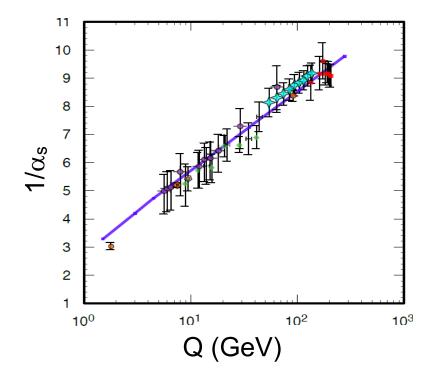

HEAVY PARTICLES AT THE LHC

A workshop organized by the University of Zurich and ETH Zurich


Summary Talk S. Dawson, BNL January 7, 2011

Apologies

- For all the results I don't mention here
- For inadequate referencing
- Why have a summary talk?
 To give a "big picture synthesis"
 For observers in internet land

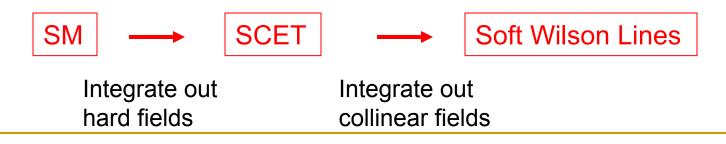
Why Emphasize Heavy Particles? (#1)

Perturbation theory converges well

• Precise predictions: $\sigma = \sigma_0 + \alpha_s \sigma_1 + \alpha_s^2 \sigma_2 + \dots$

Kronfeld & Quigg, arXiv:1002.5032

Why Emphasize Heavy Particles? (#2)


- Effective Field Theory (EFT) works
- Classify Beyond the SM (BSM) physics by new operators involving SM particles [Willenbrock]

Operators, O_i, restricted by symmetries of SM

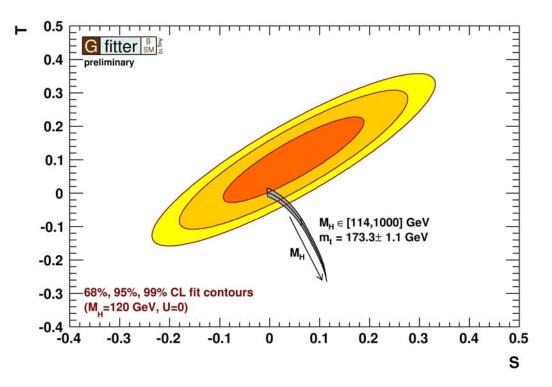
$$L = L_{SM} + \sum_{i} c_i \frac{O_i}{\Lambda^2} + \dots$$

• Valid at scales $Q \ll \Lambda$

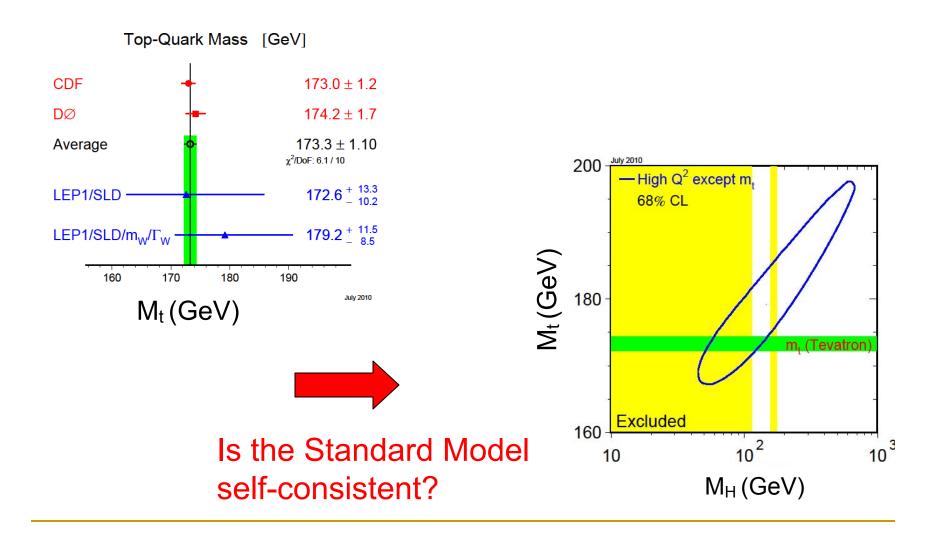
Classify EFT by hierarchy of scales [Signer, Neubert]

Why Emphasize Heavy Particles? (#3)

- Potentially large BSM effects in heavy particle production and decay
- Example: Top quark
 - □ The top is heavy! (Why is $M_t >> M_b$?)
 - \square Top coupling to Higgs large ${\sim}M_t/v {\sim} 1$
 - \square Top coupling to longitudinal W's large ~M_t/M_W
 - Top decays before it can hadronize
 - Large top mass can drive electroweak symmetry breaking


Why Emphasize Heavy Particles? (#4)

