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Motivations

Why are we interested in top quarks?

• Very large cross section at the LHC:
σt t̄ (14TeV,ptop

T > 700GeV) ≈ 700fb,

• Large Yukawa coupling. Sensitivity to the mechanism of
electroweak symmetry breaking,

• Background to various New Physics searches,

• Preferred channel for the decay of potential new heavy
resonances,



Motivations

A few facts about t t̄ production

• At the LHC an experimental error of ∼ 5% is expected for σt t̄

• Theoretically, NLO[1]+NLL[2] calculations for the LHC give an
uncertainty of ∼ 10%

• [1] Nason, Dawson, Ellis ’88-’90; Beenakker, Kuijf, van Neerven, Smith ’89-’91
• [2] Kidonakis, Sterman ’97; Bonciani et al. ’98, Cacciari et al. ’08; Moch, Uwer ’08;
Kidonakis ’08
• Most recently completed NNLL resummation: Ahrens et al. ’09

To match the theoretical and experimental accuracies, a
full NNLO calculation is needed
• 2-Loop corrections: Czakon ’08; Bonciani et al. ’08-’10
• 1×1-loop corrections: Korner et al. ’05, Anastasiou, Aybat ’08; Kniehl et al. ’08
• Real corrections:
• Subtraction methods at NNLO (massless): Daleo et al. ’09; Boughezal,

Gehrmann-De Ridder, Ritzmann ’10; Glover, Pires ’10
• New NNLO methods (massive): Czakon ’11; Anastasiou, Herzog, Lazopoulos ’10



Motivations

Towards an NNLO calculation for t t̄ we

• Fully extended the NLO antenna subtraction method for hadronic
collisions to incorporate massive particles in the final state

• Computed NLO subtraction terms for σt t̄ and σt t̄+jet

The NLO subtraction term for t t̄ + jet is needed for t t̄ at NNLO (same
matrix elements, same single unresolved limits)



Subtraction at NLO for hadronic processes

Symbolically, we can write

dσ̂NLO =

∫
dΦm+1

(
dσ̂R

NLO−dσ̂S
NLO

)
J(m+1)

m

+

∫
dΦm

(
dσ̂V

NLO + dσ̂MF
NLO+

∫
1
dσ̂S

NLO

)
J(m)

m ,

Subtraction term:
• Approximation to the (m + 1)-particle matrix element in its soft

and collinear limits
• Can be integrated over a factorized form of the (m + 1)-particle

phase space and added to the 1-loop m-particle contribution

⇒ dσ̂R
NLO − dσ̂S

NLO is numerically finite
dσ̂V

NLO + dσ̂MF
NLO +

∫
1 dσ̂S

NLO is free of divergencies



Real radiation contributions
For p1 + p2 → kQ + kQ̄ + (m − 2)jets

dσ̂R
NLO(p1,p2) = N

∑
dΦm+1(kQ , kQ̄ , k1, . . . , km−1; p1,p2)

× 1
Sm+1

|Mm+1(kQ , kQ̄ , k1, . . . , km−1; p1,p2)|2

×J(m+1)
m (kQ , kQ̄ , k1, . . . , km−1).

Knowing the factorization properties ofM in its infrared limits, we can
construct dσ̂S

NLO that reproduces all the configurations in which a
parton j becomes unresolved between the hard radiators i and k .

Unresolved limits ofM:
• Soft gluon limits→ ε poles in dσ̂
• Collinear limits (massless partons)→ ε poles in dσ̂
• Quasi-collinear limits (with at least one massive final state

fermion)→ ln(Q2/M2
Q) in dσ̂ [More on this later]



NLO Antenna subtraction
Subtraction terms for m-jet production:

• Product of reduced matrix elements with m particles and
antenna functions

• Antenna functions Xijk : normalized three-particle matrix element

• Two hard particles (hard radiators)

• One particle soft, or collinear to either of the radiators
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NLO Antenna subtraction for LHC processes
Require three types of antenna functions. Hard radiators can be in
the initial or final state [Daleo, Gehrmann, Maı̂tre ’07]
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For t t̄ and t t̄ + jet at NLO...
We need
• Three types of subtraction terms (final-final, initial-final,

initial-initial)
• Massive final-final and initial-final antennae as well as massless

initial-final and initial-initial antennae
Example: To account for the unresolved limits of a gluon between a
massless qq̄ pair we need

A0
3(q,g, q̄), which is generated from (γ∗ → qgq̄)/(γ∗ → qq̄)

If we have a massive QQ̄ pair instead, we need

A0
3(Q,g, Q̄), which is generated from (γ∗ → QgQ̄)/(γ∗ → QQ̄)

• Massive initial-final antennae are obtained by suitable crossings
on the final-final

• In addition, we also need massive flavour violating A-type
antennae



Massive flavour-violating antennae

For example, in the q̄g → QQ̄q̄g process (t t̄ + jet)

⇒ |M0
6 (3q̄6g → 1Q2Q̄4q̄5g)|2 ∼ |M0

6(1Q ,5g ,4q̄ ; ; 3̂q̄ , 6̂g ,2Q̄)|2 + . . .

