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What data are already being collected [6]

Heat & power plant - 10”3 observations/ms

Rolled metal production - 10”4 observations/ms

Modern aircraft — up to 0.5 Tb for one flight

= Lessthan 1% of data is used, most of the data is not stored and
used

= The next generation of Pratt & Whitney engines will produce up
to 10 Gb/sec

Self-driving Google car - up to 1 Gb/sec

= Formula-1 car - 1.2 Gb/sec



PHM concept

Exploitation

Years/months Months Weeks Days
Optimal condition Vibrations ! Signs of Decrease of Noise  Overheating Failure (repair or a full
wear main KPls - replacement)
: ® ° ;
Intelpge_nt First detection Corrective : Failure is prevented
Monitoring and of a degradation Maintenance
Predictive

Maintenance

Other approaches to ‘ Scheduled Maintenance. Collected data is not used * Emergency Repair
Maintenance

PHM = New service models



Selection of Maintenance Strategy

= Often when selecting a strategy it is necessary to optimize
multiple targets

= Data Analytics can help to balance the “contradicting”
targets
@1 2 G

When performing technical maintenance it is necessary to
= |ncrease the availability of an aircraft

Reduce maintenance costs

n
=  Minimize a number of operational interruptions
= |ncrease safety



Intelligent Maintenance System

Specific for a lifecycle
management system

Decision Making

Visualization
and Decision
Making
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Recommendations
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Intelligent Maintenance System

Decision Making
Recommendations

System
operator

Our
competences

Cloud Data
Storage

Construction of
models for Anomaly
Detection and Failure
Prediction

Online Data Transmission Data Transmissnon Channel
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Aircraft Engine Cooling System

o Objective: optimize maintenance of —— -
the cooling system | 22 Mo | J
o Subtasks: :“’“‘fﬂ# ""‘-..\
— Determine whether a current ;S \“\ 'ﬁ‘.\
refrigerant level is critical o \
— Quick leakage detection T ™ | —
— Prediction of time until achieving a : T rienes -
critical level
o Data:
— Time-series of levels of refrigerant
. — 17 aircrafts, ~ 400 flights of each
;e + Results:
: = — False positive rate is < 1%
’ B — Rate of correct detection is > 99%

Flights

— Average error of prediction before
10 flights until achieving a critical
level is < 1 flight

In collaboration with Datadvance llc.



Auxiliary Power Unit Failures [5, 6]

U Problem:

v Input: multidimensional telemetry data
(high/low pressure turbine rotor speed and
vibration; burner pressure, exhaust, fuel and
oil feed, etc.)

v" Output: events (APU failures)

O Data: 3 years, ~400 flights per year of telemetry and
observed failures for 30 aircrafts, 400+ parameters

O Objective: predict future failures with low false alarms

O Challenges:
v' Heterogeneous data and noise,
v Large volumes of high-dimensional data,
v" Imbalanced learning data sample (events are
rare)

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
ggggggggggg

Preciciv ol rsul.

o Threshoid
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Auxiliary Power Unit Failures [5,6]

O Solution and results:
v" Anomaly Detection and Early
warnings about some types of failures
v" High coverage rates (detected
failures)
v" Low False Alarms (for ~9 accurately

predicted failures we get ~1 false
alarm)




Power Losses in Thermal Power Plant

o Objective:
1. Detect Power Losses in the system
2. Localize origins of power losses -
o Subtasks:
— Construct a model of a system in

normal regime
— Model sensitivity analysis w.r.t. a

change in a system behavior
(potential failures)

o Data: 200+ dimensional time-series,

',W VV‘ one-observation per 10 min.
) ' SR o Results:
Fi

— Detection of power losses in the
system

— Localization of the power losses
origins

— Results were confirmed by experts

§ i - e R 4 j
ol “ll‘ 'L;. 13 “ ‘ *‘
0 5000 10000 15000 20000 25000 30000 35000 40000
Bpemn