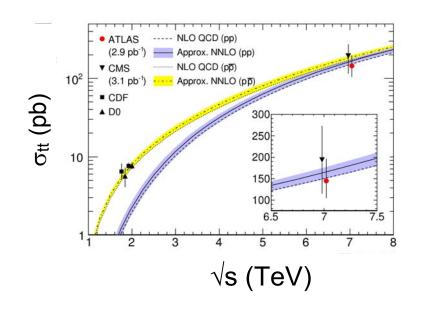
New particle searches


- SUSY particles [Barbieri, Blanke, Kulesza, Plehn, Schwinn]
- Kaluza Klein states in extra-dimension models [Flacke]
- Heavy leptons [Picek]
- Generalized search strategies [Wacker]
- Something we haven't thought of yet (EFT particularly useful here)

Standard Model Works

 BSM physics must be consistent with precision electroweak measurements

The Top Quark


Top at the Tevatron

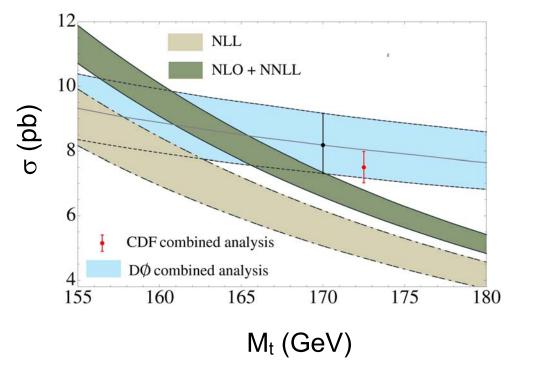
- Top is mature....several 1000 tops/experiment
- Tevatron combination: M_t=173.3±1.1 GeV
 - \square SM Higgs constraint driven by $\delta M_W.$
 - □ Need $\delta M_W \sim 7 \text{ MeV}$
- Top pair cross section to 6% by using Z for luminosity normalization
 - CDF: σ_{tt} = 7.50 ± 0.31 ± 0.34 ± 0.15 pb (stat+syst+lum/ Z thy)
- No tt resonances to 900 GeV
- 4th generation, M_t>335 GeV

[Wallny]

Top Quark at the LHC

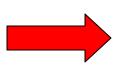
- Top quarks observed with ~3 pb⁻¹!
- Cross section measured [Kroeninger, Krutelyov]
- Top sample at LHC will surpass Tevatron in 2011
- Expect 5σ for single top in 2011

ATLAS: 37 top candidates (semileptonic/di-lepton channels):


$$\sigma_{tt} = 145 \pm 31_{-27}^{+42} \, pb$$

CMS: 11 top candidates (di-lepton channel)

$$\sigma_{tt} = 194 \pm 72 \pm 24 \pm 21 pb$$


CMS, arXiv: 1010.5994, ATLAS, arXiv:1012.1792

Top Quark: Cross Section and Mass

δσ/σ(exp)~6%

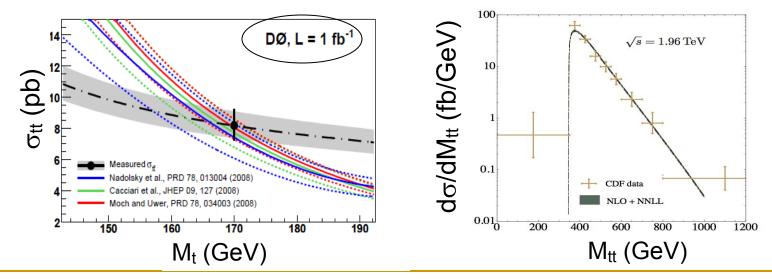
 $\delta M_t(exp) \sim 1 \text{ GeV}$

Is the Standard Model self-consistent?

Is there room for BSM physics here?

Ahrens, Ferroglia, Neubert, Pecjak, Yang, arXiv:1003.5827

Top Mass From σ


Note spread of higher order estimates [Moch]

- Need full NNLO
- Better scale dependence using running top mass

 \Box Determine M_t from d σ /dM_t

D0 09: NLO $M_t = 165^{+6.1}_{-5.9}$ GeV; NNLO $M_t = 169.1^{+5.9}_{-5.2}$

□ Neubert: M_t=163^{+7.2}-6.2 GeV

Top Pair Production Cross Sections

- LHC goal: δσ_{tt}/ σ_{tt} ~5%
 - □ LHC will have $10^5 10^6$ tops
- Resummation
 - Threshold and Coulomb effects [Schwinn]
 - EFT calculation [Neubert]
- Towards NNLO [Abelof, Czakon, Ferroglia]
- Spin correlations between production/decay [Melnikov]
- Beyond the narrow width approximation (NWA) [Pozzorini, Papadopoulos]
- Inclusion of showering at NLO [Alioli]
- Top as a tool for BSM physics [Plehn, Kaplan]

Top is background for SUSY, Higgs searches,...

