

Seesaw-predicted Heavy Leptons at the LHC

Ivica Picek University of Zagreb

(with Branimir Radovčić and Krešimir Kumerički) ETH Zürich, 6 January 2011

The contents:

- 1. Advocate vectorlike TeV-scale fermions beyond the 3rd SM generation
- 2. Conventional **GUT-scale Seesaw**: Majorana Neutrinos with GUT-scale Majorana Mediators

3. Novel TeV-scale Seesaw Model:

Majorana Neutrinos with TeV-scale Dirac Mediators

I. Introduction Q:Where are we coming from?

Figure 1. Gauguin's questions: D'où venons-nous? Que sommes-nous? Où allons-nous? Where are we coming from? What are we? Where are we going?

A: "Bošković's 300 anniversary" (answering 1st Gauguin's/Ellis'0710.5590 question)

"THE FUNNIEST BOOK	• THE GOD PARTICLE Looking for the Atom • 103
ABOUT PHYSICS EVER WRITTEN."	R Rockouric
	THE DALMATIAN PROPHET
	A final note on this first stage, the age of mechanics, the great era of classical physics. The phrase "ahead of his time" is overused. I'm
	going to use it anyway. I'm not referring to Galileo or Newton. Both were definitely right on time, neither late nor early. Gravity, experi-
	mentation, measurement, mathematical proofs all these things
"LEDERMAN IS THE MOST	heralded! — in their own time, because they came up with ideas that
ENGAGING PHYSICIST SINCE	the scientific community was ready to accept, inor everyone is so fortunate.
RICHARD JEYNMAN."	Roger Joseph Boscovich, a native of Dubrovnik who spent much of his career in Rome, was born in 1711, sixteen years before
-SAN FRANCISCO EXAMINER	Newton's death. Boscovich was a great supporter of Newton's theo-
	ries, but he had some problems with the law of gravitation. He called
	large. He said that it was "very nearly correct but that differences
	from the law of inverse squares do exist even though they are very
	slight." He speculated that this classical law inust prease down and gether at the atomic scale, where the forces of attraction are replaced
	by an oscillation between attractive and repulsive forces. An amazing
	thought for a scientist in the eighteenth century.
	Being a geometer more than anything else, he came up with the idea
	of fields of force to explain how forces exert control over objects at
	a distance. But wait, there's more!
· J.H.E.	boscovicii fiau titis ottici fuca, otto titat was foat of any for and the sentitive for merhans any centitive) Matter is composed of invis-
UNIVERSE	ible, indivisible a-toms, he said. Nothing particularly new there. Leu-
IS THE	cippus, Democritus, Galileo, Newton, and others would have agreed
ANSWER,	with him. Here's the good part: boscovicit said diese particles made and eizer that is they were geometrical points. Clearly, as with so many
WHAT IS THE	ideas in science, there were precursors to this — probably in ancient
QUESTION?	Greece, not to mention hints in Galileo's works. As you may recall
	from high school geometry, a point is just a place; it has no dimen- sions And here's Boscovich putting forth the proposition that matter
	is composed of particles that have no dimensions! We found a particle
	just a couple of decades ago that fits such a description. It's called a
DICK TERESI	quark. We'll get back to Mr. Boscovich later.

" Theoria Philosophiae - between two porticles of light -between particles of matter 3 John Lesslie besides lecturing from 1985 Naturalis" (1763) basic ingredients in the SM of forces P introduced separate forces acting - between particle of matter and particle of bryhl on Bostović's theory force acting GAUGE - THEORY PREHISTORY 🔷 Rudjer Bošković (4341-1787) Edinburgh) P.ROGERIO JOSEPHO BOSCOVICH THEORIE NATURALIS SUPERIORUM PERMISSU, & PRIVILEGIO. IPSO MUCTORE PRESENTE, ET CORRIGENTE. NUNC AB IPSO PERPOLITA, ET AUCTA, Ex TYPOGRAPHIA REMONDINIANA. REDACTA AD UNICAM LEGEM VIRIUM Ac a plurimis præcedentium editionum EDITIO VENETA PRIMA IN NATURA EXISTENTIUM, SOCIETATIS JESU, VENETIS, AUCTORE MDCCLXIII. mendis expurgata.