In collaboration with Datadvance llc.
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Challenges

o Multistream /multichannel scenarios with unstructured
hypotheses/patterns

o High-dimensionality and Large data volumes
o Composite hypotheses

o Stochastic models with non-stationary and dependent observations
of a very general structure

o Prior uncertainty with respect to pre- and post-change distributions
o Parametric assumptions are inefficient

o Imbalanced learning samples



Methodology (macro-steps) [5,6]

1. Subsystems ldentification:

Identification of groups of
dependent parameters,
corresponding to different
subsystems

2. Anomaly Detection:
Detection of Anomalies
based on Manifold Learning
for identified subsystems

3. Events Matching:
Statistical techniques to
identify best anomalies
preceding warnings (and
not happening anywhere
else)

anomalies
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(b) Clustered correlation matrix (correlation threshold 0.5).

4. Validation:

Apply anomalies
detection logics in a
new airplane (left apart)
to calculate the

prediction
[ | |



Methods. Anomaly Detection

coggle

Time Series Prediction

ARIMA
Kendall Tau
Pearson Correlation Dependency Estimation
Spearman Correlation System Decomposition
Distance Correlation

Agglomerative aggaet®r Clustering
Max Modularity

LOF
SVM
SVDD
PCA based

Elliptic Curves

Anomaly Detectig

LLE o P .
Dimensionality reduction

(Feature Extraction)

Isomap

Anomaly
Detection

Ensembles (.
AdaBoost

QDA

Gradient Boosting

LDA

Decision Trees

Logistic Regressiga

Classification

Logistic Regression (L1 penalty)

Recursive Feature Elimination

Imbalanced
Classification

Tree Scores

Univariate Statistics
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Hadlum vs. Hadlum (1949) [Barnett, 1978]

Percentage (n=13,634)

s . RARTRE T TS0 Week

Distribution of human gestation periods.

o The birth of a child to Mrs. Hadlum
happened 349 days after Mr. Hadlum
left for military service

o Average human pregnancy period is
280 days (40 weeks)

o Statistically, 349 days is an outlier



Definition of anomaly [Howkins, 1980]

“An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different
mechanism”

In real world problems definition of anomaly depends on its context



Anomaly taxonomy: Point Anomalies

o An individual data instance is anomalous w.r.t. the data
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Anomaly taxonomy: Contextual Anomalies

e An individual data instance is anomalous within a context
o Requires a notion of context
o Also referred to as conditional anomalies

Monthly Temperatures in Cardiff
[ [

25,’ i (o T T —

Maximum Temperature

— L] L I— ] ) L}
2010 2011 2012 2013 2014 2015 2016
Years



Anomaly taxonomy: Causal Anomalies

o A collection of related data instances is anomalous
o Requires a relationship among data instances

— Sequential Data

— Spatial Data
— Graph Data

o The individual instances within a set of causal anomalies are not
anomalous by themselves

Anomalous Subsequence




Anomaly taxonomy

Point .
anomalies Anomalies Causal
anomalies

’

Classification based

Model based / Contextual Graphical models

anomalies

Density based

Temporal models

Change point detection

Domai ifi
Topic of todays mén Specitic

talk [7]
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Introduction

o Between-class imbalance (relative imbalance)

o Relative imbalance vs. imbalance due to rare instances or “absolute
rarity”

— Within class imbalance
o Data complexity vs. imbalanced data vs. small sample size

,A: General Majority Class
7 Concept

,B: General Minority Class
g Concept

C: Minority Class
-7 Subconcept

_-D: Majority Class
Subconcept




Introduction

o Binary classification: often dataset has “natural’ imbalance

o Minor class (of prime interest) vs. major class: e.g.
classification of “cancerous” vs. “healthy’ mammography image

o Standard classifiers (SVM, kNN, log. reg., etc.): classes are
equally important = results are biased towards the major class

o Poor prediction of minor class while the average quality can be
good:

— target events occurs in 1% of all cases

— classifier always gives a ‘no-event’ answer
— it is wrong just 1% of all cases




o Approaches to increase importance of the minor class:

Adapt a probability threshold for classifiers,

— Modify a loss function, e.g., by assigning more weight to the
minor class error,
Resample a dataset in order to soften or remove class imbalance

o We focus on resampling: allows to use standard classifiers



Notations and Problem Statement

o Dataset Sy, = {(x;,;)}™,, where x; € RN, y; € {-1,+1}

o C11(Sm) = {(xi,¥:) € Sm | yi = +1} is a major class,

o C_1(Sm) = {(xi,¥:) € S | yi = —1} is a minor class, i.e.
[Cr1(Sm)| > |C1(5m)|

o Imbalance ratio IR(S,,) = Ig‘ig:g} IR(S,) <1




Learning a classifier

o Learn a classifier using imbalanced training sample .S,,,,
o The dataset .S, is resampled using a method 7:

— some observations in S, are dropped, or
— some new synthetic observations are added to S,,

o The result of resampling is a dataset r(.S,,) with
IR(r(Sy)) > IR(Sp),

o Standard classification model f is learned on r(S,,) to
construct a classifier f,(s ):R* — {-1,+1}



Overview of Resampling Methods

Resampling method r:
@ Takes input:
o dataset S,,;

o resampling multiplier m > 1 for resulting imbalance ratio
IR(r(Spm)) = m - IR(Sn);
o additional parameters, specific for the method

@ Add synthesized objects to the minor class (oversampling), or
drop objects from the major class (undersampling), or both

@ Outputs resampled dataset r(S,,,) with imbalance ratio
IR(r(Sy)) = m - IR(Sy)




Random Oversampling (ROS)

o ROS, also known as bootstrap oversampling
o No additional input parameters
It adds to the minor class new (m — 1)|C_1(Sy,)| objects

()

©

Each of objects is drawn from uniform distribution on C_1(Sy,)



Random Undersampling (RUS)

o No additional input parameters

o It chooses random subset of C1(S,,) with |C1(Sy,)| 2L
elements and drops it from the dataset

o All subsets of C1(S,,) have equal probabilities to be chosen



Synthetic Minority Oversampling Technique (SMOTE)

>
fq

f2

O 5 9
00 O Y005 o ©O
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Setup of Experiments

o For each (artificial /real) dataset we varied classifier model,
resampling method and multiplier

o We used Bootstrap, RUS and SMOTE with £ =5
o We varied resampling multiplier m from 1.25 to 10.0

o We used Decision Trees, k-Nearest Neighbors, and Logistic
Regression with ¢; regularization

o CV to select classifier parameters

o Resampling multiplier selection:

— The equalizing strategy
— CV-search



Dolan-More Curves

o {ry,...,rn} — the set of considered methods (e.g. resampling
methods)

o {S1,...57} — the set of tasks (datasets),
o qt; — the quality of the method 7 on the dataset ¢,

o p;(B) is a fraction of tasks, on which the method 7 is worse
than the best one not more than § times:

1 1

pi(B) = = |{t Qi 2> —m?X(Itz‘} , B=>1

T B




Results for Decision Trees classifier

1.0
Classifier:
s 0.8 decision tree
IS
k]
4 0.6 -+= No resample
£ — ROS,CVS
“i 0.4 — RUS, CVS
2 — SMOTE, CVS
Q
£ 02 --- ROS, EqS
R --- RUS, EqS
e real data PP = g artificial data .-
0.0 E . . , ] e , . . : | SMOTE, EqS
1.00 1.02 1.04 1.06 1.08 1.10 1.00 1.05 1.10 1.15 1.20 1.25 1.30
ﬂ:Qbest/Q ﬁszest/Q

Figure — Dolan-More curves for metric QgXC



Results for k-NN classifier

fraction of datasets p(3)

—
(=}
T

o
o0

0.6 |

Classifier:
k-NN

No resample

— ROS, CVS

0.4 F — RUS, CVS
— SMOTE, CVS

02 --- ROS, EqS

i . --- RUS, EqS
00k = . . . real data | .‘_._':.""l . . ‘ artiﬁci.al data | |--- SMOTE, Egs

1.00 1.02 1.04 1.06 1.08 1.10 1.00 1.05 1.10 1.15 1.20 1.25 1.30
B :chst/Q B :Qbest/Q