5g is emitted between 1Q and 4q̄ (different flavours).

To subtract the limits in which a gluon becomes unresolved between
two fermions with different flavours we need A0

3(Q,g, q̄)
(quark-antiquark of different flavours).
• It is an A-type antenna: it has the same spin properties as

A0
3(q,g, q̄) except that q → Q and the same unresolved limits

• It can be generated from the physical process ratio
(W + → t b̄g)/(W + → t b̄).

For t t̄ + jet we also need A0
3(Q,g,q) (2 quarks of different flavours)

• Can be generated by an MSSM process initiated by a W -boson



Unresolved limits
In its unresolved limits a massless final-final antenna function gives

• X 0
3 (a, s,b)

ks→0−→ 2sab
sassbs

• X 0
3 (a, s,b)

a||s−→ Pas(z)
sas

sij = 2pi · pj

In the massive case

• X 0
3 (a, s,b)

ks→0−→ 2sab
sassbs

− 2m2
a

s2
as
− 2m2

b
s2

bs

• No strict collinear limit
• Quasi-collinear limit: Massive parton decays quasi-collinearly

into two massive partons:
• pµj → zpµ pµk → (1− z)pµ p2 = m2

(jk)

• Constraints: pj · pk , mj , mk , mjk → 0

• Fixed ratios:
m2

j
pj ·pk

,
m2

k
pj ·pk

,
m2

jk
pj ·pk

• Mass dependence in quasi-collinear splitting functions. E.g.:

Pqg→Q(z, µ2
qg) =

1 + (1− z)2 − εz2

z
− 2m2

Q

sqg



Initial-initial configurations
These configurations are unchanged with respect to the massless
case [Daleo, Gehrmann, Maitre ’07].

dσS,(ii)
NLO = N

∑
dΦm+1(kQ , kQ̄ , k1, . . . , kj , . . . , km−1; pi ,pk )

1
Sm+1

×
∑

j

X 0
ik,j |Mm(k̃Q , k̃Q̄ , k̃1, . . . , k̃j−1, k̃j+1 . . . , k̃m−1; xipi , xk pk )|2

×J(m)
m (k̃Q , k̃Q̄ , k̃1, . . . , k̃j−1, k̃j+1 . . . , . . . , k̃m−1).

• ALL momenta need to be remapped to fulfill overall momentum
conservation. The boost needed for this remapping for the
massive particles Q,Q̄ is the same as in the massless case [1]

• Phase space mapping and factorization formulae are unchanged
in the massive case

• No initial-initial massive antennae
[1][Catani, Seymour ’96]



Final-final configurations

For configurations with an unresolved parton j emitted between the
final state hard radiators i and k (one, or both of them being massive)

dσS,(ff )
NLO = N

∑
dΦm+1(k1, . . . , ki , kj , kk , km+1; p1,p2)

1
Sm+1

×
∑

j

X 0
ijk |Mm(k1, . . . ,KI ,KK , . . . , km+1; p1,p2)|2

×J(m)
m (k1, . . . ,KI ,KK , . . . , km+1)

• Massive final-final case derived in [Gehrmann-De Ridder, Ritzmann ’09]

• New: Massive flavour violating A0
3(Q,g, q̄),A0

3(Q,g,q)

• (m + 1)-particle phase space factorizes dΦm+1 → dΦm · dΦXijk

• dΦXijk : 1→ 3 particle phase space with a massless parton (j) and
two hard radiators (i and k , being one or both of them massive)

• Integrated antennae defined as in massless case



Initial-final configurations

To take into account configurations with an unresolved parton j
(which can be massive), an initial state radiatior i (massless) and a
final state radiator k (massive or massless)

dσS,(if )
NLO = N

∑
dΦm+1(k1, . . . , kj , kk , . . . , km+1; pi ,p2)