Q:Where are we? A: Present day **Bošković's** "atoms" identified as sources of colour, weak isospin, and weak hypercharge forces (Q=T3+Y/2)

Gauge Theory History

- Particle physics "as a modern name for the long quest to understand the laws of nature" (E.Witten), born in 1897, now evolved to the
- STANDARD MODEL, based on SU(3)xSU(2)xU(1) gauge symmetry
- Bošković's message: Let's talk about new (BSM) forces only if there are new (BSM) charges

SM charges assignment in terms of 5 lowest reprezentations of the SMG for 15 helicity states

All 12 SM fermions are discovered! What about possible BSM d.o.f.? (w.r.t. **3rd Gauguin's** question)

Q3: Where are we going? A: Introduce new particles without new forces, as suggested by prominent SM's Landmarks:

Heavyness of top
Lightness of neutrinos
Lightness of the SM Higgs

The first two Landmarks: Lightness of v's & Heavyness of top (Fig.Murayama'08)

The 3rd Landmark: Lightness of SM Higgs doublets known as the Hierarchy Problem

- Introducing the top-partner T to cancel the largest contribution to Higgs mass quadratic divergence → suggests:
- such Seesaw Mediators which explain small neutrino masses without introducing extra Hierarchy Problem
- while keeping the renormalizability

II. New Heavy Leptons motivated by lightness of ν 's

Neutrino Masses beyond doubt -KamLAND evidence of γ-masses

The seesaw picture -ascribes the lightness of v's to the existence of some heavy-scale d.o.f.

- Light sterile neutrinos lacking motivation?
- Heavy Majorana neutrinos conventional fermionic Type I & III seesaws

Vectorlike Dirac fermions beyond Type I & III seesaw

Only 3 realizations of dim 5 operator at the tree-level

Type I — three heavy right-handed neutrinos $-\mathcal{L}_{lepton} = \overline{l_L} Y_l H E_R + \overline{l_L} Y_\nu \tilde{H} N_R + \frac{1}{2} \overline{N_R^c} M_R N_R + h.c.$ Type II — one heavy Higgs triplet $\Delta \equiv \begin{pmatrix} \Delta^{-} & -\sqrt{2} \ \Delta^{0} \\ \sqrt{2} \ \Delta^{--} & -\Delta^{-} \end{pmatrix}$ $-\mathcal{L}_{lepton} = \overline{l_{L}}Y_{l}HE_{R} + \frac{1}{2}\overline{l_{L}}Y_{\Delta}\Delta i\sigma_{2}l_{L}^{c} - \lambda_{\Delta}M_{\Delta}H^{T}i\sigma_{2}\Delta H + h.c.$ Type III—three heavy triplet fermions $\Sigma = \begin{pmatrix} \Sigma^0/\sqrt{2} & \Sigma^+ \\ \Sigma^- & -\Sigma^0/\sqrt{2} \end{pmatrix}$ $-\mathcal{L}_{lepton} = \overline{l_L} Y_l H E_R + \overline{l_L} \sqrt{2} Y_{\Sigma} \Sigma^c \tilde{H} + \frac{1}{2} \operatorname{Tr} \left(\overline{\Sigma} M_{\Sigma} \Sigma^c \right) + h.c.$

Conventional Seesaw Mediators - single additional particle with SM charges

Type I

— three heavy right-handed neutrinos

Type II — one heavy Higgs triplet $\Delta \equiv \begin{pmatrix} \Delta^{-} & -\sqrt{2} \ \Delta^{0} \\ \sqrt{2} \ \Delta^{--} & -\Delta^{-} \end{pmatrix}$ $\Delta \sim (1,3,-2)$ Type III — three heavy triplet fermions $\Sigma = \begin{pmatrix} \Sigma^{0}/\sqrt{2} & \Sigma^{+} \\ \Sigma^{-} & -\Sigma^{0}/\sqrt{2} \end{pmatrix}$ $\sum \sim (1,3,0)$

