
Federico Carminati
ALICE

GDB, June 8, 2011

GLEXEC, JOBS AND
CATALOGUES

QUESTIONS

Security (actually rather should be authentication and authorisation):

gLExec. can we do this in a much simpler way by trusting the experiment frameworks?
What might simpler alternatives be?

What are the real needs for file access protection? What is really needed? What is the
simplest way to implement what is needed?

Input to the Identity Federation Workshop. Is the use of X509 currently an issue for the
experiments?

Job management:

Pilot jobs are (almost) ubiquitous now. What is left that still needs a WMS?

Can we simplify the needs for sites – I.e. reduce the complexity of a CE? Do we still need
to require the CE to pass parameters to the batch system? Don't your pilot frameworks do
all this anyway?

What is the intent with pilot factories? Will they be deployed at sites? If so, surely that
replaces the CE completely (apart from a trivial mechanism to launch the factory at a site).

GLEXEC@ALICE

The AliEn JobAgent was enabled to use gLExec

 Tests were successful (with manual user proxy delivery)

Open Issue

How to get user proxy from client to WN? (glEXec itself does not
provide any solution for this)

We see three original motivations to use gLExec:

Mutually isolate or jail the actual jobs on WN

Hence protect pilot (+ pilot proxy!) from actual job

Allow for on-site accounting, directly and without relying on the VO

First two points are solved by gLExec, but ...

GLEXEC OPEN ISSUES

If the VO (Central Services) stores and handles user proxies, it is liable in
case they are mixed up or stolen

Therefore no benefit in Accountability+Trust with respect to the
currently deployed scenario

Even worse, if an attacker gets hold of a user proxy from CS, this would
be the ideal identity theft

Using a key (stored and handled in the CS) and putting the user proxies on
the MyProxy Server is neither a solution. Who has the key, gets the proxy...

Finally, how should a user proxy proof that a certain user submitted the
actual job at hand?

This would be necessary for a meaningful accounting.

CURRENT WORK

Let a user sign the JDL upon Job submission using its Grid certificate.
Send signature plus user certificate (public part) with the JDL to the WN.

gLExec would need to verify the signature, and by that ensure THIS
job was submitted by the user

Verification is analogue to the one of a user proxy, using the public
part of the user's certificate that is enclosed

Ensure there is no alteration or mix-up of job vs. user and thereby
allow for actual accountability

Allow to limit potential damage to the minimum, following the security
principle of least privilege

Proposed and currently discussed with the gLExec developers

FILE PERMISSIONS

File permissions are stored in the catalogue

UNIX-style permissions

ACLs are supported but not used in practice

Storage has no knowledge of the users and/or permissions

Each storage interaction requires a ticket signed by the central
services containing

Operation (read, write, delete)

LFN, PFN, unique identifier, SE name

Size, MD5 checksum

NEW “AUTHENTIC”
WRITE OPERATIONS

Now in regression testing

First step as before

Asking for a write ticket and executing the operation

To update the catalogue the client will have to present a feedback ticket from the
storage

File details as the server has seen them

PFN, size, checksum

Central Services verify that

Client has previously asked to write that file

Booked details match the storage-provided values

Only then the file is committed to the catalogue

PLANNED
IMPLEMENTATION

Writing to an SE

PLANNED
IMPLEMENTATION

Writing to an SE

ALIEN JOB BROKERING

One single TaskQueue with all the jobs

Priorities and quotas per user

Multiple options for requirements

Data, packages, TTL, disk space, grid partitions, user
defined…

Two level brokering

CE: advertise available resources and submits vanilla JA

JA: Check worker node and gets payload

TaskQueue

Job
Broker

AliEn
CE

TaskQueue

Job
Broker

AliEn
CE

1. 10 idle machines

TaskQueue

Job
Broker

AliEn
CE

1. 10 idle machines

 Check DB

TaskQueue

Job
Broker

AliEn
CE

1. 10 idle machines

 Check DB

2. Start 10 JA

TaskQueue

Job
Broker

AliEn
CE

JA JA JA
…

1. 10 idle machines

 Check DB

2. Start 10 JA

3. Start vanilla JA (using
CREAM, CONDOR, LSF,

Fork, …)

