Antenna subtraction for the production of massive final state fermions at hadron colliders

Gabriel Abelof
In Collaboration with Aude Gehrmann-De Ridder

ETH Zürich

Zürich - January 6, 2011

Motivations

Why are we interested in top quarks?

- Very large cross section at the LHC: $\sigma_{t \bar{t}}\left(14 \mathrm{TeV}, \mathrm{p}_{\mathrm{T}}^{\mathrm{top}}>700 \mathrm{GeV}\right) \approx 700 \mathrm{fb}$,
- Large Yukawa coupling. Sensitivity to the mechanism of electroweak symmetry breaking,
- Background to various New Physics searches,
- Preferred channel for the decay of potential new heavy resonances,

Motivations

A few facts about $t \bar{t}$ production

- At the LHC an experimental error of $\sim 5 \%$ is expected for $\sigma_{t \bar{t}}$
- Theoretically, $\mathrm{NLO}^{[1]}+\mathrm{NLL}^{[2]}$ calculations for the LHC give an uncertainty of $\sim 10 \%$
- ${ }^{[1]}$ Nason, Dawson, Ellis '88-'90; Beenakker, Kuijf, van Neerven, Smith '89-'91
- [2] Kidonakis, Sterman '97; Bonciani et al. '98, Cacciari et al. '08; Moch, Uwer '08;

Kidonakis '08

- Most recently completed NNLL resummation: Ahrens et al. '09

To match the theoretical and experimental accuracies, a full NNLO calculation is needed

- 2-Loop corrections: Czakon '08; Bonciani et al. '08-'10
- 1×1-loop corrections: Korner et al. '05, Anastasiou, Aybat '08; Kniehl et al. '08
- Real corrections:
- Subtraction methods at NNLO (massless): Daleo et al. '09; Boughezal, Gehrmann-De Ridder, Ritzmann '10; Glover, Pires '10
- New NNLO methods (massive): Czakon '11; Anastasiou, Herzog, Lazopoulos '10

Motivations

Towards an NNLO calculation for $t \bar{t}$ we

- Fully extended the NLO antenna subtraction method for hadronic collisions to incorporate massive particles in the final state
- Computed NLO subtraction terms for $\sigma_{t \bar{t}}$ and $\sigma_{t \bar{t}+j e t}$

The NLO subtraction term for $t \bar{t}+j e t$ is needed for $t \bar{t}$ at NNLO (same matrix elements, same single unresolved limits)

Subtraction at NLO for hadronic processes

Symbolically, we can write

$$
\begin{aligned}
\mathrm{d} \hat{\sigma}_{N L O}= & \int_{\mathrm{d} \Phi_{m+1}}\left(\mathrm{~d} \hat{\sigma}_{N L O}^{R}-\mathrm{d} \hat{\sigma}_{N L O}^{S}\right) J_{m}^{(m+1)} \\
& +\int_{\mathrm{d} \Phi_{m}}\left(\mathrm{~d} \hat{\sigma}_{N L O}^{V}+\mathrm{d} \hat{\sigma}_{N L O}^{M F}+\int_{1} \mathrm{~d} \hat{\sigma}_{N L O}^{S}\right) J_{m}^{(m)},
\end{aligned}
$$

Subtraction term:

- Approximation to the $(m+1)$-particle matrix element in its soft and collinear limits
- Can be integrated over a factorized form of the $(m+1)$-particle phase space and added to the 1 -loop m-particle contribution
$\Rightarrow \mathrm{d} \hat{\sigma}_{N L O}^{R}-\mathrm{d} \hat{\sigma}_{N L O}^{S}$ is numerically finite
$\mathrm{d} \hat{\sigma}_{N L O}^{V}+\mathrm{d} \hat{\sigma}_{N L O}^{M F}+\int_{1} \mathrm{~d} \hat{\sigma}_{N L O}^{S}$ is free of divergencies

Real radiation contributions

For $p_{1}+p_{2} \rightarrow k_{Q}+k_{\bar{Q}}+(m-2) j e t s$

$$
\begin{aligned}
\mathrm{d} \hat{\sigma}_{N L O}^{R}\left(p_{1}, p_{2}\right)=\mathcal{N} & \sum \mathrm{d} \Phi_{m+1}\left(k_{Q}, k_{\bar{Q}}, k_{1}, \ldots, k_{m-1} ; p_{1}, p_{2}\right) \\
& \times \frac{1}{S_{m+1}}\left|\mathcal{M}_{m+1}\left(k_{Q}, k_{\bar{Q}}, k_{1}, \ldots, k_{m-1} ; p_{1}, p_{2}\right)\right|^{2} \\
& \times J_{m}^{(m+1)}\left(k_{Q}, k_{\bar{Q}}, k_{1}, \ldots, k_{m-1}\right) .
\end{aligned}
$$

Knowing the factorization properties of \mathcal{M} in its infrared limits, we can construct $\mathrm{d} \hat{\sigma}_{N L O}^{S}$ that reproduces all the configurations in which a parton j becomes unresolved between the hard radiators i and k.