Figure — Dolan-More curves for metric Qggc




Results for [1-logistic regression

T e e s—_— N e ——— e S 5
I RPEEL Classifier:
ol = R 7 ¢, log. regression
5 08 SRR 1 108 Ieg
= -_v_{:_ ______ “a —_____,_,r.-
g 0.6 chmmmns - ’ ’-_/“" 1| - - Noresample
S Pt — ROS,CVS
° 04 ' — RUS,CVS
5 — SMOTE, CVS
< B
£ 02 F40 --- ROS,EqS
--- RUS, EqS
ool real data artificial data --- SMOTE, EqS
1.00 1.02 1.04 1.06 1.08 1.10 . 1.15 1.20 1.25 1.30
ﬂ:Qbesf/Q ﬂ:Qbest/Q

Figure — Dolan-More curves for metric QICD’EC



Value of metric

Classifier:
decision tree

— ROS

— RUS

— SMOTE

== No resample

0.65 L— - l : ' '
0.5 1.0 1.5 2.0 2.5 3.0

Resulting imbalance ratio

Figure — Value of Q§¥ vs. resulting value of IR for dataset “Delft pump 1x3”




Comments [2,3]

Influence of resampling on the quality strongly depends on
resampling multiplier

©

o Resampling with CV-search of multiplier provides better results,
especially for Decision trees and Logistic regression

The equalizing strategy (EqS) shows much lower quality,
especially in case of k-NN and Logistic regression

©

o Performance of resampling depends on classifier used
o There is no method that would always outperform the others
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Motivation u X(U) Y

We consider a binary classification problem @
statement .

The problem is possibly imbalanced (typical for applications).
E.g. we should detect cancer/no-cancer using MRI. The
number of cases with cancer (minor class) is small

Person
Bird

The main goal of the imbalanced classification is to accurately detect a minor class

However, standard classification approaches (logistic regression, SVM, etc.) treat
all classes as equally important

As a consequence the resulting classification model is biased towards the major
class. E.g., if we predict an event occurring in just 1% of all cases and the
classification model always gives a “no-event” answer, then it is wrong in just 1% of all
cases



Outline

To deal with possible class imbalance when constructing a classifier we use a weighted
error (risk) to stress the most important class (accurate detection is needed!)

How to select an appropriate weight value to up-weight a minor class?

We obtain a generalization bound for a weighted binary classification and
estimate an optimal weight

Results of computational experiments demonstrate usefulness of the obtained estimate



Related works
There exist results in classification performance with a weighted loss

E.g. in [1] a bayesian framework for imbalanced classification with a weighted
risk is proposed,

[2] investigated the calibration of asymmetric surrogate losses,
[3] considered the case of cost-sensitive learning with noisy labels.

However, to the best of our knowledge, there is no studied upper bound for the
excess risk with explicit dependence on the class imbalance 7T and the
weighting scheme U that quantifies the influence on the overall classification
performance

[1] G. Dupret and M. Koda, “Bootstrap re-sampling for unbalanced data in supervised learning,” European Journal of
Operational Research, 2001.

[2] C. Scott, “Calibrated asymmetric surrogate losses,” Electron. J. Statist.,2012.

[3] N. Natarajan, I. S. Dhillon, and et al., “Cost-sensitive learning with noisy labels,” JMLR, 2018.



Some useful definitions

Definition: Empirical Rademacher complexity

(G - some family of functions from Z to [CL, b]
S = (Zl, c oo Zm) - fixed sample

Rs(G) =E |sup Zazg 2;)

gEG m

where o — (0‘1, c ooy O'm)T - Rademacher variables



Some useful definitions

Definition: Rademacher complexity

D -some distributionon

Rm(G) = Sw%m[ﬁs((;)]'

Theorem. Generalization bounds based on Rademacher complexity

Let G be a family of functions mapping from Z to [0,1]. Then, for any 6 > 0, with
probability at least 1 — &, each of the following holds for all g € G:

Blg(2)] < -3 g(z0) + 2R (C) + ] et
1 — ~ log 2
and E[g(z)] < — Zg(zi) + 2R5(G) + 3 o)

1=1



Problem statement

Person
Bird

T € X -input (feature) space
Y = {—1, —I—l} - output (label) space

F C yX - a class of binary classifiers. E.g.
F=Afor: for(x)=20({a,z)+b>0)—1}

[P - unknown distributonon X X Y

7t - prior probability of a positive class, i.e.