1
Sm+1

×
∑

j

X 0
i,jk |Mm(k1, . . . ,KK , . . . , km; pi ,p2)|2

×J(m)
m (k1, . . . ,KK , . . . , km)

• Xi;jk obtained by crossing i in Xijk

• Unresolved parton j can be massive [e.g. A0
3(g; Q, Q̄)] or

massless [e.g. E0
3 (q; Q,q) derived from (q → χ̃Qq)/(g → χ̃Q)]

• For t t̄ and t t̄ + jet we computed and integrated all relevant
antennae (including flavour violating)



Initial-final configurations

• We generalized the phase space factorization to the massive
case

dΦm+1(k1, ..., km+1; pi ,p2) = dΦm(k1, ...,Kk , ..., km+1; xipi ,p2)

×
(Q2 + m2

j + m2
k )

2π
dΦ2(kj , kk ; pi ,q)

dxi

xi

dΦ2(kj , kk ; pi ,q): 2→ 2 phase space with one or two massive
final state particles

• Generalized phase space mapping

pi + q → kj + kk ⇒ xipi + q → Kk

xi =
Q2+m2

j +m2
k

2pi ·q



Integrated antennae

We did the ε expansion of all integrated massive antennae (final-final
and initial-final) and found that all pole parts are related to

• x-dependent splitting kernels associated to initial state
collinearities

• Massive I(1) operators [1] that contain the infrared structure of
one-loop amplitudes squared

⇒Constructing our subtraction terms with antennae we are in a good
shape to cancel poles in:

• Virtual contributions

• Mass factorization counterterms

[1][Catani, Dittmaier, Seymour, Trócsányi ’02]



Application to heavy quark pair production at the LHC

For t t̄ production at NLO

dσR =

∫
dξ1

ξ1

dξ2

ξ2

{∑
q

[
fq(ξ1)fq̄(ξ2)dσ̂qq̄→QQ̄g + fq(ξ1)fg(ξ2)dσ̂qg→QQ̄q

+fq̄(ξ1)fg(ξ2)dσ̂q̄g→QQ̄q̄

]
+ fg(ξ1)fg(ξ2)dσ̂gḡ→QQ̄g

}
For the color decomposition of the amplitudes needed for the partonic
cross-sections we consider the fictitious processes
• 0→ QQ̄qq̄g
• 0→ QQ̄ggg



Application to heavy quark pair production at the LHC
Consider, for example, qq̄ → QQ̄g:
• Take the colour decomposition of 0→ QQ̄qq̄g
• Square the colour decomposed amplitude
• Use decoupling identities to eliminate interferences between

different partial amplitudes. In this case

M0
5(1Q , 2Q̄ , 3q , 4q̄ , 5γ) =M0

5(1Q , 5g , 4q̄ ; ; 3q , 2Q̄) +M0
5(1Q , 4q̄ ; ; 3q , 5g , 2Q̄)

=M0
5(1Q , 5g , 2Q̄ ; ; 3q , 4q̄) +M0

5(1Q , 2Q̄ ; ; 3q , 5g , 4q̄)

⇒ |M0
5 (0→ 1Q , 2Q̄ , 3q , 4q̄ , 5g)|2 =

g6(N2
c − 1)

8

×
»
Nc

“
|M0

5(1Q , 5g , 4q̄ ; ; 3q , 2Q̄)|2 + |M0
5(1Q , 4q̄ ; ; 3q , 5g , 2Q̄)|2

”
+

1
Nc

“
|M0

5(1Q , 5g , 2Q̄ ; ; 3q , 4q̄)|2 + |M0
5(1Q , 2Q̄ ; ; 3q , 5g , 4q̄)|2

−2|M0
5(1Q , 2Q̄ , 3q , 4q̄ , 5γ)|2

” –
.



Application to heavy quark pair production at the LHC
• Cross the qq̄ pair to the initial state

|M0
5 (3q̄4q → 1Q , 2Q̄ , 5g)|2 =

g6(N2
c − 1)

8

×
»

Nc

“
|M0

5(1Q , 5g , 4̂q ; ; 3̂q̄ , 2Q̄)|2 + |M0
5(1Q , 4̂q ; ; 3̂q̄ , 5g , 2Q̄)|2

”
+

1
Nc

“
|M0

5(1Q , 5g , 2Q̄ ; ; 3̂q̄ , 4̂q)|2 + |M0
5(1Q , 2Q̄ ; ; 3̂q̄ , 5g , 4̂q)|2

−2|M0
5(1Q , 2Q̄ , 3̂q̄ , 4̂q , 5γ)|2

”–
.