Unresolved limits of \mathcal{M} :

- Soft gluon limits $\rightarrow \epsilon$ poles in $\mathrm{d} \hat{\sigma}$
- Collinear limits (massless partons) $\rightarrow \epsilon$ poles in d $\hat{\sigma}$
- Quasi-collinear limits (with at least one massive final state fermion) $\rightarrow \ln \left(Q^{2} / M_{Q}^{2}\right)$ in $\mathrm{d} \hat{\sigma}$
[More on this later]

NLO Antenna subtraction

Subtraction terms for m-jet production:

- Product of reduced matrix elements with m particles and antenna functions
- Antenna functions $X_{i j k}$: normalized three-particle matrix element
- Two hard particles (hard radiators)
- One particle soft, or collinear to either of the radiators

NLO Antenna subtraction for LHC processes

Require three types of antenna functions. Hard radiators can be in the initial or final state [Daleo, Gehrmann, Maitre '07]

Final-final

Initial-initial

For $t \bar{t}$ and $t \bar{t}+j e t$ at NLO...

We need

- Three types of subtraction terms (final-final, initial-final, initial-initial)
- Massive final-final and initial-final antennae as well as massless initial-final and initial-initial antennae
Example: To account for the unresolved limits of a gluon between a massless $q \bar{q}$ pair we need

$$
A_{3}^{0}(q, g, \bar{q}) \text {, which is generated from }\left(\gamma^{*} \rightarrow q g \bar{q}\right) /\left(\gamma^{*} \rightarrow q \bar{q}\right)
$$

If we have a massive $Q \bar{Q}$ pair instead, we need
$A_{3}^{0}(Q, g, \bar{Q})$, which is generated from $\left(\gamma^{*} \rightarrow Q g \bar{Q}\right) /\left(\gamma^{*} \rightarrow Q \bar{Q}\right)$

- Massive initial-final antennae are obtained by suitable crossings on the final-final
- In addition, we also need massive flavour violating A-type antennae

Massive flavour-violating antennae

For example, in the $\bar{q} g \rightarrow Q \bar{Q} \bar{q} g$ process ($t \bar{t}+j e t)$

$$
\Rightarrow\left|M_{6}^{0}\left(3_{\bar{q}} 6_{g} \rightarrow 1_{Q} 2_{\bar{Q}} 4_{\bar{q}} 5_{g}\right)\right|^{2} \sim\left|\mathcal{M}_{6}^{0}\left(1_{Q}, 5_{g}, 4_{\bar{q}} ; ; \hat{3}_{\bar{q}}, \hat{6}_{g}, 2_{\bar{Q}}\right)\right|^{2}+\ldots
$$

5_{g} is emitted between 1_{Q} and $4_{\bar{q}}$ (different flavours).
To subtract the limits in which a gluon becomes unresolved between two fermions with different flavours we need $A_{3}^{0}(Q, g, \bar{q})$ (quark-antiquark of different flavours).

- It is an A-type antenna: it has the same spin properties as $A_{3}^{0}(q, g, \bar{q})$ except that $q \rightarrow Q$ and the same unresolved limits
- It can be generated from the physical process ratio $\left(W^{+} \rightarrow t \bar{b} g\right) /\left(W^{+} \rightarrow t \bar{b}\right)$.

For $t \bar{t}+j e t$ we also need $A_{3}^{0}(Q, g, q)$ (2 quarks of different flavours)

- Can be generated by an MSSM process initiated by a W-boson

Unresolved limits

In its unresolved limits a massless final-final antenna function gives

- $X_{3}^{0}(a, s, b) \xrightarrow{k_{s} \rightarrow 0} \frac{2 s_{a b}}{s_{a s} s_{b s}}$
- $X_{3}^{0}(a, s, b) \xrightarrow{a \| s} \frac{P_{a s}(z)}{s_{a s}}$

$$
s_{i j}=2 p_{i} \cdot p_{j}
$$

In the massive case

- $X_{3}^{0}(a, s, b) \xrightarrow{k_{s} \rightarrow 0} \frac{2 s_{a b}}{S_{a s} s_{b s}}-\frac{2 m_{a}^{2}}{s_{a s}^{2}}-\frac{2 m_{b}^{2}}{s_{b s}^{2}}$
- No strict collinear limit
- Quasi-collinear limit: Massive parton decays quasi-collinearly into two massive partons:
- $p_{j}^{\mu} \rightarrow z p^{\mu} \quad p_{k}^{\mu} \rightarrow(1-z) p^{\mu} \quad p^{2}=m_{(j k)}^{2}$
- Constraints: $p_{j} \cdot p_{k}, m_{j}, m_{k}, m_{j k} \rightarrow 0$
- Fixed ratios: $\frac{m_{j}^{2}}{p_{j} \cdot p_{k}}, \frac{m_{k}^{2}}{p_{j} \cdot p_{k}}, \frac{m_{j k}^{2}}{p_{j} \cdot p_{k}}$
- Mass dependence in quasi-collinear splitting functions. E.g.:

$$
P_{q g \rightarrow Q}\left(z, \mu_{q g}^{2}\right)=\frac{1+(1-z)^{2}-\epsilon z^{2}}{z}-\frac{2 m_{Q}^{2}}{s_{q g}}
$$

