

Recent Top Physics Results from the Tevatron

Rainer Wallny

On behalf of the CDF and D0 Collaborations

The Tevatron Collider

• 1.96 TeV p-anti p collider

<image>

Integrated Luminosity 10000.17 (1/pb)

10,000	 	 	 	 	 	/
9,000	 	 	 	 	 	

🛟 Fermilab

25th Anniversary of First pp Collisions at the Tevatron Friday, December 17, 2010

76 001 11 302 We	3 1985 Sw 2 DID 1	ŤII O	Hicial 1	first event is	Rim 413, event 11.	
	First	800	GeV	Event !!	AN is right.	<u>31</u>
Fat 43	6 Event 11	FILE NONE		12-007-1945 40-50	ц <u>П</u>	alexe a

6 January 2011

Top Quark Production at the Tevatron

Top Quark Analyses at the Tevatron

up to 5.7 fb⁻¹ of data: several 1000 top candidates per experiment

6 January 2011

production cross section, CKM-Matrix-Element |V_{tb}|, single top production Rainer Wallny -Top physics results from the Tevatron

Top Quark Pair Production and Decay

• **Dilepton** (lepton = e or μ) (6%)

- Small rate, small backgrounds
- Main background: Drell-Yan
- Highest purity

• Lepton+Jets (lepton = e or μ) (34%)

- Good rate and manageable backgrounds
- Main background: W+jets,
- Good purity "Golden Channel"

6 January 2011

• All-hadronic (46%)

- Large rate, large background
- Main background: QCD multijet
- Least purity

• Hadronic Taus (tau+lepton, tau+jets) (14%)

- Small rate and large backgrounds
- Main background: Multijets, W+jets
- Challenging purity
- Rainer Wallny Top physics results from the Tevatron

Analysis Strategies

background model validation

- Counting Experiment
 - Establish event selection and estimate background
- Template Analysis
 - Fit 1D signal + background distribution to data
- Matrix Element
 - Use tree level matrix elements to classify signal and background like events
- Neural Networks, Decision Trees
 - Machine learning algorithm to classify signal and background events⁵⁰⁰⁰ based on many input features

6 January 2011

Rainer Wallny -Top physics results from the Tevatron

0.2

-1

0.8

Boosted Decision Trees Output

-0.5

n

0.5

BDT2j1t

Top Quark Mass

- Extraction techniques: Template and Matrix element method
- In-situ JES calibration (W constraint) in lepton+jets topology (golden channel)
- Main uncertainties:
 - -Jet energy scales and resolution
 - MC modeling, ISR+FSR, ...

 Complementary measurements in dilepton and all-hadronic channels

6 January 2011

Top Quark Mass Combination

- Recent (July 2010) Tevatron Combination includes 11 results
- Largest systematic uncertainty is Jet Energy Scale (~0.46 GeV)
- Good agreement across both experiments and channels
- Single Experiment uncertainty of 1 GeV achievable in Run II:

Mass of the Top Quark

6 January 2011

Impact on Higgs Mass

 Higgs Mass bounds from Electroweak Fit:

М_Н < 158 GeV @ 95% CL М_Н = 89⁺³⁵-26 GeV

- SM Higgs Mass constraint now driven by Δm_{W}
 - Δm_w ~ 0.006 x δm_{top} ~ 7 MeV for equal weights in Higgs limits
- m_{top} important SM parameter
 - EW observables, BSM Higgs sector ..

6 January 2011

B-tagged lepton + jets cross section

- Inclusive cross section powerful test of perturbative QCD (known to ~ 6-8% NNLO"approx" V. Ahrens et. al. JHEP 09 097 (2010); U.Langenfeld et al. PRD80 (2009))
- B-tagging powerful tool to increase signal/background
- Conceptually "simple" counting experiment

- Systematics limited:
 - luminosity (~6%)
 - b-tagging systematics

Complement with more sophisticated techniques

6 January 2011

Lepton + jets improved cross section

- Use topological and kinematic quantities (aplanarity, sphericity, H_T...) to improve signal to background separation
 - ttbar more energetic, central and isotropic than W+jets
 - Discriminants using ANN (CDF) or BDT (D0)
- Combine with b-tag counting experiment
 - CDF:BLUE combination, D0: simultaneous MVA and counting experiment

