SUSY-Yukawa sum rule

A road towards testing weak scale naturalness

Monika Blanke

Workshop on heavy particles at the LHC Zürich – January 6, 2011

Goals for the next 25 minutes

Introducing the SUSY-Yukawa sum rule

- 2 Mass measurements overview
- 3 LHC prospects for the SUSY-Yukawa sum rule
 - Parton level analysis
 - Full simulation preliminary!
 - Results
 - 4 Conclusions

MB, D. Curtin, M. Perelstein, 1004.5350, 110x.xxxx

SUSY cancellation of quadratic divergences

• **hierarchy problem:** loop contributions of SM particles (e.g. tops) let the Higgs potential depend quadratically on the cut-off scale

- new particles (stops) with sub-TeV masses required to cancel these contributions
- couplings to the Higgs boson have to be equal

How to access the stop-Higgs coupling at the LHC?

We want to measure the coupling $hh\tilde{t}_{L,R}\tilde{t}_{L,R}^c$:

direct measurement not feasible at the LHC

How to access the stop-Higgs coupling at the LHC?

We want to measure the coupling $hh\tilde{t}_{L,R}\tilde{t}_{L,R}^c$:

- direct measurement not feasible at the LHC
- EWSB ➤ contribution to stop mass matrix

The stop mass matrix

• stop mass matrix: $\mathcal{L} = (\tilde{t}_L^c, \tilde{t}_R^c) \mathcal{M}_t^2 (\tilde{t}_L, \tilde{t}_R)$

$$\mathcal{M}_t^2 = \begin{pmatrix} m_L^2 + m_t^2 + \Delta_u & m_t(A_t + \mu \cot \beta) \\ m_t(A_t + \mu \cot \beta) & m_R^2 + m_t^2 + \Delta_{\bar{u}} \end{pmatrix}$$

rotation to mass eigenstates via

$$\tilde{t}_1 = \cos \theta_t \, \tilde{t}_L + \sin \theta_t \, \tilde{t}_R \tilde{t}_2 = -\sin \theta_t \, \tilde{t}_L + \cos \theta_t \, \tilde{t}_R$$

• then re-express \mathcal{M}^2_{11}

$$m_L^2 + \frac{m_t^2}{m_t^2} + \Delta_u = m_{\tilde{t}_1}^2 \cos^2 \theta_t + m_{\tilde{t}_2}^2 \sin^2 \theta_t$$

analogously for sbottom system

The SUSY-Yukawa sum rule

eliminating m_L^2 yields the SUSY-Yukawa sum rule $(m_b \rightarrow 0)$

$$m_t^2 + \Delta_{ud} = m_{\tilde{t}_1}^2 \cos^2 \theta_t + m_{\tilde{t}_2}^2 \sin^2 \theta_t - m_{\tilde{b}_1}^2 \cos^2 \theta_b - m_{\tilde{b}_2}^2 \sin^2 \theta_b$$

where
$$\Delta_{ud} = \Delta_u - \Delta_d = m_Z^2 \cos^2 \theta_W \cos 2\beta pprox - m_W^2$$

- sum rule expresses stop-Higgs coupling in terms of measurable quantities (masses, mixing angles)
- SUSY weak scale stabilization (in principle) testable at the LHC!

... and what about radiative corrections?

- above derivation valid at tree level
- to quantify effect of radiative corrections, define

$$\Upsilon = \frac{1}{v^2} (m_{\tilde{t}_1}^2 \cos^2 \theta_t + m_{\tilde{t}_2}^2 \sin^2 \theta_t - m_{\tilde{b}_1}^2 \cos^2 \theta_b - m_{\tilde{b}_2}^2 \sin^2 \theta_b)$$

• SUSY tree level prediction: $\Upsilon_{\rm tree}=0.28~~(\tan\beta>{\rm a~few})$

Introducing the SUSY-Yukawa sum rule

Parameters to be determined

• additional information helpful (to pin down radiative corrections)