Initial-initial configurations

These configurations are unchanged with respect to the massless case [Daleo, Gehrmann, Maitre '07].

$$
\begin{aligned}
& \mathrm{d} \sigma_{N L O}^{S,(i i)}= \mathcal{N} \sum \sum_{m+1} \mathrm{~d} \Phi_{m}\left(k_{Q}, k_{\bar{Q}}, k_{1}, \ldots, k_{j}, \ldots, k_{m-1} ; p_{i}, p_{k}\right) \frac{1}{S_{m+1}} \\
& \times \sum_{j} x_{i k, j}^{0}\left|\mathcal{M}_{m}\left(\tilde{k}_{Q}, \tilde{k}_{\bar{Q}}, \tilde{k}_{1}, \ldots, \tilde{k}_{j-1}, \tilde{k}_{j+1} \ldots, \tilde{k}_{m-1} ; x_{i} p_{i}, x_{k} p_{k}\right)\right|^{2} \\
& \times J_{m}^{(m)}\left(\tilde{k}_{Q}, \tilde{k}_{\bar{Q}}, \tilde{k}_{1}, \ldots, \tilde{k}_{j-1}, \tilde{k}_{j+1} \ldots, \ldots, \tilde{k}_{m-1}\right) .
\end{aligned}
$$

- ALL momenta need to be remapped to fulfill overall momentum conservation. The boost needed for this remapping for the massive particles Q, \bar{Q} is the same as in the massless case ${ }^{[1]}$
- Phase space mapping and factorization formulae are unchanged in the massive case
- No initial-initial massive antennae
${ }^{[1]}$ [Catani, Seymour '96]

Final-final configurations

For configurations with an unresolved parton j emitted between the final state hard radiators i and k (one, or both of them being massive)

$$
\begin{aligned}
\mathrm{d} \sigma_{N L O}^{S,(f f)}= & \mathcal{N} \sum \mathrm{d} \Phi_{m+1}\left(k_{1}, \ldots, k_{i}, k_{j}, k_{k}, k_{m+1} ; p_{1}, p_{2}\right) \frac{1}{S_{m+1}} \\
& \times \sum_{j} x_{i j k}^{0}\left|\mathcal{M}_{m}\left(k_{1}, \ldots, K_{l}, K_{k}, \ldots, k_{m+1} ; p_{1}, p_{2}\right)\right|^{2} \\
& \times J_{m}^{(m)}\left(k_{1}, \ldots, K_{l}, K_{k}, \ldots, k_{m+1}\right)
\end{aligned}
$$

- Massive final-final case derived in [Gehrmann-De Ridder, Ritzmann '09]
- New: Massive flavour violating $A_{3}^{0}(Q, g, \bar{q}), A_{3}^{0}(Q, g, q)$
- $(m+1)$-particle phase space factorizes $\mathrm{d} \Phi_{m+1} \rightarrow \mathrm{~d} \Phi_{m} \cdot \mathrm{~d} \Phi_{X_{j k}}$
- $\mathrm{d} \Phi_{X_{j k}}: 1 \rightarrow 3$ particle phase space with a massless parton (j) and two hard radiators (i and k, being one or both of them massive)
- Integrated antennae defined as in massless case

Initial-final configurations

To take into account configurations with an unresolved parton j (which can be massive), an initial state radiatior i (massless) and a final state radiator k (massive or massless)

$$
\begin{aligned}
\mathrm{d} \sigma_{N L O}^{S,(i f)}= & \mathcal{N} \sum \mathrm{d} \Phi_{m+1}\left(k_{1}, \ldots, k_{j}, k_{k}, \ldots, k_{m+1} ; p_{i}, p_{2}\right) \frac{1}{S_{m+1}} \\
& \times \sum_{j} X_{i, j k}^{0}\left|\mathcal{M}_{m}\left(k_{1}, \ldots, K_{K}, \ldots, k_{m} ; p_{i}, p_{2}\right)\right|^{2} \\
& \times J_{m}^{(m)}\left(k_{1}, \ldots, K_{K}, \ldots, k_{m}\right)
\end{aligned}
$$

- $X_{i, j \mathrm{j}}$ obtained by crossing i in $X_{i j k}$
- Unresolved parton j can be massive [e.g. $\left.A_{3}^{0}(g ; Q, \bar{Q})\right]$ or massless [e.g. $E_{3}^{0}(q ; Q, q)$ derived from $(q \rightarrow \tilde{\chi} Q q) /(g \rightarrow \tilde{\chi} Q)$]
- For $t \bar{t}$ and $t \bar{t}+j e t$ we computed and integrated all relevant antennae (including flavour violating)