IP) — 7TIP>$|y=_|_1 + (]. — ﬂ-)]P)a:|y=—l



Problem statement

D = {(xz,yz) ,fil - is a training sample, I; € X, Y; € ;)7

RN (]:) - is a Rademacher complexity of F

L(Q, y) = ]Ig?gy - is a zero-one loss function

u : (X X y) —> (O, —I—OO) - some (fixed) weighting function



Problem statement

Theoretical risk

]EIP’L(f(x)7 y)

Optimal classifier

* — are min EpL :
f 2 min Ep (f(x),y)



Problem statement
Empirical risk:

]Epu(a: y)L Zu(xzayz )7%’)

Empirical classifier

f= alg;}élg_EDu(x y)L(f (), y)



Problem statement

We would like to derive an upper bound for the excess risk:

A(F,P) = sup (EpL(f(z),y) — Epu(z,y)L(f(z),v))

The excess risk characterizes a generalization ability of the classifier

My A classifier with lower excess risk

A classifier with higher excess risk



Generalization bound

To derive explicit expressions we use an additional assumption

uw(@,y) = (1+ g4+ (w)y=1+13 + (1 + g-(w)) Lyy=—13
for some positive weighting functions g4 (’UJ) and §_— (w)

Theorem [4]: With probability 1 — 8, § > 0 for D ~ PV the excess risk A(F,P)
18 upper bounded by

A(w) =3 (g4+(w)m + g—(w)(1 = 7)) + RN (F) + 2+ g4+ (w) + g-(w)) o,

—1
where oy = 4/ 10%]{, .




Generalization bound: optimal weight selection (l)

So, the upper bound on the excess risk is equal to

A(w) =3 (g+(w)m + g—(w)(1 = 7)) + RN (F) + (2 + g+ (w) + g-(w)) oy

By collecting the terms with W in Z(w) we get
g+(w) B + an) +g-(w) 3(1 —m) + an)

Weset gy(w)=w and g_(w)=1/w

The optimal weight

w* = \/3(1_7’)+0‘N ~ /1= where ay ~ 0 for N > 1

ITrt+an T



Generalization bound: optimal weight selection (ll)

Finally:
. We weight examples from the positive class with a weight | —+ w

«  We weight examples from the negative class with a weight l -+ l/w

The optimal weight to minimize the upper bound of the excess risk is equal to

w*% 1—_71‘
T

For such optimal weight value the upper bound of the excess risk is equal to
A" =6y/m(1 —7) + Ry (F) + an (2 +[n(1—m)]"

Therefore, in imbalanced case (m =~ Qormm =~ 1) for N > 1 and

“standard functions classes” we get that

N

)

—k

A =0



Empirical evaluation

We expect that for the optimal weight value a classifier achieve better accuracy
on the test when when being trained by minimizing the weighted empirical loss

Protocol of experiments:

« Consider different values of the weight W & {’wl ..... ’(UK’}

/ /

» Train a classifier fw (’U) by minimizing a weighted empirical loss

for a particular weight value W — W,

« Estimate accuracy on the test set and find the weight for which accuracy is the highest

« Compare the best obtained weight with the theoretical weight calculated using the

formula  w*~ 4/ 1_7“



2d toy problems

Results
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Results: 2d toy problems

0.98 -

validation accuracy

0.88 1

test 9: positive share 33%

0.96 -

0.94 ~1

0.92 1

0.90 A1

* wopt

.

