to \min_{R, a, w^*, b, \zeta} \\ s.t. \, \|\phi(\mathbf{x}_i) - a\|_2^2 &\leq R + \left[ (w \cdot \phi^*(\mathbf{x}_i^*)) + b^* \right], \\ & (w^* \cdot \phi^*(\mathbf{x}_i^*)) + b^* + \zeta_i \geq 0, \, \zeta_i \geq 0. \end{split}$$

Let us formulate the dual problem:

$$\sum_{i=1}^{m} \alpha_i K(\mathbf{x}_i, \mathbf{x}_i) - \frac{1}{2\nu m} \sum_{i,j} \alpha_i \alpha_j K(\mathbf{x}_i, \mathbf{x}_j)$$
$$- \sum_{i,j} \frac{1}{2\gamma} (\alpha_i - \delta_i) K^*(\mathbf{x}_i^*, \mathbf{x}_j^*) (\alpha_j - \delta_j) \to \max_{\alpha, \delta}$$
$$s.t. \quad \sum_{i=1}^{m} \alpha_i = \nu m, \ \sum_{i=1}^{m} \delta_i = \nu m, \ 0 \le \delta_i \le 1, \ \alpha_i \ge 0.$$

The decision function has again the same form

$$f(\mathbf{x}) = \operatorname{sign}\left\{R - K(\mathbf{x}, \mathbf{x}) + 2\sum_{i=1}^{m} \alpha_i K(\mathbf{x}, \mathbf{x}_i) - \|a\|_2^2\right\}$$

## **KDD-99 Challenge**

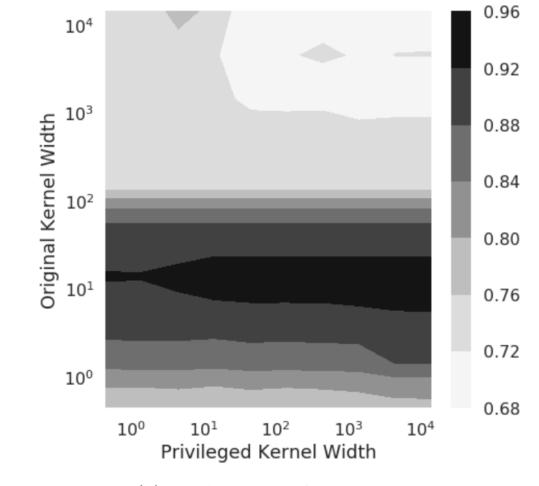
Every data sample describes TCP connection as a 41-feature vector labeled as either normal or an attack, with exactly one specific attack type

There are three types of features in this dataset:

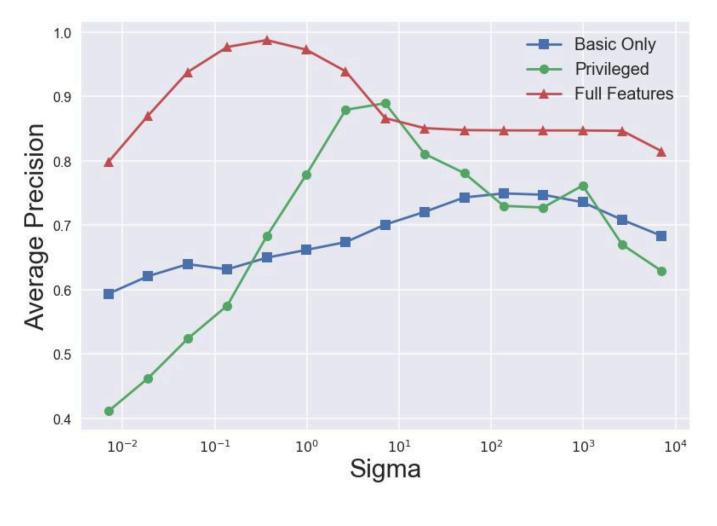
- 1. The first type is generated directly from TCP dump: the type of the protocol, number of fragments sent, destination network service, etc.
- 2. The features of the second type are proposed by domain experts.
- 3. The features of the third type are based on the connection history in a 2-second time window.

We test

- OC-SVM using all features,
- OC-SVM using only features of the first type, and
- OC-SVM+ with
  - o features of the first type being original information and
  - $\circ$  the second and third types as privileged information.



(a) Performance On Test Data



Other hyperparameters are optimized using a grid search, in all experiments v = 0.1

# **Table of contents**

- > Challenges
- Examples of projects
- > Methodology
- Anomaly Detection
- Imbalanced Classification
- Generalization Bounds for Imbalanced Classification
- One-Class SVM
- Kernels

## Kernels [1]

Let k(x, x') be a kernel that can be represented as

Kernel ridge regression has the form

$$f^*(x) = \mathbf{k}^{\top}(x) \left(\mathbf{K} + \lambda \mathbf{I}\right)^{-1} \mathbf{y}$$

where

$$\mathbf{y} = (y_1, \dots, y_n)^\top$$
  

$$\mathbf{k}(x) = (k(x, x_1), \dots, k(x, x_n))$$
  

$$\mathbf{K} = \{k(x_i, x_j)\}$$

Complexity:  $O(n^3)$ 

### **Kernels: Quadrature approximation**

We assume that

$$k(x, x') = \int_{\Omega} \underbrace{\psi(\mathbf{w}, x)\psi(\mathbf{w}, x')}_{f_{xx'}(\mathbf{w})} p(\mathbf{w}) d\mathbf{w}$$

with  $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0,\sigma_p^2\mathbf{I})$ 