Resummation in Top Pair Production

• Threshold + Coulomb corrections [$\beta = \sqrt{(1-4M_t^2/s)}$]

 $\sigma \approx \sigma_0 \exp\left[\ln(\beta)g_0(\alpha_s \ln(\beta)) + g_1(\alpha_s \ln(\beta)) + \alpha_s g_2(\alpha_s \ln(\beta)) + ...\right] \sum_{l \in I} \left(\frac{\alpha_s}{\beta}\right)^l (...)$

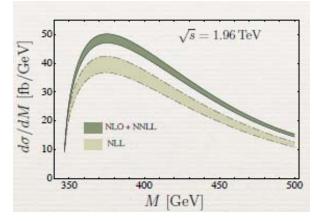
- Near threshold, heavy particles non-relativistic
 - □ $E \sim m\beta^2 \sim soft gluon momenta$
 - □ Simultaneous resummation of threshold logs and Coulomb effects [Schwinn] $\sigma_{NLO+NNLL}(pb) = 6.77$

 $\sigma_{_{NLO+NLL}}(pb) = 6.57$

(Tevatron)

Expand to obtain approximate NNLO result

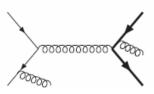
$$\sigma_{NNLO(approx)+NNLL+Bound-State} = 7.14$$


* M_t=173.1 GeV Beneke, Falgari,Schwinn, arXiv:1007.5414 ₁₄

Resummation in EFT for Top Pairs

- Cross section factorizes
 σ ~(Hard)(Jet)(Soft)
- Use SCET to integrate out hard & soft modes at appropriate scales [Neubert]
- NLO +NNLL resummation
 - Includes resummation of soft gluon effects above threshold

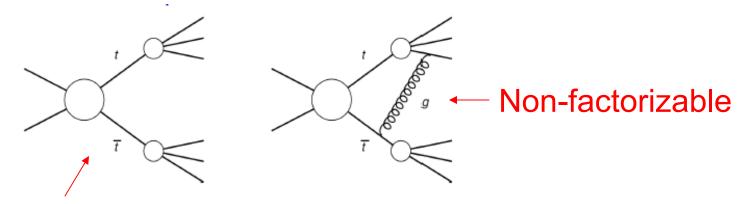
Tevatron


$$\sigma_{NLO+NNLL}(pb) = 6.30$$

$$\sigma_{NNLO,approx}(pb) = 6.14$$

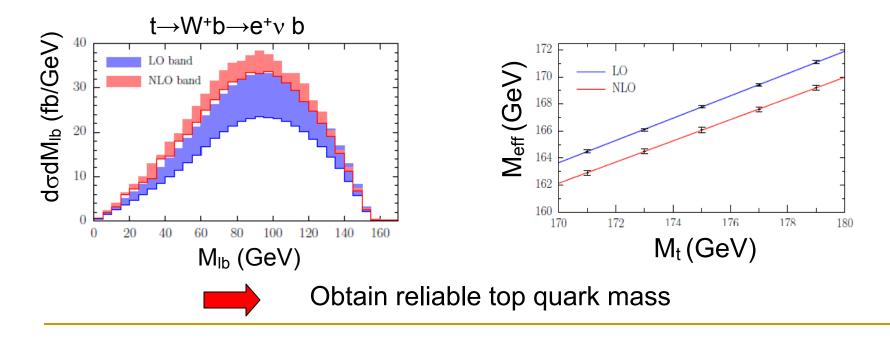
Towards an NNLO Calculation

- Ingredients:
 - 2-loop virtual diagrams for $gg, q\overline{q} \rightarrow t\overline{t}$
 - Completely known numerically, some pieces known analytically [Czakon, Ferroglia]
 - 1-loop diagrams for $gg \rightarrow t\bar{t}g$, etc
 - Known from NLO $pp \rightarrow t\bar{t}j$ calculation
 - NNLO subtraction terms needed [Abelof]
 - Tree diagrams for $gg \rightarrow t\bar{t}gg$, etc
 - Known numerically [Czakon]



It appears clear that this calculation can be finished (WOW!)

Need Decays in Top Calculations


- Top quarks keep polarization as they decay
- Measurements of top mass involve correlations between kinematics and mass
- Finite width effects expected to be small
 - \Box Log ($\alpha_s \Gamma_t/M_t$) terms cancel in inclusive observables