10 +

=10 1

15




Results: real-world problems

Datasets were taken from Penn Machine Learning Benchmarks repository:
we selected diabetes, german, waveform-40, satimage, splice, spambase,
hypothyroid, and mushroom, that have various types of data and features

To obtain a specific balance between classes in experiments, we used
undersampling of an excess class. Using this method, we varied the positive class
share among the following values: 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99

To measure the performance of the method, we conducted 5-fold
cross-validation of a Logistic Regression classifier



Results: real-world problems

validation accuracy

waveform 40 p10

e opt
0.90 - x w_opt
0.88 -
0.86
0.84 -
0.0 0.5 1.0 1.5 10




Results: real-world problems

waveform 40 p30

5 0.85 - e opt

5 * w_opt

O

2 0.80 -

C

o

% 0.75

°

S

> 0-70 T T T T T T T T T T T T T
0.0 0.5 1.0 1.5 2 3 4 5 10



Results: real-world problems

waveform 40 p70

o e opt
£ t
2 0.9 * WwW_op
O
@©
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Results: real-world problems

waveform 40 p95

g ® e opt
5 * w_opt
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Results: real-world problems

waveform 40 p99

>
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Problem Formulation

o Let S ={x1,...,Xm},X; € RP be an unlabeled sample (possibly
containing some anomalies)

o We want to learn f : x — {—1, 1} using the sample

. normal, if f(x) = +1,
| anomaly, if f(x) = -1,



Support Vector Data Description

st. |p(x:) —alls < R+¢&

& >0
R>0

e v is an upper bound on the fraction ®

of anomalous patterns in the sample
S

Non Support Vector X Centre of circle

Unbounded Support Vector R Radius of circle

o ¢(x;) is the mapping to a high
dimensional space

Bounded Support Vector Lf Slack variable




Dual Problem

We consider the dual problem

Zai¢(xi) - (x4) — Z aijp(xi) - ¢(x;) — max

i,j=1
m
s.t. Zai =1
i=1
1

Oéaié—, ’i=1,...,m
mv

We don’t need to use explicit expression for ¢(-), we need only a
definition of a dot product. We can use a kernel trick

K(x,x') = ¢(x) - $(x')



Kernel Trick. Kernel Examples

ZyA
© o
o
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o o o o °© o
o
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A, A a4 o
o o o o A
A A >
° o o o o o “1
© o ° o -
> >
Xl .\'I

For x = (z1,2) € R?, let ¢(x) = (2%, V22122, 23) € R3. Then
K(x,x') = ¢(x) - ¢(x)

= 27(21)? + 2z 2z s + 25 (25)? = (z12) + zaxh)? = (x - X)?

Name Equation hyperparameters
Linear Ty —
Polynomial (02:1: Yy + d)k o2, d, k
RBF exp(—ao? |z — y||?) o’
Sigmoid tanh(oz - y + d) oc>0,d>0




Solution of the primal problem

o We can write out the solution of the primal problem using the
solution of the dual problem

a= Za@(xz'), R = [(;)lz — 2(a- 6(x;)) + llallz,

where we can use any x;, such that a; > 0

o Here [|¢(x)|5 = K(x,%), (¢(x) -a) =1~ a;K(x;,%) and
lalls = >y D00t cia K (x4, %)

o The decision function has the form

f(x) = sign {R — K(x,x) + 2ZaiK(x,xi) — ||a,||§} :

1=1



Kernel Selection [10]

Results can significantly depended on a kernel hyperparameters

gamma = 0.01

_gamma = 10 |

Anomaly ||

Anomaly |




Example of the decision function

Outlier detection
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1. covariance estimation (errors: 6)
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2. covariance estimation (errors: 26)

Outlier detection

leamed decision function

Outlier detection
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3. covariance estimation (errors: 54)

Outlier detection

= leamed decision function

4. one class SVM (errors: 46)

Outlier detection

4. covariance estimation (errors: 98)



Supervised Learning

1. Supervised Learning

o Sample S = {(x1,%1),- -, (Xm,Ym)}
o We want to learn f: x — y using the sample S



Supervised Learning with Privileged Information

2. Supervised Learning with Privileged Information (Vapnik, 2009)

° Sample S* = {(Xlaxia y1)7 T (Xmax:naym)}
o We want to learn f: x — y using the sample S*
o Privileged Information:
— in the form of additional patterns x*
— is not available at the test time
o Example:
— image classification problem
— as the privileged information we can use a textual image
description
— such information is not available during the test phase