• The subtraction term for this partonic process is

dσ̂S
qq̄→QQ̄g =

g6(N2
c − 1)

8
dφ3(k1Q , k2Q̄ , k5g ; p4q , p3q̄)

×


Nc

»
A0

3(4q ; 1Q , 5g)|M0
4((f15)Q , 2Q̄ , 3̂q̄ ,

ˆ̄4q̄)|2J(2)
2 (K e15, k2)

+A0
3(3q̄ ; 2Q̄ , 5g)|M0

4(1Q , (f25)Q̄ ,
ˆ̄3q̄ , 4̂q)|2J(2)

2 (k1,K e25)

–
−

1
Nc

»
A0

3(1Q , 5g , 2Q̄)|M0
4((f15)Q , (f25)Q̄ , 3̂q̄ , 4̂q)|2J(2)

2 (k e15, k e25)

+A0
3(4q , 3q̄ ; 5g)|M0

4(1̃Q , 2̃Q̄ ,
ˆ̄3q̄ ,

ˆ̄4q)|2J(2)
2 (k̃1, k̃2)

–ff
.



Application to heavy quark pair production at the LHC

For t t̄ + jet production the unphysical processes are:
• 0→ QQ̄qq̄q′q̄′

• 0→ QQ̄qq̄gg
• 0→ QQ̄gggg

Calculations are more involved because
• More partial amplitudes
• More unresolved limits to subtract
• Identical flavour contributions
• Decoupling identities do not always eliminate all interference

terms



Colour interferences

For t t̄ + jet we find squared amplitudes whose interferences between
partial amplitudes cannot be removed with decoupling identities. For
example (ommiting quark labels)

|M0
6 (0→ 1Q , 2Q̄ , 3g , 4g , 5g , 6g)|2 =

g8(Nc − 1)

16N3
c

×
 X

(i,j,k,l)∈P(3,4,5,6)

»
N6

c |M(i, j, k , l)|2 − N4
c |M(i, j, k ; l)|2 +

N2
c

2!
|M(i, j; k , l)|2

−N4
c Re

»„
M(j, i, l, k) +M(j, l, i, k) +M(j, l, k , i)

+M(k , i, l, j) +M(k , j, l, i) +M(l, i, k , j)

+M(l, j, i, k) +M(l, k , j, i)
«
×M(i, j, k , l)†

––
+(N4

c − 3N2
c − 1)|M̄(3, 4, 5, 6)|2

ff
,

(Checked with [Mangano, Parke ’90])



Colour interferences

• Collinear singularities: an interference term develops a collinear
singularity only when a collinear limit is shared by both partial
amplitudes

• Problem: Soft singularities?

At the amplitude level (massless case)

M0
n+1(...,a, s+,b, ...) ks→0−→ 〈ab〉

〈as〉〈sb〉
M0

n(...,a,b, ...)

M0
n+1(...,a, s−,b, ...) ks→0−→ [ab]

[as][sb]
M0

n(...,a,b, ...)



Colour interferences
With some algebra and after spin averaging,

M0
n+1(...,a, s,b, ...)M0

n+1(..., c, s,d , ...)†

ks→0−→
(

sad

sassds
+

sbc

sbsscs
− sac

sasscs
− sbd

sbssds

)
×M0

n(...,a,b, ...)M0
n(..., c,d , ...).

⇒We can subtract the soft singularities of the interference terms with

1
2

X 0
3 (a, s,d)M0

n,1(..., ãs, b̃s, ...)M0
n,1(..., c̃s, d̃s, ...)

+
1
2

X 0
3 (b, s, c)M0

n,2(..., ãs, b̃s, ...)M0
n,2(..., c̃s, d̃s, ...)

−1
2

X 0
3 (a, s, c)M0

n,3(..., ãs, b̃s, ...)M0
n,3(..., c̃s, d̃s, ...)

−1
2

X 0
3 (b, s,d)M0

n,4(..., ãs, b̃s, ...)M0
n,4(..., c̃s, d̃s, ...).

without introducing any extra collinear singularities!