Most calculations use narrow width approximation

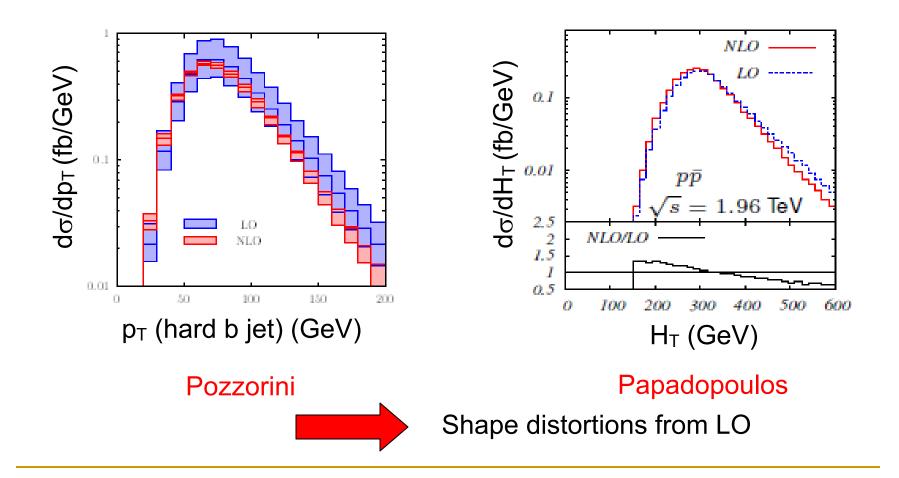
On-Shell Top Production and Decay


- Expect contributions from non-factorizable corrections to be $O(\alpha_s\Gamma_t/M_t)$
- Keep top on mass shell, include production/decays to NLO with spin correlations [Melnikov]

Biswas, Melnikov, Schulze, arXiv: 1006.0910

Top Production and Decay

- W⁺W⁻bb at NLO: technical tour de force
 - Includes off-shell tops/non-resonant backgrounds
 - Finite width effects could be important for percent level precision in σ; shape of top resonance (for M_t measurement)
 - For total σ, finite width effects ~1% at Tevatron
 - Calculation can tell us which distributions can be calculated with NWA

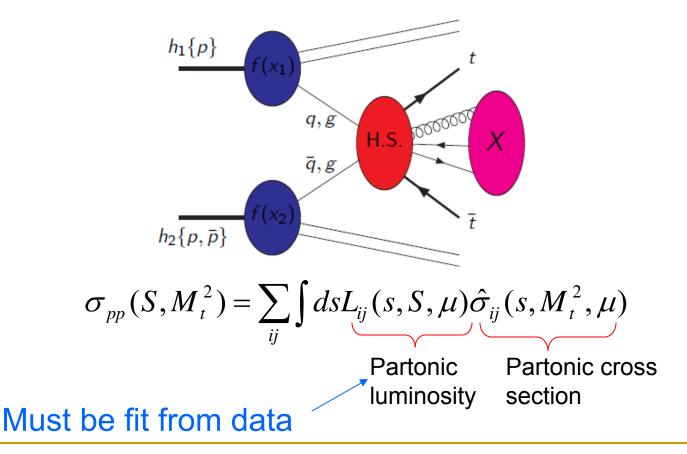


Pozzorini: Feynman diagrams + tensor integrals

Papadopoulos: OPP + HELAC

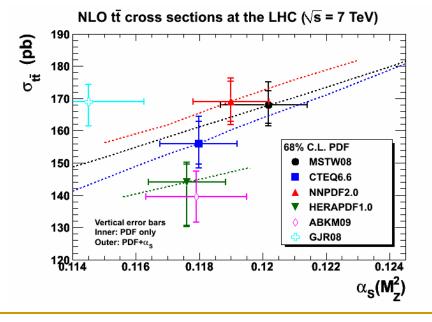
Denner, Dittmaier, Kallweit, Pozzorini, arXiv:1012.3975; Bevilacqua, Czakon, van Hameren, Papadapoulos,Worek, arXiv:1012.4230

W⁺W⁻bb at NLO: Tevatron Distributions



Top Production with Parton Showers

- Need to include NLO corrections with parton shower Monte Carlos
 - MC@NLO and POWHEG
- tt+jet at NLO implemented in POWHEG [Alioli]
 - Uses virtual contribution from Dittmaier et al.
 - Good agreement between fixed order POWHEG and NLO calculations
 - Different subtraction so non-trivial check
 - POWHEG distributions in progress
 - Observe effects of showering in exclusive quantities


Immense Effort Computing NNLO Top Pair Cross Section

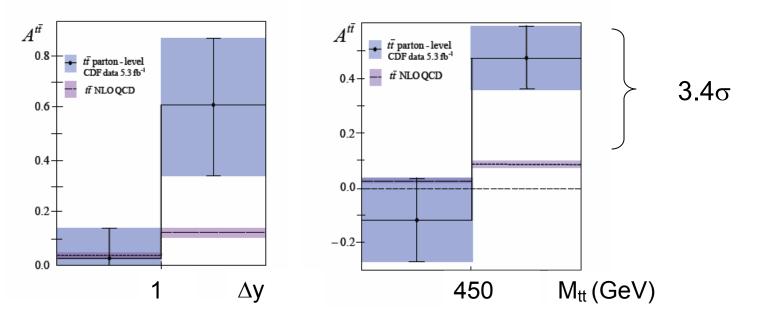
But there is another piece...

What is Theory Precision on Top Cross Section?