Initial-final configurations

- We generalized the phase space factorization to the massive case

$$
\begin{array}{r}
\mathrm{d} \Phi_{m+1}\left(k_{1}, \ldots, k_{m+1} ; p_{i}, p_{2}\right)=\mathrm{d} \Phi_{m}\left(k_{1}, \ldots, K_{k}, \ldots, k_{m+1} ; x_{i} p_{i}, p_{2}\right) \\
\times \frac{\left(Q^{2}+m_{j}^{2}+m_{k}^{2}\right)}{2 \pi} \mathrm{~d} \Phi_{2}\left(k_{j}, k_{k} ; p_{i}, q\right) \frac{\mathrm{d} x_{i}}{x_{i}}
\end{array}
$$

$\mathrm{d} \Phi_{2}\left(k_{j}, k_{k} ; p_{i}, q\right): 2 \rightarrow 2$ phase space with one or two massive final state particles

- Generalized phase space mapping

$$
\begin{gathered}
p_{i}+q \rightarrow k_{j}+k_{k} \Rightarrow \quad x_{i} p_{i}+q \rightarrow K_{k} \\
x_{i}=\frac{Q^{2}+m_{j}^{2}+m_{k}^{2}}{2 p_{i} \cdot q}
\end{gathered}
$$

Integrated antennae

We did the ϵ expansion of all integrated massive antennae (final-final and initial-final) and found that all pole parts are related to

- x-dependent splitting kernels associated to initial state collinearities
- Massive $/{ }^{(1)}$ operators ${ }^{[1]}$ that contain the infrared structure of one-loop amplitudes squared
\Rightarrow Constructing our subtraction terms with antennae we are in a good shape to cancel poles in:
- Virtual contributions
- Mass factorization counterterms
${ }^{[1]}$ [Catani, Dittmaier, Seymour, Trócsányi '02]

Application to heavy quark pair production at the LHC

For $t \bar{t}$ production at NLO

$$
\begin{aligned}
\mathrm{d} \sigma^{R}=\int \frac{\mathrm{d} \xi_{1}}{\xi_{1}} \frac{\mathrm{~d} \xi_{2}}{\xi_{2}}\{ & \sum_{q}\left[f_{q}\left(\xi_{1}\right) f_{\bar{q}}\left(\xi_{2}\right) \mathrm{d} \hat{\sigma}_{q \bar{q} \rightarrow Q \bar{Q} g}+f_{q}\left(\xi_{1}\right) f_{g}\left(\xi_{2}\right) \mathrm{d} \hat{\sigma}_{q g \rightarrow Q \bar{Q} q}\right. \\
& \left.\left.+f_{\bar{q}}\left(\xi_{1}\right) f_{g}\left(\xi_{2}\right) \mathrm{d} \hat{\sigma}_{\bar{q} g \rightarrow Q \bar{Q} \bar{q}}\right]+f_{g}\left(\xi_{1}\right) f_{g}\left(\xi_{2}\right) \mathrm{d} \hat{\sigma}_{g \bar{g} \rightarrow Q \bar{Q} g}\right\}
\end{aligned}
$$

For the color decomposition of the amplitudes needed for the partonic cross-sections we consider the fictitious processes

- $0 \rightarrow Q \bar{Q} q \bar{q} g$
- $0 \rightarrow Q \bar{Q} g g g$

Application to heavy quark pair production at the LHC

Consider, for example, $q \bar{q} \rightarrow Q \bar{Q} g$:

- Take the colour decomposition of $0 \rightarrow Q \bar{Q} q \bar{q} g$
- Square the colour decomposed amplitude
- Use decoupling identities to eliminate interferences between different partial amplitudes. In this case