Colour interferences

This way of treating soft singularities in interference terms also gives
all the correct limits in the massive case if we replace

• Massless antenae→ massive antennae
• Massless eikonal factors→ massive eikonal factors

Subtraction terms grow in size:
• Only one antenna function is needed to subtract the soft limits of

a gluon in |M|2

• Subtraction of one soft limit in an interference term requires four
antenna functions



Checks performed on all subtraction terms

As a consistency check we have verified that, for a given process, the
sum of all colour-ordered subtraction terms reproduces the collinear
limits of the full |M0

m|2

dσS a||b−→ g2 C
Pab(z)

sab
× |M0

m|2 × dΦm J(m)
m

• M0
m is the full Born amplitude

• C = CA,CF ,TR is the corresponding Casimir
For example

dσ̂S
qq̄→QQ̄g

1Q ||5g−→ g6dΦ2(k(1+5)Q , k2Q̄ ; p4qp3q̄)J(2)
2 (k(1+5), k2)

×CF
Pqg→Q(z, µ2

qg)

s15
|M0

4 (3q̄4q → (1 + 5)Q ,2Q̄)|2



Summary and conclusions

• We extended the antenna subtraction method at NLO for
initial-final configurations with massive final state fermions:
• Computed and integrated massive initial-final antenna functions

relevant for t t̄ and t t̄ + jet ,
• Generalized phase space mapping and factorization formulae for

the massive case,
• Computed and integrated flavour violating antenna functions.

• We developed a way of subtracting soft singularities from
interferences between different partial amplitudes at NLO.

• We constructed subtraction terms for all partonic processes
involved in t t̄ and t t̄ + jet .

• NEXT: We shall start working on a NNLO extension of the
method for the inclusion of massive final state fermions.

THANK YOU!
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Backup Slide: Check of collinear limits

Take the subtraction term we discussed

dσ̂S
qq̄→QQ̄g =

g6(N2
c − 1)

8
dφ3(k1Q , k2Q̄ , k5g ; p4q , p3q̄)

×


Nc

»
A0

3(4q ; 1Q , 5g)|M0
4((f15)Q , 2Q̄ , 3̂q̄ ,

ˆ̄4q̄)|2J(2)
2 (K e15, k2)

+A0
3(3q̄ ; 2Q̄ , 5g)|M0

4(1Q , (f25)Q̄ ,
ˆ̄3q̄ , 4̂q)|2J(2)

2 (k1,K e25)

–
−

1
Nc

»
A0

3(1Q , 5g , 2Q̄)|M0
4((f15)Q , (f25)Q̄ , 3̂q̄ , 4̂q)|2J(2)

2 (k e15, k e25)

+A0
3(4q , 3q̄ ; 5g)|M0

4(1̃Q , 2̃Q̄ ,
ˆ̄3q̄ ,

ˆ̄4q)|2J(2)
2 (k̃1, k̃2)

–ff
.

1Q ||5g−→ g6 N2
c − 1

8
dΦ2(k(1+5)Q , k2Q̄ ; p4qp3q̄)J(2)

2 (k(1+5), k2)
Pqg→Q(z, µ2

qg)

s15

×
»

Nc |M0
4((1 + 5)Q , 2Q̄ , 3̂q̄ , 4̂q)|2 −

1
Nc
|M0

4((1 + 5)Q , 2Q̄ , 3̂q̄ , 4̂q)|2
–



Backup Slide: Check of collinear limits

= g6dΦ2(k(1+5)Q , k2Q̄ ; p4qp3q̄)J(2)
2 (k(1+5), k2)

×
Pqg→Q(z, µ2

qg)

s15

N2
c − 1
2Nc

N2
c − 1

4
|M0

4((1 + 5)Q , 2Q̄ , 3̂q̄ , 4̂q)|2

= g6dΦ2(k(1+5)Q , k2Q̄ ; p4qp3q̄)J(2)
2 (k(1+5), k2)

×CF
Pqg→Q(z, µ2

qg)

s15
|M0

4 (3q̄4q → (1 + 5)Q , 2Q̄)|2



Massive flavour violating antenna functions
Processes determined according to spin properties: (omitting
couplings):

A0
3(Q,g, q̄) can be generated in the SM from

(W + → t b̄g)/(W + → t b̄)

• t (spin 1/2, massive) plays the role of Q
• b̄ (spin 1/2 massless) plays the role of q̄

A0
3(Q,g,q) is generated from MSSM process [1] ratio

(W + → χ0
i χ

+
j Z 0)/(W + → χ0

i χ
+
j )

• χ0
i : Neutralino (Majorana fermion, spin 1/2, massless). Plays the

role of q (or q̄)
• χ+

j : Chargino (Massive fermion, spin 1/2). Plays the role of Q

• Z 0: Vector boson (taken massless, spin 1). Plays the role of the
gluon. Can be radiated from χ0

i , χ+
j

[1][Rosiek ’95]