- Scale uncertainty is ~ 10%
- PDF uncertainties of top cross section driven by differences in gluon distributions at large x and different α_s [Stirling]

Unsatisfactory situation: Measurement of top pair cross section could be used to distinguish between PDFs

PDF4LHC, arXiv:1101.0536

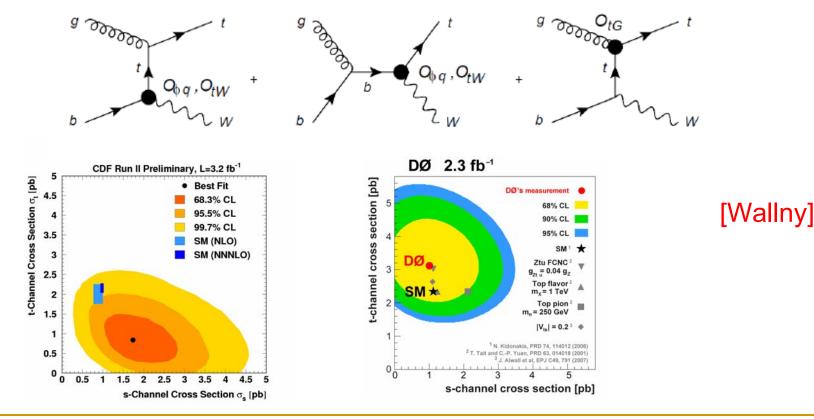

Asymmetry in Top Quark Production

$$A_{fb}(lab) = \frac{\int_{y>0}^{y>0} N_t(y) - \int_{y>0}^{y} N_{\bar{t}}(y)}{\int_{y>0}^{y>0} N_t(y) + \int_{y>0}^{y} N_{\bar{t}}(y)}$$

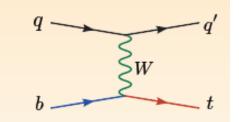
- Asymmetry is zero at LO
 Both D0 & CDF measure non-zero effect: ~ 2.7σ from 0
- Theory with full decays: A_{fb}(lab) = 0.051±.0013
 - Agrees with result from NWA [Papadopoulas, Pozzorini]
 - □ CDF A_{fb}(lab)=.158 ±.074 [corrected] (5.3 fb⁻¹)
 - \square Theory/experiment difference ~ 2σ
 - Hard to explain with BSM models [Rodrigo, Frederix]
 - Combining A_{fb} with $d\sigma/dM_{tt}$ strongly restricts BSM physics

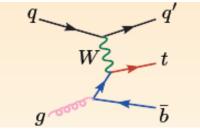
Differential A_{fb}

• CDF with 5.3 fb⁻¹: differential A_{fb} in Δy , M_{tt}



[Wallny]

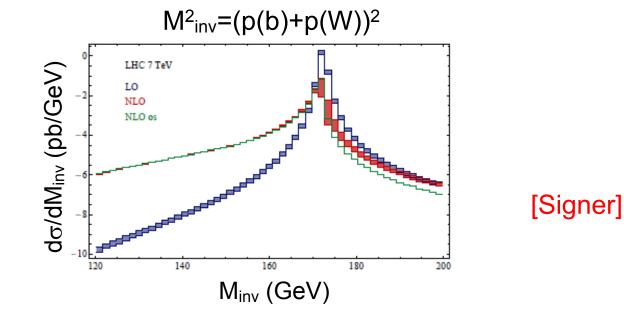

CDF, arXiv:1101.0034


Single top

- Subtlety in s-t channel separation beyond LO
- BSM physics contributes differently to s-t channels [Willenbrock]

Single Top Production

[Frederix]

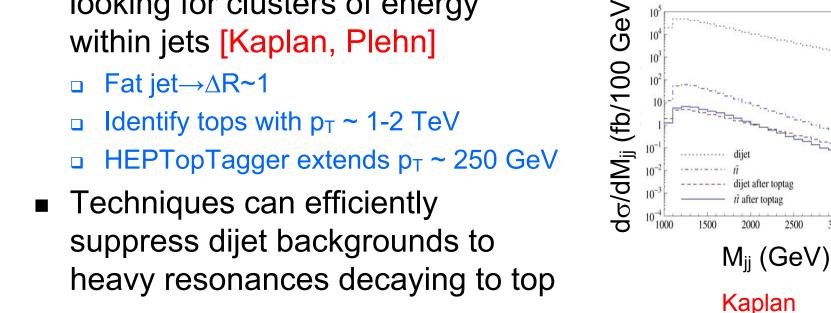

4FNS

- □ 4 and 5FNS are different orderings of perturbation theory
- NLO calculation in 2 schemes
 - Total cross sections in agreement
 - Differences in exclusive quantities involving spectator b quark
 - Doesn't explain s-channel cross section issue
- □ Next: match 4FNS with parton shower

Decays in Single Top Production

- Improve NWA by expanding in (pt²-Mt²)/Mt² << 1 and using pole approximation</p>
 - Method requires small parameter:

 $(150 \text{ GeV})^2 < (p(b)+p(l)+p(v))^2 < (200 \text{ GeV})^2$

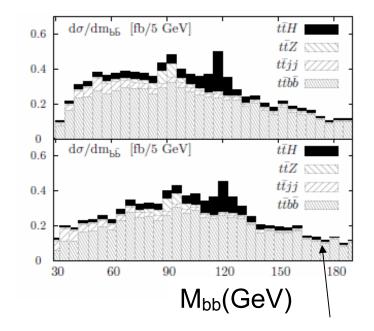

Kaplan, Rehermann, Schwartz, Tweedie, arXiv: 0806.0848

3500

14 TeV

2500

3000


Top Tagging

Many examples of BSM physics have heavy particles decaying to top

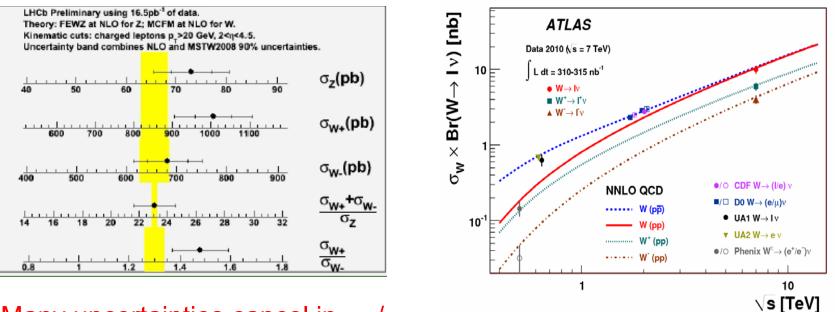
Tag top using jet substructure by looking for clusters of energy within jets [Kaplan, Plehn]

Top tagging

- ttH, H→bb, large continuum background [Plehn] (S/B~1/9)
 - Look for 1 fat Higgs, 1 fat top jet
 - □ Tease out signal, S/√B~ 4-5 for 100 fb⁻¹
- Top tagger can help to find $\widetilde{t} \rightarrow t + E_T^{miss}$
 - Tag 2 hadronic fat jets
 - Helps to eliminate backgrounds
 - S/ \sqrt{B} ~6 with 10 fb⁻¹

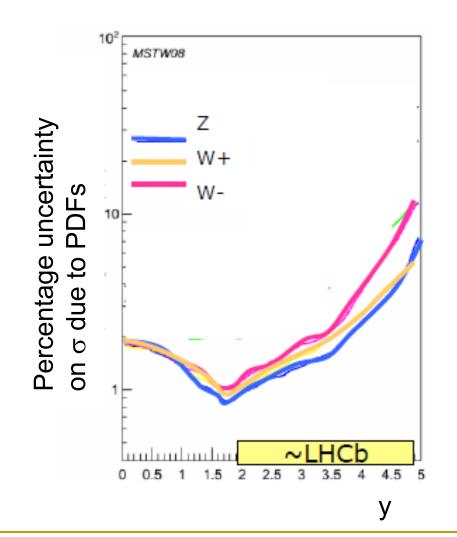
Underlying event included

Plehn,Spannowsky, Takeuchi, Zerwas, arXiv:1006.2833; Plehn, Salam, Spannowsky, arXiv:0910.5472


b's are Heavy Too

- b cross section is perturbative
 - Cross section measurements at CMS from semi-leptonic decays, b-tagged jets, exclusive B hadron decays [Chiochia]
 - □ MC@NLO+Herwig generally below data at low p_T
 - □ FONLL, POWHEG + Phythia in better agreement
 - □ Phythia above data for p_T below 50 GeV
- Need to understand properties of b-jets for BSM physics searches
 - Measure angular correlations between b jets
 - \square Aim is to understand collinear g \rightarrow bb splitting

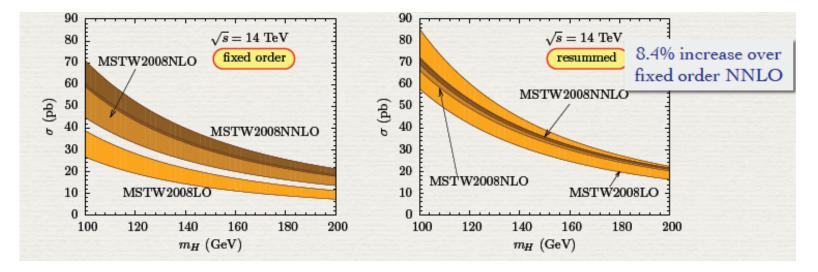
Important testing ground for perturbative QCD and Monte Carlo programs



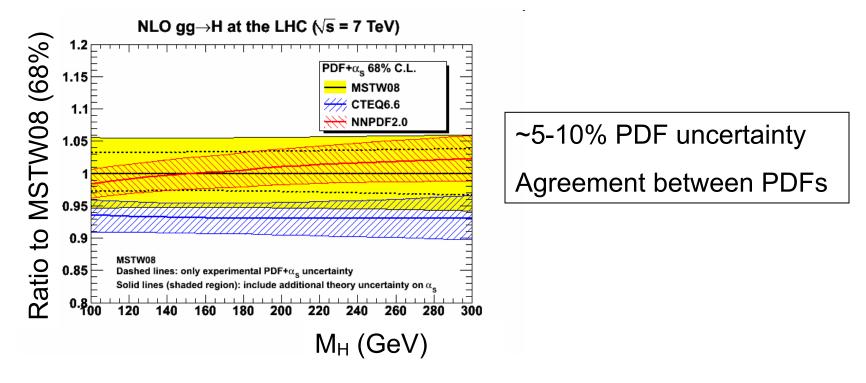
Measurements of W/Z cross sections in forward region by LHCb [McNulty]