$$
\begin{aligned}
& \mathcal{M}_{5}^{0}\left(1_{Q}, 2_{\bar{Q}}, 3_{q}, 4_{\bar{q}}, 5_{\gamma}\right)=\mathcal{M}_{5}^{0}\left(1_{Q}, 5_{g}, 4_{\bar{q}} ; ; 3_{q}, 2_{\bar{Q}}\right)+\mathcal{M}_{5}^{0}\left(1_{Q}, 4_{\bar{q}} ; ; 3_{q}, 5_{g}, 2_{\bar{Q}}\right) \\
&=\mathcal{M}_{5}^{0}\left(1_{Q}, 5_{g}, 2_{\bar{Q}} ; ; 3_{q}, 4_{\bar{q}}\right)+\mathcal{M}_{5}^{0}\left(1_{Q}, 2_{\bar{Q}} ; ; 3_{q}, 5_{g}, 4_{\bar{q}}\right) \\
& \Rightarrow\left|M_{5}^{0}\left(0 \rightarrow 1_{Q}, 2_{\bar{Q}}, 3_{q}, 4_{\bar{q}}, 5_{g}\right)\right|^{2}=\frac{g^{6}\left(N_{c}^{2}-1\right)}{8} \\
& \times\left[N_{c}\left(\left|\mathcal{M}_{5}^{0}\left(1_{Q}, 5_{g}, 4_{\bar{q}} ; ; 3_{q}, 2_{\bar{Q}}\right)\right|^{2}+\left|\mathcal{M}_{5}^{0}\left(1_{Q}, 4_{\bar{q}} ; ; 3_{q}, 5_{g}, 2_{\bar{Q}}\right)\right|^{2}\right)\right. \\
&+\frac{1}{N_{c}}\left(\left|\mathcal{M}_{5}^{0}\left(1_{Q}, 5_{g}, 2_{\bar{Q}} ; ; 3_{q}, 4_{\bar{q}}\right)\right|^{2}+\left|\mathcal{M}_{5}^{0}\left(1_{Q}, 2_{\bar{Q}} ; ; 3_{q}, 5_{g}, 4_{\bar{q}}\right)\right|^{2}\right. \\
&\left.\left.\quad-2\left|\mathcal{M}_{5}^{0}\left(1_{Q}, 2_{\bar{Q}}, 3_{q}, 4_{\bar{q}}, 5_{\gamma}\right)\right|^{2}\right)\right] .
\end{aligned}
$$

Application to heavy quark pair production at the LHC

- Cross the $q \bar{q}$ pair to the initial state

$$
\begin{aligned}
\mid M_{5}^{0}\left(3_{\bar{q}} 4_{q}\right. & \left.\rightarrow 1_{Q}, 2_{\bar{Q}}, 5_{g}\right)\left.\right|^{2}=\frac{g^{6}\left(N_{c}^{2}-1\right)}{8} \\
\times & \times\left[N_{c}\left(\left|\mathcal{M}_{5}^{0}\left(1_{Q}, 5_{g}, \hat{4}_{q} ; ; \hat{3}_{\bar{q}}, 2_{\bar{Q}}\right)\right|^{2}+\left|\mathcal{M}_{5}^{0}\left(1_{Q}, \hat{4}_{q} ; ; \hat{3}_{\bar{q}}, 5_{g}, 2_{\bar{Q}}\right)\right|^{2}\right)\right. \\
+ & \frac{1}{N_{c}}\left(\left|\mathcal{M}_{5}^{0}\left(1_{Q}, 5_{g}, 2_{\bar{Q}} ; ; \hat{3}_{\bar{q}}, \hat{4}_{q}\right)\right|^{2}+\left|\mathcal{M}_{5}^{0}\left(1_{Q}, 2_{\bar{Q}} ; ; \hat{3}_{\bar{q}}, 5_{g}, \hat{4}_{q}\right)\right|^{2}\right. \\
& \left.\left.\quad-2\left|\mathcal{M}_{5}^{0}\left(1_{Q}, 2_{\bar{Q}}, \hat{3}_{\bar{q}}, \hat{4}_{q}, 5_{\gamma}\right)\right|^{2}\right)\right] .
\end{aligned}
$$

- The subtraction term for this partonic process is

$$
\begin{aligned}
& \mathrm{d} \hat{\sigma}_{q \bar{q} \rightarrow Q \bar{Q} g}^{S}=\frac{g^{6}\left(N_{C}^{2}-1\right)}{8} \mathrm{~d} \phi_{3}\left(k_{1 Q}, k_{2 \bar{Q}}, k_{5 g} ; p_{4 q}, p_{3 \bar{q}}\right) \\
& \times\left\{N_{C}\right. {\left[A_{3}^{0}\left(4_{q} ; 1_{Q}, 5_{g}\right)\left|\mathcal{M}_{4}^{0}\left((\widetilde{15})_{Q}, 2_{\bar{Q}}, \hat{3}_{\bar{q}}, \hat{\overline{4}}_{\bar{q}}\right)\right|^{2} J_{2}^{(2)}\left(K_{\tilde{15}}, k_{2}\right)\right.} \\
&\left.\quad+A_{3}^{0}\left(3_{\bar{q}} ; 2_{\bar{Q}}, 5_{g}\right)\left|\mathcal{M}_{4}^{0}\left(1_{Q},(\widetilde{25})_{\bar{Q}}, \hat{\overline{3}}_{\bar{q}}, \hat{4}_{q}\right)\right|^{2} J_{2}^{(2)}\left(k_{1}, K_{\widetilde{25}}\right)\right] \\
&-\frac{1}{N_{c}} {\left[A_{3}^{0}\left(1_{Q}, 5_{g}, 2_{\bar{Q}}\right)\left|\mathcal{M}_{4}^{0}\left((\widetilde{15})_{Q},(\widetilde{25})_{\bar{Q}}, \hat{3}_{\bar{q}}, \hat{4}_{q}\right)\right|^{2} J_{2}^{(2)}\left(k_{\tilde{15}}, k_{\widetilde{25}}\right)\right.} \\
&\left.\left.\quad+A_{3}^{0}\left(4_{q}, 3_{\bar{q}} ; 5_{g}\right)\left|\mathcal{M}_{4}^{0}\left(\tilde{1}_{Q}, \tilde{2}_{\bar{Q}}, \hat{\overline{3}}_{\bar{q}}, \hat{\overline{4}}_{q}\right)\right|^{2} J_{2}^{(2)}\left(\tilde{k}_{1}, \tilde{k}_{2}\right)\right]\right\} .
\end{aligned}
$$