Introducing the SUSY-Yukawa sum rule

Parameters to be determined

• additional information helpful (to pin down radiative corrections)

➤ most promising at the LHC

Mass measurements in missing energy events

see e.g. Burns, Kong, Matchev, Park, 0810.5576

SUSY mass measurements complicated, as event cannot fully be reconstructed (LSP escapes detection)

endpoint method

measure kinematic endpoints of invariant mass distributions of SM decay products

polynomial method

attempt exact event reconstruction

• M_{T2} method

reconstruct endpoint of transverse invariant mass

for short decay chains $(n \leq 2)$, we need to rely on $M_{T2}!$

Recall: how to measure the W mass

• consider decay $W \rightarrow \ell \nu$: invariant mass

$$m_W^2 = m_\ell^2 + m_\nu^2 + 2p_\ell \cdot p_\nu$$

• but we know only $p_T^{
u} = p_T$

• consider transverse mass instead

$$m_T^2 = m_\ell^2 + m_\nu^2 + 2(E_T^\ell E_T^\nu - \boldsymbol{p}_T^\ell \cdot \boldsymbol{p}_T^\nu)$$

• m_W is then determined by the endpoint

$$m_W = \max_{\text{all events}} \{m_T\}$$

• Note: $m_
u$ and ${oldsymbol p}_T^
u$ are known

The stransverse mass M_{T2}

BARR, LESTER, STEPHENS, HEP-PH/0304226

SUSY events complicated by

- two missing particles
- LSP mass unknown

The stransverse mass M_{T2}

BARR, Lester, Stephens, hep-ph/0304226

SUSY events complicated by

- two missing particles
- LSP mass unknown
- \succ the best we can do
 - use trial LSP mass χ

minimize over all possible LSP momentum configurations

 \succ define the stransverse mass M_{T2} by

$$M_{T2}(\chi) = \min_{\boldsymbol{p}_T^{(1)} + \boldsymbol{p}_T^{(2)} = \boldsymbol{p}_T} \left\{ \max\{m_T^{(1)}, m_T^{(2)}\} \right\}$$

edge of distribution: $M_{T2}(\chi)_{\max} = \frac{M^2 - m^2}{2M} + \sqrt{(\frac{M^2 - m^2}{2M})^2 + \chi^2}$

Mass measurements - overview

Extension: the subsystem M_{T2}

Burns, Kong, Matchev, Park, 0810.5576

for n > 1 step decay chains:

generalize M_{T2} concept to subsystem $M_{T2}^{(n,p,c)}(\chi)$ (*n*: grandparent index, *p*: parent index, *c*: child index)

 $M_{T2}^{(n,p,c)}(\chi)$ endpoint yields relation between m_n , m_p and m_c

Our benchmark scenario - main virtues

$m_{\tilde{t}_1}$	=	$371\mathrm{GeV}$	aneta	=	10
$m_{\tilde{t}_2}$	=	$800{\rm GeV}$	$\sigma(pp \to \tilde{t}_1 \tilde{t}_1^c)$	=	$2\mathrm{pb}$
$\sin \theta_t$	=	-0.09	$\sigma(pp \to \tilde{g}\tilde{g})$	=	$11{\rm pb}$
$m_{ ilde{b}_1}$	=	$341{\rm GeV}$	$Br(\tilde{g} \to b\tilde{b}_1)$	=	100%
$m_{ ilde{g}}$	=	$525{\rm GeV}$	$Br(\tilde{b}_1 \to b \tilde{\chi}_1^0)$	=	100%
$m_{ ilde{\chi}_1^0}$	=	98 GeV	$Br(\tilde{t}_1 \to t\tilde{\chi}_1^0)$	=	100%

for now: parton level analysis using MG/ME and BRIDGE
more realistic analysis (Pythia, PGS) in progress

MB, D. Curtin, M. Perelstein, 1004.5350, 110x.xxxx

Gluino pair production $-4b + E_T$

It's all about finding edges!