- Additional improvement (CDF): Normalize to inclusive Z-cross section
 - Luminosity uncertainty cancels

$$\sigma_{tt} = 7.82 \pm 0.38 \pm 0.37 \pm 0.15 \text{ pb}$$

6 January 2011

M_t=172.5 GeV

$$\sigma_{tt} = 7.78 \pm 0.25 + 0.73_{-0.59}$$
 pb

M_t=172.5 GeV (stat arXiv:1101.0124v1 hep-ex

Surpassing Tevatron goal (~10%) and ~ theory precision

(stat+syst) (9%)

(stat+syst+Z th.) (7%) and ~ theory pre Rainer Wallny -Top physics results from the Tevatron

Dilepton cross section

Number of events

80

60

40

20

Ω

M_t=172.5 GeV

100

200

 σ_{tt} = 8.23 ± 0.52 ±0.83 ±0.61 pb

300

(stat+syst+lum) (13%)

DØ preliminary 4.3 fb⁻¹ 1

Z bckg: 42.1

t ī: 265.0

Data: 331

Topological

information

400

H_T (GeV)

500

Dibosons: 11.9 Fake bckg: 14.0

Achieving good precision

6 January 2011

Top Pair Production Cross sections

(stat+syst+lum/Z thy) (6%)

m_{top} = 172.5 GeV

Good agreement in all channels

Differential Cross Section

Improved description with NLO+NNLL Ahrens, Ferrogia, Neubert, Pecjak, Yang arXiv:1006.4682 [hep-ph]

6 January 2011

- Some BSM models predict
 - tt resonances
 - e.g. Leptophobic Z' coupling strongly to 3rd generation

No bumps in tt mass spectrum observed

D0: M_{Z'} > 820 GeV (3.6 fb⁻¹)

Search for 4th generation t'

- Treat t' as a more massive top quark
 - t' \rightarrow Wq
- Look for excess in reconstructed mass of t' and $H_{\rm T}$

• Observed limits weaker than expected ($\sim 2\sigma$)

Electroweak Single Top Production

- Test V-A structure of W-t-b vertex
- Access |V_{tb}|

VCKM

Direct measurements $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ \hline V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ Ratio from Bs oscillations Single Top

- Single top signature (W + 2 jets) less distinct than top pairs
- Large and many backgrounds
- ⇒Multivariate analyses essential to establish small signal (Matrix Element, Neural Net, Boosted Decision Trees...)

Single Top Cross section and |V_{tb}|

18/29

• Tevatron combination:

σ_{s+t}=2.76^{+0.58}_{-0.47} pb |V_{tb}|= 0.88±0.07 (>0.77 @95% CL)

- => compatible with Standard Model In all channels
- Independent s- and t-channel measurements
 - Good overall agreement with Standard Model
 - ~2σ effect in CDF result NOT explained by recent theory progress in t-channel signal MC (Campbell et al)
 - => See talk by R. Frederix

6 January 2011

- In SM:
- D0: indirect measurement via t-channel single top cross section

 Γ (t->Wb) = 1.26 GeV (NLO), m_t = 170 GeV

- assume same coupling in decay and production

6 January 2011

Top Quark A_{FB}

• Test of discrete symmetries in strong interactions $A_{FB} = \frac{N_{\Delta Y>0} - N_{\Delta Y<0}}{N_{\Delta Y>0} + N_{\Delta Y<0}}$

• NLO QCD predicts small asymmetry $A_{FB} \sim 5\%$ in $q\bar{q} \rightarrow t\bar{t}$ – top quark preferentially in proton direction

- New physics can modify/enhance A_{FB}
 - Extra heavy gluon octet, W', Z' with anom. couplings
- (Brand-) new CDF result based on 5.3 fb⁻¹
 - $-~\Delta y~(\sim cos~\theta^{\star}_{tt})$ and $M_{ttbar}~(\sim Q^2)$ dependence

6 January 2011

Rainer Wallny - Top physics results from the Tevatron

 $\delta y_h \approx 0.034$

 $\delta y_1 \approx 0.085$

 y_i

New!

http://arxiv.org/abs/1101.0034

FNAL Wine and Cheese

Seminar 7 January 2011!