Application to heavy quark pair production at the LHC

For $t \bar{t}+j e t$ production the unphysical processes are:

- $0 \rightarrow Q \bar{Q} q \bar{q} q^{\prime} \bar{q}^{\prime}$
- $0 \rightarrow Q \bar{Q} q \bar{q} g g$
- $0 \rightarrow Q \bar{Q} g g g g$

Calculations are more involved because

- More partial amplitudes
- More unresolved limits to subtract
- Identical flavour contributions
- Decoupling identities do not always eliminate all interference terms

Colour interferences

For $t \bar{t}+j e t$ we find squared amplitudes whose interferences between partial amplitudes cannot be removed with decoupling identities. For example (ommiting quark labels)

$$
\begin{aligned}
&\left|M_{6}^{0}\left(0 \rightarrow 1_{Q}, 2_{\bar{Q}}, 3_{g}, 4_{g}, 5_{g}, 6_{g}\right)\right|^{2}=\frac{g^{8}\left(N_{c}-1\right)}{16 N_{c}^{3}} \\
& \times\left\{\sum _ { (i , j , k , l) \in P (3 , 4 , 5 , 6) } \left[N_{c}^{6}|\mathcal{M}(i, j, k, l)|^{2}-N_{c}^{4}|\mathcal{M}(i, j, k ; l)|^{2}+\frac{N_{c}^{2}}{2!}|\mathcal{M}(i, j ; k, l)|^{2}\right.\right. \\
&- N_{c}^{4} \operatorname{Re}
\end{aligned} \quad[(\mathcal{M}(j, i, l, k)+\mathcal{M}(j, l, i, k)+\mathcal{M}(j, l, k, i)\}
$$

(Checked with [Mangano, Parke '90])

Colour interferences

- Collinear singularities: an interference term develops a collinear singularity only when a collinear limit is shared by both partial amplitudes
- Problem: Soft singularities?

At the amplitude level (massless case)

$$
\begin{aligned}
& \mathcal{M}_{n+1}^{0}\left(\ldots, a, s^{+}, b, \ldots\right) \xrightarrow{k_{\mathrm{s}} \rightarrow 0} \frac{\langle a b\rangle}{\langle a s\rangle\langle s b\rangle} \mathcal{M}_{n}^{0}(\ldots, a, b, \ldots) \\
& \mathcal{M}_{n+1}^{0}\left(\ldots, a, s^{-}, b, \ldots\right) \xrightarrow{k_{\mathrm{s}} \rightarrow 0} \frac{[a b]}{[a s][s b]} \mathcal{M}_{n}^{0}(\ldots, a, b, \ldots)
\end{aligned}
$$

Colour interferences

With some algebra and after spin averaging,

$$
\begin{aligned}
& \mathcal{M}_{n+1}^{0}(\ldots, a, s, b, \ldots) \mathcal{M}_{n+1}^{0}(\ldots, c, s, d, \ldots)^{\dagger} \\
& \xrightarrow{k_{s} \rightarrow 0}\left(\frac{s_{a d}}{s_{a s} s_{d s}}+\frac{s_{b c}}{s_{b s} s_{c s}}-\frac{s_{a c}}{s_{a s} s_{c s}}-\frac{s_{b d}}{s_{b s} s_{d s}}\right) \\
& \times \mathcal{M}_{n}^{0}(\ldots, a, b, \ldots) \mathcal{M}_{n}^{0}(\ldots, c, d, \ldots)
\end{aligned}
$$

\Rightarrow We can subtract the soft singularities of the interference terms with

$$
\begin{aligned}
& \frac{1}{2} X_{3}^{0}(a, s, d) \mathcal{M}_{n, 1}^{0}(\ldots, \tilde{a s}, \tilde{b s}, \ldots) \mathcal{M}_{n, 1}^{0}(\ldots, \tilde{c s}, \tilde{d s}, \ldots) \\
+ & \frac{1}{2} X_{3}^{0}(b, s, c) \mathcal{M}_{n, 2}^{0}(\ldots, \tilde{a} s, \tilde{b s}, \ldots) \mathcal{M}_{n, 2}^{0}(\ldots, \tilde{c s}, \tilde{d s}, \ldots) \\
- & \frac{1}{2} X_{3}^{0}(a, s, c) \mathcal{M}_{n, 3}^{0}(\ldots, \tilde{a} s, \tilde{b s}, \ldots) \mathcal{M}_{n, 3}^{0}(\ldots, \tilde{c s}, \tilde{d s}, \ldots) \\
- & \frac{1}{2} X_{3}^{0}(b, s, d) \mathcal{M}_{n, 4}^{0}(\ldots, \tilde{a} s, \tilde{b s}, \ldots) \mathcal{M}_{n, 4}^{0}(\ldots, \tilde{c s}, \tilde{d} s, \ldots) .
\end{aligned}
$$

without introducing any extra collinear singularities!