Dim 5 Weinberg's op. ~LLHH by integrating out heavy d.o.f.

$$\frac{\mathcal{L}_{d=5}}{\Lambda} = \begin{cases} \frac{1}{2} \left(Y_{\nu} M_{R}^{-1} Y_{\nu}^{T} \right)_{\alpha\beta} \overline{l_{\alpha L}} \tilde{H} \tilde{H}^{T} l_{\beta L}^{c} + h.c. & (Type I) , \\ -\frac{\lambda_{\Delta}}{M_{\Delta}} \left(Y_{\Delta} \right)_{\alpha\beta} \overline{l_{\alpha L}} \tilde{H} \tilde{H}^{T} l_{\beta L}^{c} + h.c. & (Type II) , \\ \frac{1}{2} \left(Y_{\Sigma} M_{\Sigma}^{-1} Y_{\Sigma}^{T} \right)_{\alpha\beta} \overline{l_{\alpha L}} \tilde{H} \tilde{H}^{T} l_{\beta L}^{c} + h.c. & (Type III) \end{cases}$$

TeV-seesaw scale awoids hierarchy problem (Fig.B.Gavela'09)

$$\delta m_{H}^{2} = -rac{Y_{N}^{\dagger}Y_{N}}{16\pi^{2}} \left[2\Lambda^{2} + 2M_{N}^{2}\lograc{M_{N}^{2}}{\Lambda^{2}}
ight] _{ ext{(Vissani)}}$$

$$\begin{split} \delta m_H^2 &= -3 \frac{\lambda_3}{16\pi^2} \left[\Lambda^2 + M_\Delta^2 \left(\log \frac{M_\Delta^2}{\Lambda^2} - 1 \right) \right] \\ &- \frac{\mu_\Delta^2}{2\pi^2} \log \left(\left| \frac{M_\Delta^2 - \Lambda^2}{M_\Delta^2} \right| \right) \end{split}$$

(Abada, Biggio, Bonnet, Hambye, M.B.G.)

$$\delta m_{H}^{2} = -3rac{Y_{\Sigma}^{\dagger}Y_{\Sigma}}{16\pi^{2}}\left[2\Lambda^{2}+2M_{\Sigma}^{2}\lograc{M_{\Sigma}^{2}}{\Lambda^{2}}
ight]$$

Lowering seesaw scale by going to dim>5 operators: $\mathcal{O}^5 = \mathcal{O}_W = LLHH$

$$\mathcal{O}^7 = (LLHH)(H^{\dagger}H)$$

$$\mathcal{O}^9 = (LLHH)(H^{\dagger}H)(H^{\dagger}H)$$

$$m_{\nu} \sim v \left(\frac{v}{\Lambda_{\rm NP}}\right)^{d-4}$$

F. Bonnet, D. Hernandez, T. Ota and W. Winter, JHEP **0910**:076,2009 [0907.3143 [hep-ph]];

- NP scale 1-10 TeV with d=9 is enough for subeV neutrino mass
- Operators are studied for singlet, doublet and triplet mediators

TwoTree-level Seesaw Options: dim 7 and dim 9 operators

- Dim 7 Operator Babu et al' 09, PRD 80, 071702(R)
- Dim 9 Operator I.P. and B.Radovčić, PLB 687 ('10) 338

Dim-9 ~ LLHH(H⁺H)(H⁺H) treelevel op. -integrating out heavy d.o.f.

$$m_{\nu} \sim \frac{Y_1 Y_2 \ \lambda_1 \lambda_2 \ v^6}{M_{\Sigma} \ \mu_{\Phi_1}^2 \ \mu_{\Phi_2}^2}$$

$$\sim v^6/M^5$$

Light Majorana neutrino naturally in sub-eV range with TeV-scale heavy d.o.f.