Many uncertainties cancel in $\sigma_W / \sigma_Z \rightarrow$ Excellent agreement with NNLO theory

LHCb Kinematic Regime Different

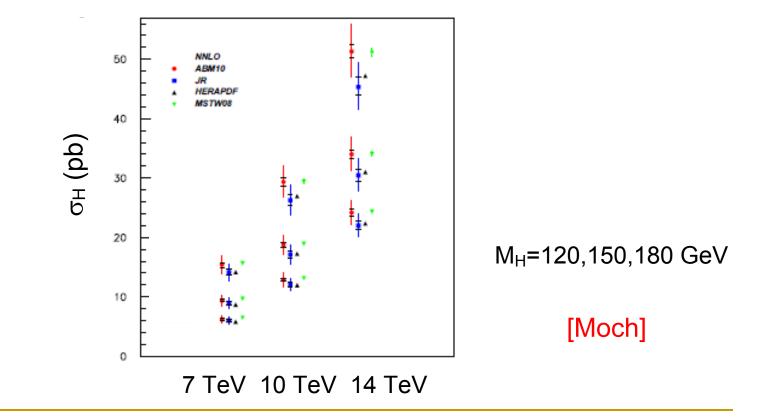


Goal: Use measurements of W/Z production in forward region to probe PDFs in new kinematic regime

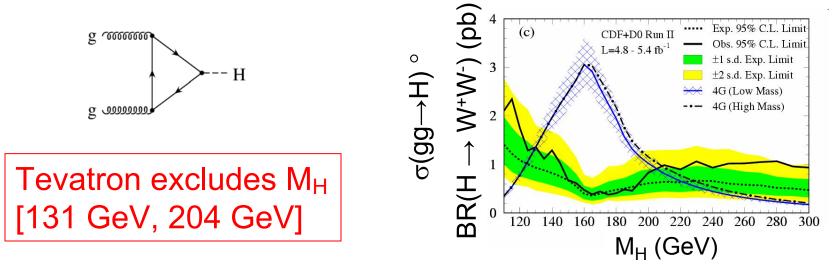

Precision predictions from SCET

Significant change in rates with resummation Scale variation improved by resummation Compete NNLO calculation for $gg \rightarrow H$ exists! [Neubert]

PDF Uncertainties in Higgs Production


 Smaller PDF uncertainties than for top production [Stirling]

PDFs and the Higgs


□Redo ABKM NNLO fit to include D0 Run II data

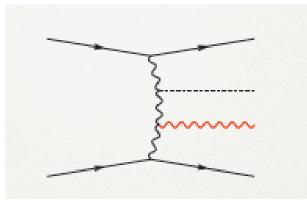
□Higgs NNLO results consistent between PDF sets

Higgs Production Sensitive to BSM Physics

NNLO calculation with 4th Generation fermions [Furlan]

Composite Higgs Model with vector-like fermions

At NNLO, rate reduced by 30-35% relative to SM with 1 multiplet
 Reliable predictions for BSM Models


Anastasiou, Boughezal, Furlan, arXiv: 1003.4677

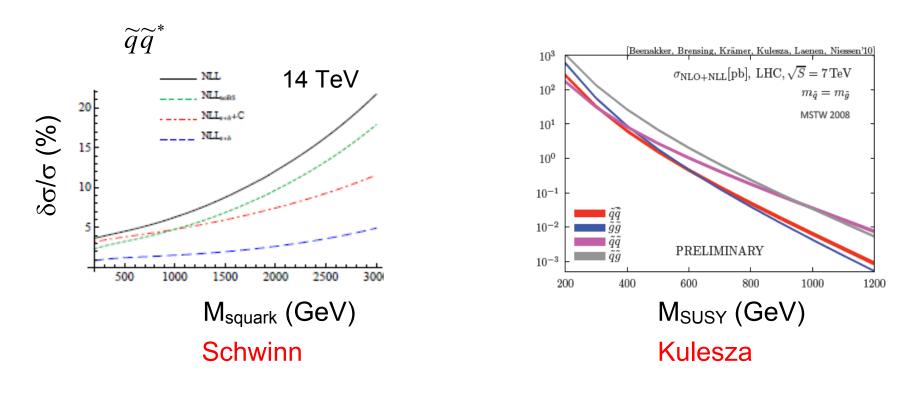
Vector Boson Fusion

QCD corrections to Higgs + photon in VBF [Figy]

- Hard photon helps to suppress QCD background
- □ Goal is to use $H \rightarrow bb$ channel
- □ S/ \sqrt{B} < 3 for M_H=120 GeV, L=100 fb⁻¹