TaskQueue

Job
Broker

AliEn
CE

JA JA JA
…

1. 10 idle machines

 Check DB

2. Start 10 JA

3. Start vanilla JA (using
CREAM, CONDOR, LSF,

Fork, …)

4. Give me a job

TaskQueue

Job
Broker

AliEn
CE

JA JA JA
…

1. 10 idle machines

 Check DB

2. Start 10 JA

3. Start vanilla JA (using
CREAM, CONDOR, LSF,

Fork, …)

4. Give me a job

5. Take job <id>

TaskQueue

Job
Broker

AliEn
CE

JA JA JA
…

1. 10 idle machines

 Check DB

2. Start 10 JA

3. Start vanilla JA (using
CREAM, CONDOR, LSF,

Fork, …)

4. Give me a job

5. Take job <id>

AliEn
CE

JA JA JA
…

At least, one AliEn CE per site

USING MULTICORES

Under development

Two approaches:

Run one JA per core

Easy to implement,

One JA per machine

Detect # cores, and requests multiple payloads.

QUESTIONS

Security (actually rather should be authentication and authorisation):

gLExec. can we do this in a much simpler way by trusting the experiment frameworks?
What might simpler alternatives be?

We have currently testing a relatively simple way to use gLExec

QUESTIONS

Security (actually rather should be authentication and authorisation):

gLExec. can we do this in a much simpler way by trusting the experiment frameworks?
What might simpler alternatives be?

What are the real needs for file access protection? What is really needed? What is the
simplest way to implement what is needed?

We have all the protections implemented in our catalogue. We have no additional
requirements

QUESTIONS

Security (actually rather should be authentication and authorisation):

gLExec. can we do this in a much simpler way by trusting the experiment frameworks?
What might simpler alternatives be?

What are the real needs for file access protection? What is really needed? What is the
simplest way to implement what is needed?

Input to the Identity Federation Workshop. Is the use of X509 currently an issue for the
experiments?

No. We will follow the workshop tomorrow.

QUESTIONS

Security (actually rather should be authentication and authorisation):

gLExec. can we do this in a much simpler way by trusting the experiment frameworks?
What might simpler alternatives be?

What are the real needs for file access protection? What is really needed? What is the
simplest way to implement what is needed?

Input to the Identity Federation Workshop. Is the use of X509 currently an issue for the
experiments?

Job management:

Pilot jobs are (almost) ubiquitous now. What is left that still needs a WMS?

Nothing for ALICE

QUESTIONS

Security (actually rather should be authentication and authorisation):

gLExec. can we do this in a much simpler way by trusting the experiment frameworks?
What might simpler alternatives be?

What are the real needs for file access protection? What is really needed? What is the
simplest way to implement what is needed?

Input to the Identity Federation Workshop. Is the use of X509 currently an issue for the
experiments?

Job management:

Pilot jobs are (almost) ubiquitous now. What is left that still needs a WMS?

Can we simplify the needs for sites – I.e. reduce the complexity of a CE? Do we still need to
require the CE to pass parameters to the batch system? Don't your pilot frameworks do all
this anyway?

Yes, we can reduce CE’s complexity and we do not need to pass parameters to the batch
system. We could also do without CE completely.

QUESTIONS

Security (actually rather should be authentication and authorisation):

gLExec. can we do this in a much simpler way by trusting the experiment frameworks?
What might simpler alternatives be?

What are the real needs for file access protection? What is really needed? What is the
simplest way to implement what is needed?

Input to the Identity Federation Workshop. Is the use of X509 currently an issue for the
experiments?

Job management:

Pilot jobs are (almost) ubiquitous now. What is left that still needs a WMS?

Can we simplify the needs for sites – I.e. reduce the complexity of a CE? Do we still need to
require the CE to pass parameters to the batch system? Don't your pilot frameworks do all
this anyway?

What is the intent with pilot factories? Will they be deployed at sites? If so, surely that
replaces the CE completely (apart from a trivial mechanism to launch the factory at a site).

We still see the need for simple CEs, we are not using pilot job factories

18