[8,9]

One-Class Classification with Privileged Information

o Original patterns (x1,...,X,) C R?
o Additional patterns (x7,...,x} ) C R?

o We train a decision rule on pairs of patterns {(x;,x})}™, € RPtq,
but when making decisions we can use only test patterns x € RP



Support Vector Data Description Analysis

1 m
R+ — . — min
mv ;& Rya.¢

st. [|¢(xi) —alls < R+ &
& =0
R>0

o The slack variables &; characterizes the distance from the patterns x;
to the separating boundary ||¢(x;) — al|2

o We assume that using the privileged patterns (x7,...,x}, ) we can
refine the location of the separating boundary

o We model a slack variable £ as
§=E(x%) = (¢"(x") - w™) + b7,

where ¢*(-) is a feature map in the space of privileged patterns



Support Vector Data Description with Privileged Information

We incorporate the privileged information

vmR + %Hw*”%

b* + ;| —
+Z w* - §*(xF)) + b* + ¢ R%nbc

s.t. ||¢(xz-) —al3 < R+ [(w-¢"(x])) + b,
(w - ¢%(x7)) + 0"+ ¢ 20, ¢ > 0.



Dual Problem

Let us formulate the dual problem:

1
E o; K (xi,%; ——E a0 K(x;,%;)
2vm
,J

—Z a; — 6;) K™ (x;,x})(a; — 6;) — max

a’
s.t. Zai =vm, Zc& =vm, 0<9; <1, a; > 0.
i=1 i=1
The decision function has again the same form

f(x) = sign {R — K(x,x) + 2ZaiK(x, X;) — ||a||g}

1=1



KDD-99 Challenge

Every data sample describes TCP connection as a 41-feature vector labeled as either
normal or an attack, with exactly one specific attack type

There are three types of features in this dataset:
1. The first type is generated directly from TCP dump: the type of the protocol,
number of fragments sent, destination network service, etc.

2. The features of the second type are proposed by domain experts.
3. The features of the third type are based on the connection history in a 2-second

time window.

We test
e OC-SVM using all features,
 OC-SVM using only features of the first type, and
 OC-SVM+ with
o features of the first type being original information and
o the second and third types as privileged information.
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Kernels [1]

Let k(ZB, CB/) be a kernel that can be represented as

Kernel ridge regression has the form
f*(@) =k (2) K+ D) 'y

where
>y = (Y1, Un
> k(z) = (k(z,z1),...,k(z,z5))
> K= {k‘(xwwj)}

)T

Complexity: O(nS)



Kernels: Quadrature approximation

We assume that
bla,2') = [ i, 2)ow, o) p(w)dow

fozr (W)

with p(w) = N(w|0,0,1T)

Then we can find D -dim features, s.t.

D
Z (Wi, 2) (Wi, 2'), Wi ~ p(w)

k(z,z") ~ @(w,w ) = (p(x), p(z))

Complexity: O(nD?)



Kernels: approximation accuracy

Theorem: Let
> | = diam(X)

> p(wTz)| <k, |¢(W'z)|<p VeeX,wel
> (1 — fear(p2))/p? < MVp € [0,00) an
212z =1 d
Then

P (sup, wrex [b(@,a) = k(z,2)] 2 ) < Ba (22) ™ exp (- 3By )

_d
with Bd = (dd_—fl -+ dd-lu) Qeddfll (ﬁ) d+1

We guarantee approximation error € with probability 1 — ¢ if

D > () [H_l log Z2"F lw —|-log ]

2



Kernels: approximation accuracy

Corollary: Let
> [*(z) be a KRR with regularization A = Agn

> f(z) be the same KRR with k(z,z’)
> Yy =0, [k@)lleo <k, 0f = 5 30, 47

Then )
f(x) = f*(x)| <e

with probability 1 — § if

2
D > 8M2(d+ 1)0_5 (A}c\)g—l;l) [Lﬁ% log ayaplf;;giko-i-l) + log %]



Thanks for attention
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