Then we can find D -dim features, s.t.

$$k(x, x') \approx \frac{1}{D} \sum_{i=1}^{D} \psi(\mathbf{w}_i, x) \psi(\mathbf{w}_i, x'), \ \mathbf{w}_i \sim p(\mathbf{w})$$
$$k(x, x') \approx \hat{k}(x, x') = \langle \phi(x), \phi(x') \rangle$$
$$Complexity: \ O(nD^2)$$

### **Kernels: approximation accuracy**

Theorem: Let  

$$\begin{array}{l} \geqslant l = \operatorname{diam}(\mathcal{X}) \\ \geqslant |\phi(\mathbf{w}^{\top}x)| \leq \kappa, |\phi'(\mathbf{w}^{\top}x)| \leq \mu \quad \forall x \in \mathcal{X}, \, \mathbf{w} \in \Omega \\ \geqslant (1 - f_{xx'}(\rho z))/\rho^2 \leq M \, \forall \rho \in [0, \infty) \text{ an} \\ z : zz^{\top} = 1 \qquad \qquad \mathsf{d} \end{array}$$

Then

$$\mathbb{P}\left(\sup_{x,x'\in\mathcal{X}}|\hat{k}(x,x')-k(x,x')| \ge \varepsilon\right) \le \beta_d \left(\frac{\sigma_p l\kappa\mu}{\varepsilon}\right)^{\frac{2d}{d+1}} \exp\left(-\frac{D\varepsilon^2}{8M^2(d+1)}\right)$$
with  $\beta_d = \left(d^{\frac{-d}{d+1}} + d^{\frac{1}{d+1}}\right) 2^{\frac{6d+1}{d+1}} \left(\frac{d}{d+1}\right)^{\frac{d}{d+1}}$ 

We guarantee approximation error  $\varepsilon$  with probability  $1 - \delta$  if

$$D \geq \frac{8M^2(d+1)}{\varepsilon^2} \left[ \frac{2}{1+\frac{1}{d}} \log \frac{\sigma_p l \kappa \mu}{\varepsilon} + \log \frac{\beta_d}{\delta} \right]$$

### **Kernels: approximation accuracy**

Corollary: Let

- $\succ f^*(x)$  be a KRR with regularization  $\lambda = \lambda_0 n$
- $\succ \hat{f}(x)$  be the same KRR with  $\hat{k}(x,x')$

$$\succ \sum_{i=1}^{n} y_i = 0, \ \|\mathbf{k}(x)\|_{\infty} \le \kappa, \ \sigma_y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2$$

Then

$$|\hat{f}(\mathbf{x}) - f^*(\mathbf{x})| \le \varepsilon$$

with probability  $1-\delta$  if

$$D \ge 8M^2(d+1)\sigma_y^2 \left(\frac{\lambda_0+1}{\lambda_0^2\varepsilon}\right)^2 \left[\frac{2}{1+\frac{1}{d}}\log\frac{\sigma_y\sigma_p l\kappa\mu(\lambda_0+1)}{\lambda_0^2\varepsilon} + \log\frac{\beta_d}{\delta}\right]$$

# **Thanks for attention**

#### **Some References**

- 1. M. Munkhoeva, E. Kapushev, E. Burnaev, I. Oseledets. Quadrature based features for kernel approximation. Proceedings of NIPS, Spotlight talk, 2018
- 2. E. Burnaev, P. Erofeev, A. Papanov. Influence of Resampling on Accuracy of Imbalanced Classification. ICMV, 2015
- 3. D. Smolyakov, A. Korotin, P. Erofeev, A. Papanov, E. Burnaev. Meta-learning for resampling recommendation systems, ICMV, 2019
- 4. Evgeny Burnaev. Generalization Bound for Imbalanced Classification. Springer Proceedings in Mathematics & Statistics, 2021
- 5. E. Burnaev. Rare Failure Prediction via Event Matching for Aerospace Applications. Proceedings of the 3rd International Conference on Circuits, System and Simulation (ICCSS-2019), pp. 214-220, 2019
- 6. E. Burnaev. On construction of early warning systems for predictive maintenance in aerospace industry. Journal of communications technology and electronics, 2019, Vol. 64, No. 12, pp. 1473-1484
- 7. D. Smolyakov, N. Sviridenko, V. Ishimtsev, E. Burikov, E. Burnaev. Learning Ensembles of Anomaly Detectors on Synthetic Data. ISNN 2019: Advances in Neural Networks – ISNN, Springer, 2019 pp 292-306
- D. Smolyakov, N. Sviridenko, E. Burikov, E. Burnaev. Anomaly Pattern Recognition with Privileged Information for Sensor Fault Detection. 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, September 19–21, 2018, Springer LNCS Proceedings, Vol. 11081, pp. 320-332.
- Burnaev E, Smolyakov D. One-Class SVM with Privileged Information and Its Application to Malware Detection // 16th International Conference on Data Mining Workshops (ICDMW), IEEE Conference Publications, pp. 273 - 280, 2016. DOI: 10.1109/ICDMW.2016.0046
- 10.E. Burnaev, P. Erofeev, D. Smolyakov. Model Selection for Anomaly Detection // Proc. SPIE 9875, Eighth International Conference on Machine Vision, 987525 (December 8, 2015); 5 P. doi:10.1117/12.2228794; http://dx.doi.org/10.1117/12.2228794