- consider $pp \to 2\tilde{q} \to 2b + 2\tilde{b}_1 \to 4b + E_T$
- $\sigma(pp \to 2\tilde{g}) \simeq 11.6 \, \text{pb}$ for $\sqrt{s} = 14 \, \text{TeV}$
- basic E_T , \mathbb{E}_T cuts & require 4 b-tags
- with $\mathcal{L} = 10 \, \text{fb}^{-1}$: ~ 4800 signal events, SM background negligible!

• however: combinatorial background – which b-jet is which?

several possible ways to get rid of 'wrong' pairings (e.g. ΔR) > we always require two independent methods to yield consistent **results** (otherwise measurement is rejected)

Parton level analysis

Mass determination for \tilde{g} , b_1 and $\tilde{\chi}_1^0$

- M_{bb} invariant mass endpoint can easily be recovered
- need two more edges to pin down all masses > $M_{T2}^{(2,2,0)}$, $M_{T2}^{(2,1,0)}$

BARR ET AL, HEP-PH/0304226; BURNS ET AL, 0810.5576

> combining those, we obtain the mass measurements

	68% C.L.	theory
$m_{\tilde{b}_1}$	(316,356)	341 GeV
$m_{\tilde{g}}$	(508,552)	525 GeV
$m_{ ilde{\chi}_1^0}$	(45 ^(*) ,115)	98 GeV

(*) LEP lower bound

Stop pair production – extracting $m_{\tilde{t}}$.

- analyze $pp \rightarrow 2\tilde{t}_1 \rightarrow 2t + E_T$
- $\sigma(pp \to 2\tilde{t}_1) \simeq 2 \text{ pb for } \sqrt{s} = 14 \text{ TeV}$
- impose standard cuts & use hadronic tops (following MEADE, REECE, HEP-PH/0601124)

- with $\mathcal{L} = 100 \, \text{fb}^{-1}$: $S/B \simeq 14$, $S/\sqrt{B} = 140$
- straightforward to extract

$$(M_{T2})_{\sf max}(\chi=0)=(340\pm4)\,{\sf GeV}$$
 theory: 336.7 GeV

• using our previous $m_{\tilde{\chi}^0_{+}}$ measurement we find (68% C.L.)

$$356~{
m GeV} \le m_{ ilde{t}_1} \le 414~{
m GeV}$$
 theory: 371 GeV

Effects of initial state radiation etc.

- ISR introduces "unbalance" in transverse momenta.
 - $\succ M_{T2}$ edges are ISR-dependent

Alwall et al., 0905.1201 Konar et al., 0910.3679 Nojiri, Sakurai, 1008.1813

2 ways out:

- **1** perform ISR-binned analysis $\succ M_{T2}(p_{T,ISR}) \succ$ true M_{T2}
- introduce $M_{T2\perp}$: analogous to M_{T2} , but consider only $p_T \perp p_{T,\text{ISR}}$ 2 > ISR-independent

Effects of initial state radiation etc.

- ISR introduces "unbalance" in transverse momenta.
 - $\succ M_{T2}$ edges are ISR-dependent

Alwall et al., 0905.1201 Konar et al., 0910.3679 Nojiri, Sakurai, 1008.1813

2 ways out:

- **1** perform ISR-binned analysis $\succ M_{T2}(p_{T,ISR}) \succ$ true M_{T2}
- 2 introduce $M_{T2\perp}$: analogous to M_{T2} , but consider only $p_T \perp p_{T | SR}$ > ISR-independent
- FSR, hadronization, detector effects: minor impact, mostly taken care of by jet clustering

loss in statistics, but combining both methods reliable edge determinations are still possible!

Full simulation - preliminary!

Improved kink fitting

so far: simple linear kink fit, three fit parameters ➤ good results for sharp edges

but: edges are smeared out by jet energy smearing

- > convolute linear kink fit function with Gaussian distribution
 - semi-realistic fit function
 - reliably determines edges with significant smearing
 - fit uncertainties better under control

So what did we learn?