Colour interferences

This way of treating soft singularities in interference terms also gives all the correct limits in the massive case if we replace

- Massless antenae \rightarrow massive antennae
- Massless eikonal factors \rightarrow massive eikonal factors

Subtraction terms grow in size:

- Only one antenna function is needed to subtract the soft limits of a gluon in $|\mathcal{M}|^{2}$
- Subtraction of one soft limit in an interference term requires four antenna functions

Checks performed on all subtraction terms

As a consistency check we have verified that, for a given process, the sum of all colour-ordered subtraction terms reproduces the collinear limits of the full $\left|M_{m}^{0}\right|^{2}$

$$
\mathrm{d} \sigma^{S} \xrightarrow{a \| b} g^{2} C \frac{P_{a b}(z)}{S_{a b}} \times\left|M_{m}^{0}\right|^{2} \times \mathrm{d} \Phi_{m} J_{m}^{(m)}
$$

- M_{m}^{0} is the full Born amplitude
- $C=C_{A}, C_{F}, T_{R}$ is the corresponding Casimir

For example

$$
\begin{aligned}
\mathrm{d} \hat{\sigma}_{q \bar{q} \rightarrow Q \bar{Q} g}^{S} \xrightarrow{{ }^{Q_{Q} \| 5_{g}}} & g^{6} \mathrm{~d} \Phi_{2}\left(k_{(1+5) Q}, k_{2 \bar{Q}} ; p_{4 q} p_{3 \bar{q}}\right) J_{2}^{(2)}\left(k_{(1+5)}, k_{2}\right) \\
& \times C_{F} \frac{P_{q g \rightarrow Q}\left(z, \mu_{q g}^{2}\right)}{S_{15}}\left|M_{4}^{0}\left(3_{\bar{q}} 4_{q} \rightarrow(1+5)_{Q}, 2_{\bar{Q}}\right)\right|^{2}
\end{aligned}
$$

Summary and conclusions

- We extended the antenna subtraction method at NLO for initial-final configurations with massive final state fermions:
- Computed and integrated massive initial-final antenna functions relevant for $t \bar{t}$ and $t \bar{t}+j e t$,
- Generalized phase space mapping and factorization formulae for the massive case,
- Computed and integrated flavour violating antenna functions.
- We developed a way of subtracting soft singularities from interferences between different partial amplitudes at NLO.
- We constructed subtraction terms for all partonic processes involved in $t \bar{t}$ and $t \bar{t}+j e t$.
- NEXT: We shall start working on a NNLO extension of the method for the inclusion of massive final state fermions.

Summary and conclusions

- We extended the antenna subtraction method at NLO for initial-final configurations with massive final state fermions:
- Computed and integrated massive initial-final antenna functions relevant for $t \bar{t}$ and $t \bar{t}+j e t$,
- Generalized phase space mapping and factorization formulae for the massive case,
- Computed and integrated flavour violating antenna functions.
- We developed a way of subtracting soft singularities from interferences between different partial amplitudes at NLO.
- We constructed subtraction terms for all partonic processes involved in $t \bar{t}$ and $t \bar{t}+j e t$.
- NEXT: We shall start working on a NNLO extension of the method for the inclusion of massive final state fermions.