QCD corrections ~ 1%

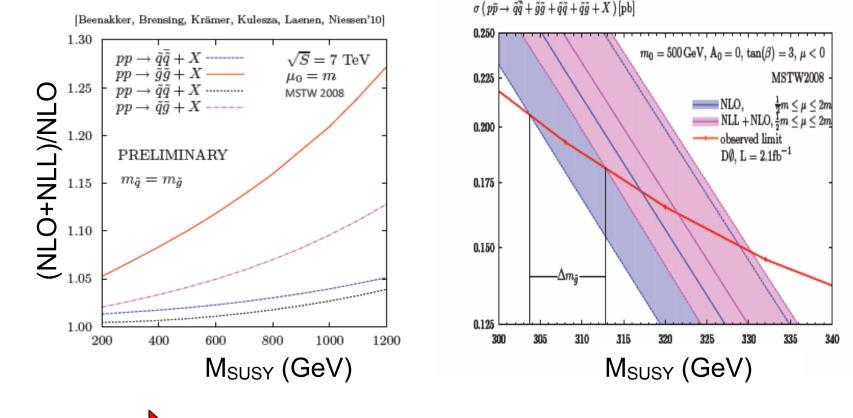
SUSY Models


- Not just the MSSM [Barbieri]
 - Increase mass bound on lightest Higgs by adding U(1), SU(2), or gauge singlet... M_h ~200-300 GeV
 - Higgs contributions to precision measurements compensated by new contributions to ΔT
 - Typically some coupling becomes non-perturbative
 - Non-standard squark spectrum with couplings arranged not to violate flavor bounds

$$\widetilde{M}_{q1,q2} >> \widetilde{M}_g >> \widetilde{M}_{q3}$$

□ Need $M_{q1,q2} > 10$ TeV

SUSY Cross Sections


Resum threshold logarithms [Kulesza, Schwinn]

Resummation reduces scale dependence

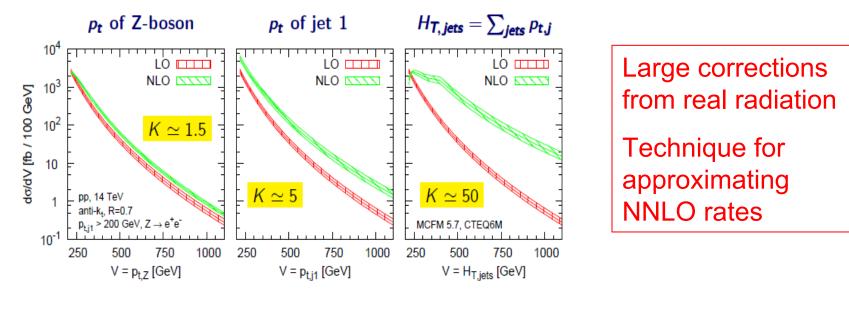
Resumation Changes SUSY Limits

Kulesza

Expect mass limits to shift by ~ 10 GeV

How Do We Know It's SUSY?

- Couplings are related in MSSM: $ht\bar{t} \Leftrightarrow hh\tilde{t}\tilde{t}^*$
- MSSM sum rule:

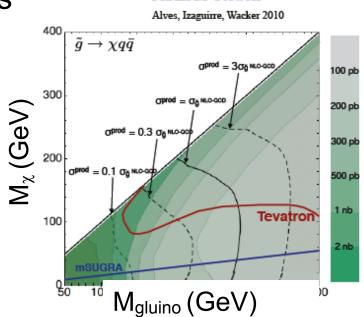

$$M_{t}^{2} - M_{W}^{2} \cos 2\beta = \tilde{M}_{t1}^{2} \cos^{2} \theta_{t} + \tilde{M}_{t2}^{2} \sin^{2} \theta_{t} - \tilde{M}_{b1}^{2} \cos^{2} \theta_{b} - \tilde{M}_{b2}^{2} \sin^{2} \theta_{b}$$

- Masses of $\widetilde{M}_{t1}, \widetilde{M}_{b1}, \widetilde{M}_{g}, \widetilde{M}_{\chi}$ from M_{T2} method
- Obtained reasonable measurements for masses
 - Able to predict mixing angles assuming MSSM
 - Need linear collider to test sum rule

[Blanke]

Large QCD Effects

- Knowledge of backgrounds crucial for BSM searches
- QCD can be unexpectedly large [Salam]
- Example: Z+ jets is background to gluino pair production



 H_{T} is a dangerous variable for BSM searches

Rubin, Salam, Sapeta, arXiv:1006.2144

Model Independent Searches for New Physics

- Look for colored objects plus jets [Wacker]
- □ Try to be as general as possible
- Base cuts on simple kinematics
- EFT approach
- Avoid MSUGRA biases
- MSUGRA has specific kinematics

ATLAS Reach

Alves, Izaguirre, Wacker, arxiv:1008.0407

Thanks to the Organizers
 For superb organization
 For great physics

Almost all data agree with SM predictions

Hopefully, there will be some surprises soon!