 $\,$ 4 MSSM masses determined – only 120 parameters left $\,$ $^{\odot}$

So what did we learn?

- ullet 4 MSSM masses determined only 120 parameters left igodot

$$\Upsilon = \underbrace{\frac{1}{v^2} (m_{\tilde{t}_1}^2 - m_{\tilde{b}_1}^2)}_{\Upsilon'} + \underbrace{\frac{\sin^2 \theta_t}{v^2} (m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2)}_{\Delta \Upsilon_t} - \underbrace{\frac{\sin^2 \theta_b}{v^2} (m_{\tilde{b}_2}^2 - m_{\tilde{b}_1}^2)}_{\Delta \Upsilon_b}$$

- our measurements yield $\Upsilon' = 0.53^{+0.20}_{-0.15}$ theory: 0.35
- however no information on ΔΥ_t, ΔΥ_b
 > sum rule test has to wait for lepton collider

Results

Information from Υ' measurement

- Υ' alone does not test the sume rule
- but assuming the MSSM it can be used to restrict θ_t and θ_b ٢

$$\Upsilon' = \underbrace{\Upsilon}_{|\Upsilon|<1} - \underbrace{\frac{\sin^2 \theta_t}{v^2} (m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2)}_{\Delta\Upsilon_t > 0} + \underbrace{\frac{\sin^2 \theta_b}{v^2} (m_{\tilde{b}_2}^2 - m_{\tilde{b}_1}^2)}_{\Delta\Upsilon_b > 0}$$

for direct θ_t measurement, see e.g. HISANO ET AL, HEP-PH/0304214; Perelstein, Weiler, 0811.1042; Rolbiecki et al, 0909.3196

- SUSY-Yukawa sum rule relates stop-Higgs coupling to stop and sbottom masses and mixing angles ➤ measurable quantities
- verifying (or falsifying) the sum rule means testing SUSY as the origin of the weak scale stabilization
- 3 full measurement will have to wait for lepton collider
- We can make significant progress at the LHC in some regions of parameter space:
 masses of t
 ₁, b
 ₁, g and x
 ₁⁰ can be determined
 ➤ prediction for θ_t, θ_b
- (5) we also developed new techniques to reduce combinatorial backgrounds in M_{T2} analyses

Back-up slides

Conclusions

Definition of benchmark scenario

parameter	EWSB scale value		
M_1	100 GeV		
$M_{2,3}$	450 GeV		
A_t	390 GeV		
μ	400 GeV		
aneta	10		
M_A	600 GeV		
$m_{\tilde{e}_I P, \tilde{\tau}_I P, \tilde{a}_I \tilde{u}_P, \tilde{d}_P}$	1000 GeV		
$m_{\tilde{Q}_L}$	310 GeV		
$m_{ ilde{t}_B}^{\mathfrak{q}_L}$	780 GeV		

SM backgrounds to $4b + p_T$

Background	Generator	$\epsilon_{ m b}\sigma$	$\epsilon_{ m b}\epsilon_{ m kin}\sigma$
$4j + (Z \to \nu\nu)$	MGME, ALPGEN	10 fb	
diboson + jets	—	$< 10\mathrm{fb}$	
$tt \to n\tau + X$	MGME, BRIDGE	$21.6\mathrm{pb}$	$25\mathrm{fb}$
t			$\ll 30{\rm fb}$

assumed b-tagging efficiencies: 0.6 (b), 0.1 (c, τ), 0.01 (light jet)

Some technical details – parton level

- SUSY spectrum and decays calculated using SUSY-HIT
- $\bullet\,$ parton-level analysis for $\sqrt{s}=14\,{\rm TeV}\,\,pp$ collisions
- Monte Carlo event samples generated by MadGraph/MadEvent
- fully decayed final state obtained with BRIDGE
- leading order analysis, using CTEQ6I1 pdf sets
- Gaussian smearing of jet energies

$$\frac{\Delta E}{E} = \frac{50\%}{\sqrt{E[\text{GeV}]}} \oplus 3\%$$

to simulate detector response