Backup Slide: Check of collinear limits

Take the subtraction term we discussed

$$
\begin{aligned}
& \mathrm{d} \hat{\sigma}_{q \bar{q} \rightarrow Q \bar{Q} g}^{S}=\frac{g^{6}\left(N_{C}^{2}-1\right)}{8} \mathrm{~d} \phi_{3}\left(k_{1 Q}, k_{2 \bar{Q}}, k_{5 g} ; p_{4 q}, p_{3 \bar{q}}\right) \\
& \times\left\{N _ { C } \left[A_{3}^{0}\left(4_{q} ; 1_{Q}, 5_{g}\right)\left|\mathcal{M}_{4}^{0}\left((\widetilde{15})_{Q}, 2_{\bar{Q}}, \hat{3}_{\bar{q}}, \hat{4}_{\bar{q}}\right)\right|^{2} J_{2}^{(2)}\left(K_{\tilde{15}}, k_{2}\right)\right.\right. \\
& \left.+A_{3}^{0}\left(3_{\bar{q}} ; 2_{\bar{Q}}, 5_{g}\right)\left|\mathcal{M}_{4}^{0}\left(1_{Q},(\widetilde{25})_{\bar{Q}}, \hat{\overline{3}}_{\bar{q}}, \hat{4}_{q}\right)\right|^{2} J_{2}^{(2)}\left(k_{1}, K_{\widetilde{25}}\right)\right] \\
& -\frac{1}{N_{c}}\left[A_{3}^{0}\left(1_{Q}, 5_{g}, 2_{\bar{Q}}\right)\left|\mathcal{M}_{4}^{0}\left((\widetilde{15})_{Q},(\widetilde{25})_{\bar{Q}}, \hat{3}_{\bar{q}}, \hat{4}_{q}\right)\right|^{2} J_{2}^{(2)}\left(k_{\tilde{15}}, k_{\widetilde{25}}\right)\right. \\
& \left.\left.+A_{3}^{0}\left(4_{q}, 3_{\bar{q}} ; 5_{g}\right)\left|\mathcal{M}_{4}^{0}\left(\tilde{1}_{Q}, \tilde{2}_{\bar{Q}}, \hat{3}_{\bar{q}}, \hat{4}_{q}\right)\right|^{2} J_{2}^{(2)}\left(\tilde{k}_{1}, \tilde{k}_{2}\right)\right]\right\} . \\
& \xrightarrow{1} \xrightarrow{Q|\mid 5 g} g^{6} \frac{N_{c}^{2}-1}{8} \mathrm{~d} \Phi_{2}\left(k_{(1+5) Q}, k_{2 \bar{Q}} ; p_{4 q} p_{3 \bar{q}}\right) J_{2}^{(2)}\left(k_{(1+5)}, k_{2}\right) \frac{P_{q g \rightarrow Q}\left(z, \mu_{q g}^{2}\right)}{s_{15}} \\
& \times\left[N_{c}\left|\mathcal{M}_{4}^{0}\left((1+5)_{Q}, 2_{\bar{Q}}, \hat{3}_{\bar{q}}, \hat{4}_{q}\right)\right|^{2}-\frac{1}{N_{c}}\left|\mathcal{M}_{4}^{0}\left((1+5)_{Q}, 2_{\bar{Q}}, \hat{3}_{\bar{q}}, \hat{4}_{q}\right)\right|^{2}\right]
\end{aligned}
$$

Backup Slide: Check of collinear limits

$$
\begin{aligned}
= & g^{6} \mathrm{~d} \Phi_{2}\left(k_{(1+5) Q}, k_{2 \bar{Q}} ; p_{4 q} p_{3 \bar{q}}\right) J_{2}^{(2)}\left(k_{(1+5)}, k_{2}\right) \\
& \times \frac{P_{q g \rightarrow Q}\left(z, \mu_{q g}^{2}\right)}{s_{15}} \frac{N_{c}^{2}-1}{2 N_{c}} \frac{1 N_{c}^{2}-1}{4}\left|\mathcal{M}_{4}^{0}\left((1+5)_{Q}, 2_{\bar{Q}}, \hat{3}_{\bar{q}}, \hat{4}_{q}\right)\right|^{2} \\
= & g^{6} \mathrm{~d} \Phi_{2}\left(k_{(1+5) Q}, k_{2 \bar{Q}} ; p_{4 q} p_{3 \bar{q}}\right) J_{2}^{(2)}\left(k_{(1+5)}, k_{2}\right) \\
& \times C_{F} \frac{P_{q g \rightarrow Q}\left(z, \mu_{q g}^{2}\right)}{s_{15}}\left|M_{4}^{0}\left(3_{\bar{q}} 4_{q} \rightarrow(1+5)_{Q}, 2_{\bar{Q}}\right)\right|^{2}
\end{aligned}
$$

Massive flavour violating antenna functions

Processes determined according to spin properties: (omitting couplings):
$A_{3}^{0}(Q, g, \bar{q})$ can be generated in the SM from
$\left(W^{+} \rightarrow t \bar{b} g\right) /\left(W^{+} \rightarrow t \bar{b}\right)$

- t (spin $1 / 2$, massive) plays the role of Q
- \bar{b} (spin $1 / 2$ massless) plays the role of \bar{q}
$A_{3}^{0}(Q, g, q)$ is generated from MSSM process ${ }^{[1]}$ ratio
$\left(W^{+} \rightarrow \chi_{i}^{0} \chi_{j}^{+} Z^{0}\right) /\left(W^{+} \rightarrow \chi_{i}^{0} \chi_{j}^{+}\right)$
- χ_{i}^{0} : Neutralino (Majorana fermion, spin $1 / 2$, massless). Plays the role of q (or \bar{q})
- χ_{j}^{+}: Chargino (Massive fermion, spin $1 / 2$). Plays the role of Q
- Z^{0} : Vector boson (taken massless, spin 1). Plays the role of the gluon. Can be radiated from $\chi_{i}^{0}, \chi_{j}^{+}$
${ }^{[1]}$ [Rosiek '95]