Novel Tree-level Seesaw Model based on vectorlike Dirac fermion 5-plet Σ (I=2, Y=2) mediators

$$\Sigma_L = (\Sigma_L^{+++}, \Sigma_L^{++}, \Sigma_L^{+}, \Sigma_L^0, \Sigma_L^{-})$$

$$\Sigma_R = (\Sigma_R^{+++}, \Sigma_R^{++}, \Sigma_R^{+}, \Sigma_R^0, \Sigma_R^{-})$$

both transforming as $(1, 5, 2)$

In conjunction with isospin 3/2 scalar fields Φ1 and Φ2:

 $\Phi_1 = (\Phi_1^0, \Phi_1^-, \Phi_1^{--}, \Phi_1^{---}) \qquad \Phi_2 = (\Phi_2^+, \Phi_2^0, \Phi_2^-, \Phi_2^{--})$ transforming as (1, 4, -3) and (1, 4, -1), respectively.

SM gauge invariant terms

Dirac mass term for new seesaw mediator $\mathcal{L}_{M} = -M_{\Sigma} \overline{\Sigma}_{L} \Sigma_{R} + H.c.$

Yukawa term includes Lepton Number Violation $\mathcal{L}_{Y} = Y_1 \overline{l}_L \Sigma_R \Phi_1 + Y_2 \overline{\Sigma}_L (l_L)^c \Phi_2^* + H.c.$

Dirac seesaw by diagonalizing the mass matrix

$$\left(\bar{\nu}_L \ \overline{\Sigma_L^0} \ \overline{(\Sigma_R^0)^c} \right) \left(\begin{array}{ccc} 0 & m_2 & m_1 \\ m_2 & 0 & M_{\Sigma} \\ m_1 & M_{\Sigma} & 0 \end{array} \right) \left(\begin{array}{c} (\nu_L)^c \\ (\Sigma_L^0)^c \\ \Sigma_R^0 \end{array} \right)$$

 representing the mixing between neutral components of the SM lepton doublet and the Σ 5-plets

Mass eigenvalues:

Two nearly degenerate Heavy neutral states

$$m_{\nu_H} \sim M_{\Sigma}$$

Light Majorana neutrinos

$$m_{\nu} \sim \frac{m_1 m_2}{M_{\Sigma}} \sim \frac{Y_1 Y_2 v_{\Phi_1} v_{\Phi_2}}{M_{\Sigma}}$$

From the EW precision: $\rho = 1.0004^{+0.0008}_{-0.0004}$ $\rho \simeq 1 - 6v_{\Phi_1}^2/v^2 + 6v_{\Phi_2}^2/v^2$

an upper bound on v_{Φ_1} and v_{Φ_2} of a few GeV.

EWSB in usual way from Higgs doublet $\mu_H^2 < 0$

 $V(H, \Phi_1, \Phi_2)$

- $\sim \mu_H^2 H^{\dagger} H + \mu_{\Phi_1}^2 \Phi_1^{\dagger} \Phi_1 + \mu_{\Phi_2}^2 \Phi_2^{\dagger} \Phi_2 + \lambda_H (H^{\dagger} H)^2$
- + $\{\lambda_1 \Phi_1^* H^* H^* H^* + \text{H.c.}\} + \{\lambda_2 \Phi_2^* H H^* H^* + \text{H.c.}\}$
- + $\{\lambda_3 \Phi_1^* \Phi_2 H^* H^* + \text{H.c.}\}$.
- Induced vev for Φ_1 and Φ_2 , scalars with $\mu_{\Phi_1}^2, \mu_{\Phi_2}^2 > 0$

$$v_{\Phi_1} \simeq -\lambda_1 \frac{v^3}{\mu_{\Phi_1}^2}, \ v_{\Phi_2} \simeq -\lambda_2 \frac{v^3}{\mu_{\Phi_2}^2}$$

Operators of dim 7 and 5 are generated at loop level from dim 9 op. - smaller than dim 9 tree level if

$\Lambda_{NP} < 4\pi v \simeq 2 \text{ TeV}$

The operator of dim 5 generated at loop level from A3 term - for A1 A2 = A3 is smaller than dim 9 tree level if

$$\Lambda_{NP} < \sqrt{4\pi}v \simeq 620 \text{ GeV}$$

NP scale splitting dim 5 loop & dim 9 tree-level contributions

- For simplicity, $\mu_{\Phi} = M_{\Sigma} = \Lambda_{NP}$ the values v = 174 GeV and $m_{\nu} \sim 0.1$ eV **& moderate** $Y \sim Y' \sim \lambda_2 \sim 10^{-2}$ result in $\Lambda_{NP} \simeq 580$ GeV and $v_{\Phi_1} \simeq 80$ MeV and $v_{\Phi_2} \simeq 60$ MeV.
- There is a part of the parameter space where tree-level dim 9 operator dominates over loop generated dim 5 and dim 7 contributions!