6 January 2011

$\Delta y \text{ and } M_{t\bar{t}} \text{ dependence}$

Reconstructed (data) level:

Reconstructed A_{FB} (data) overshoots MC@NLO prediction

6 January 2011

Cross checks : lepton charge

- Lepton charge tags the top quark flavor => sign selects preferential rapidity range of top quark
- A_{FB}(+) = A_{FB}(-) suggests CP invariance of underlying process
- => Underlines physics origin of the effect

Unfolded Δy and M_{tt} Dependence

- cross checks: possible bias from unfolding physics model (Pythia versus Color Octet Model P. Ferrario, G. Rodrigo PRD80 051701 (2009)), reconstruction quality, lepton species, b-tagging/anti-tag cross check, jet multiplicity ...
- Awaiting further theory input (NNLO)

Jet Color Flow Measurement

Use color flow between jets as additional handle to separate signal and

background: "Jet Pull"

Gallicchio, Schwartz, PRL 105, 022001 (2010)

6 January 2011

Top Quark Properties Measurements

Property	Run II Measurement	SM prediction	Lumi (fb ⁻¹)
m _t	Tevatron: 173.3 ± 1.1 GeV		4.3-5.6
$\sigma_{ttbar} (m_t=172.5 \text{ GeV}) \\ \sigma_{ttbar} (m_t=172.5 \text{ GeV})$	CDF: 7.50 \pm 0.31 (stat) \pm 0.34 (syst) \pm 0.15 (lumi) pb D0: 7.78 $^{+0.77}_{-0.64}$ pb	7.46 ^{+0.48} _{-0.67} pb / 6.41 ^{+0.51} _{- 0.42} pb	4.5 1
$\sigma_{singletop}$ (@m _t =170 GeV)	Tevatron: 2.76 ^{+0.58} _{-0.47} (stat+syst)	2.86±0.8 pb	3.2-2.3
V _{tb}	Tevatron: 0.91 \pm 0.08 (stat+syst)	1	3.2-2.3
σ(gg->ttbar)/σ(qq->ttbar)	D0: 0.07+0.15-0.07(stat+sys)	0.18 🗸 🗸	1
m _t - m _{tbar}	D0: $3.8 \pm 3.7 \text{ GeV}$ CDF -3.3±1.7 GeV	0	1
$\sigma_{ttbar+jets}$ (@m _t =172.5 GeV)	CDF: 1.6 ± 0.2 (stat) ± 0.5 (syst)	1.79+0.16 -0.31 pb	4.1
СТтор	CDF: 52.5µm @ 95%C.L.	10 ⁻¹⁰ µm	0.3
Top width	D0: Γ_t =2.05 +0.57 -0.52 GeV CDF: Γ_t < 7.6 GeV @ 95%C.L.	1.26 GeV 💙	1
BR(t->Wb)/BR(t->Wq)	CDF: >0.61 @ 95% C.L. D0: 0.97 ^{+0.09} _{-0.08} (stat+syst)	1	0.2 0.9
W-boson Helicity	CDF: $F_0=0.88 \pm 0.11 \pm 0.06$ $F_{+}=-0.15 \pm 0.07 \pm 0.06$ D0: $F_0=0.67 \pm 0.08(\text{stat}) \pm 0.07$ (syst) $F_{+}=0.02 \pm 0.04(\text{stat}) \pm 0.03$ (syst)	$F_0 = 0.7$ $F_+ = 0$	2 5.4
Charge	CDF: 4e/3 excluded with 87% C.L. D0: 4e/3 excluded at 92% C.L.	2/3	1.5 0.37
Spin correlations	CDF: $\kappa = 0.7 \pm 0.6 \pm 0.3$ (lj) D0: $\kappa = -0.2^{+0.6} -0.5$ (stat + syst) (ll)	0.78 -0.022 +0.027	5.0 4.2
Charge asymmetry	CDF: 0.16 ± 0.07 % D0: 0.08 ± 0.04 %	0.05 +- 0.015 0.01 + 0.02 -0.01	5.3 4.3

6 January 2011

Rainer Wallny - Top physics results from the Tevatron Watch this 28/29

Summary

- Top Physics vibrant at the Tevatron!
 - Already 3 new results this year ③
- Precision era in top quark physics
 - Top quark mass <1% will be a Tevatron legacy measurement for years to come
 - Precision of total tt pair production cross section requires (N)NLO
 - Beginning to probe tt pair production differential distributions ~ (N)NLO
 - Electroweak single top production established
- Mapping Top Quark Properties
 - Width, spin, helicity, anomalous V_{tb} ... so far no surprises
 - Still most measurements statistics limited
- Standard Model prevails but a few intriguing effects
 - Weak t' limits
 - $-A_{FB}$
- Still a factor of ~2 more data to come or possibly more
 - Stay tuned

6 January 2011