Production of 5-plet States by Drell-Yan fusion

Via CC associated production of pairs
Via NC direct pair prodiction
Using CTEQ6.6 PDFs via LHAPDF
Check by MadGraph via FeynRules

Check on production cross section for type-III triplets at LHC (Franceschini, Hambye, Strumia, PRD78, 2008)

Production cross section for 5plets at 2010-run LHC energy

Production cross section for 5plets for designed LHC energy

via neutral γ, Z and charged W^{\pm}

Two classes of decay-processes
- like those for Type III triplet

$$\Gamma(N^{\pm} \rightarrow N^{0}\pi^{\pm}) = \frac{2G_{F}^{2}V_{ud}^{2}\Delta M^{3}f_{\pi}^{2}}{\pi}\sqrt{1-\frac{m_{\pi}^{2}}{\Delta M^{2}}},$$

$$\Delta M \text{ suppressed}$$

$$\Gamma(N^{\pm} \to N^0 e^{\pm {(-) \choose \nu_e}}) = \frac{2G_F \Delta M^2}{15\pi^3},$$

$$\Gamma(N^{\pm} \to \ell^{\pm} Z) = \frac{1}{4} \frac{\lambda^2 M}{8\pi} \left(1 - \frac{M_Z^2}{M^2} \right)^2 \left(1 + 2\frac{M_Z^2}{M^2} \right),$$

$$\Gamma(N^{\pm} \to \nu_{\ell}^{(-)} W^{\pm}) = \frac{1}{2} \frac{\lambda^2 M}{8\pi} \left(1 - \frac{M_W^2}{M^2} \right)^2 \left(1 + 2\frac{M_W^2}{M^2} \right).$$

Suppression by small mass splittings within a multiplet

 $M_Q - M_0 \simeq Q(Q + Y/\cos\theta_W)\Delta M$ $\Delta M = \alpha_2 M_W \sin^2 \frac{\theta_W}{2} = (166 \pm 1) MeV.$ **Suppression for Type III triplet Still, there is larger splitting among higher states within a \Sigma multiplet**

$$\Sigma \sum_{210}^{\circ} \Sigma \sum_{550}^{++} \Sigma \xrightarrow{++} 1200 \text{ AM (MeV)}$$

Type-III triplet decay widths (Franceschini, Hambye, Strumia, PRD78, 2008)

Decay widths of triply-charged Σ

Signatures from LNC & LNV decays $\Sigma^{++} \rightarrow W^+ l^+$ $\Sigma^{+++} \rightarrow W^+ W^+ l^+$ $\Sigma^+ \to W^+ \nu, Zl^+, H^0 l^+$ $\Sigma^- \to W^- \nu, Zl^-, H^0 l^ \Sigma^0 \to W^{\pm} l^{\mp}, Z\nu, H^0 \nu$ Two types of decays with same sign dileptons and the jets as a signature $q\bar{q}' \to W^* \to \Sigma^+ \overline{\Sigma^0} \to l^+ Z l^+ W^- \to l^+ l^+ j j$ $q\bar{q} \to Z^* \to \Sigma^0 \overline{\Sigma^0} \to l^{\pm} W^{\mp} l^{\pm} W^{\mp} \to l^{\pm} l^{\pm} j j$

Conclusions: Falsifiable dim 9 tree-level seesaw

i) Sizable production at the LHC (already 1000 pairs at present 7 TeV) States too heavy to be produced may be revealed through virtual loop effects ii) Characteristic triply charged 5-plet state decay as a link between collider phenomenology and the origin of neutrino masses