

ATLAS results on Heavy Particles: b top вям

Workshop on Heavy Particles at the LHC

January 5th - 7th 2011

Kevin Kröninger University of Göttingen

for the ATLAS collaboration

LHC/ATLAS performance • b highlights • top cross section • BSM • Summary/Outlook

Luminosity:

Ŷ

The ATLAS detector

Inner detector:

- Silicon Pixel detector
- Silicon Strip detector
- Transition Radiation detector
- Coverage up to $|\eta| < 2.5$
- \bullet $p_{_{\rm T}}$ resolution:

 $\sigma/p_{_{T}} \sim 3.4 \ 10^{-4} \ p_{_{T}} + 0.015$

- Allows precision measurement of tracks (e.g., for b-physics)
- Allows b-tagging with a d0 (impact parameter) resolution of 10 µm (e.g., for top)

<u>b-tagging:</u>

- SV0 tagger: search for secondary vertex and calculate decay length (significance)
- Operating point chosen to be 50% efficient in sim. ttbar events
- Measured in data:
 - (40 60)% efficient rising with p. (25 < p_T [GeV] < 85)
 - Mistag rate (0.2 1)% increasing with $p_{T}(20 < p_{T} [GeV] < 150)$
- Used for top, alternative taggers exist

Highlights:

Ŷ

- Observation of bbar resonances
- Observation of $B^{\pm} \rightarrow J/\Psi \ K^{\pm}(J/\Psi \rightarrow \mu^{+}\mu^{-})$

Calibration tool for inner detector and flavor tagging

<u>Highlights:</u>

- Measurement of $J/\Psi \rightarrow \mu^+\mu^-$ differential cross-section in η , p_{τ}
- Measurement of the non-prompt-to-prompt J/ Ψ cross-section

Heavy2011, Zurich, January 5th – 7th, 2011

ATLAS results on Heavy Particles

Top cross section measurement

b-jet

e,µ

MET

let

b-jet

Single lepton channel:

- Event selection:
 - Assure detector readiness, data quality and collision event
 - Single lepton trigger fired
 - Exactly one isol. lepton with $p_{T} > 20$ GeV and $|\eta| < 2.5$ matching the HLT object

arXiv:1012.1792

- E_T^{miss} > 20 GeV
- $E_{T}^{miss} + m_{T}(W) > 60 \text{ GeV}$
- \geq 4 jets with p_T > 25 GeV and |η|<2.5
- 1 b-tag

Single lepton channel:

- Background sources:
 - QCD multijet events with 'fake' or 'non-prompt' leptons and mis-measured E_T^{miss}
 - W+jets (same signature)
 - Z+jets (small)
 - Single top (small)
- Background estimate:
 - No precise determination of QCD and W+jets at LHC
 - QCD: Matrix Method
 - W+jets: Extrapolation using Berends-Giele scaling
 - Small contributions from MC

Matrix method:

• Solve system of equations :

$$N^{\text{loose}} = N^{\text{loose}}_{\text{real}} + N^{\text{loose}}_{\text{fake}},$$
$$N^{\text{std}} = rN^{\text{loose}}_{\text{real}} + fN^{\text{loose}}_{\text{fake}}$$

- Loose: no isolation (first pixel layer) requirement for mu (e)
- *r* from $Z \rightarrow II$ sample
- f from QCD-enhanced region

arXiv:1012.1792

Single lepton channel:

• Event yield:

- Cross-section: Cut and count
- Largest Systematics
 - QCD normalization
 - b-tagging (HF fraction)
- **37 ttbar candidate events observed 12.2±3.9 background events expected**
- Jet energy scale 6-10% for different η and $p_{_{\rm T}}$
- W+jets normalization
- Additional checks:
 - Pile-up due to increased instantaneous luminosity

Single lepton channel:

• Systematics:

	Relative cross-section uncertainty [%]	
Source	e+jets	μ +jets
Statistical uncertainty	±43	±29
Object selection		
Lepton reconstruction, identification, trigger	±3	±2
Jet energy reconstruction	±13	±11
<i>b</i> -tagging	-10/+15	-10/+14
Background rates		
QCD normalisation	±30	±2
W+jets normalisation	±11	±11
Other backgrounds normalisation	±1	±1
Signal simulation		
Initial/final state radiation	-6/+13	± 8
Parton distribution functions	±2	±2
Parton shower and hadronisation	±1	±3
Next-to-leading-order generator	±4	±6
Integrated luminosity	-11/+14	-10/+13
Total systematic uncertainty	-38 / +43	-23 / +27
Statistical + systematic uncertainty	-58 / +61	-37 / +40

b-jet

Dilepton channel:

- Event selection:
 - \geq 2 OS isol. leptons (ee, $\mu\mu$, e μ) Cos with p_{τ} > 20 GeV and $|\eta|$ <2.5 Z-matrix
 - One lepton matches HLT
 - \geq 2 jet(s) with p_{T} > 20 GeV and $|\eta|$ <2.5

- Cosmic veto
- Z-mass veto: $|m_{_{\parallel}} m_{_{Z}}| > 5 (10) \text{ GeV for ee } (\mu\mu)$
- E_{T}^{miss} > 40 (30) GeV for ee (µµ)

•
$$\rm H_{_{T}} > 150~GeV$$
 for $e\mu$

MET

b-jet

Dilepton channel:

- Background sources:
 - Z+jets for ee and $\mu\mu$ (extrapolated)
 - W+jets with 'fake' lepton
 - QCD multijet events (small)
 - Single top
 - Di-bosons
- Matrix method:
 - Solve system of equations:

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

- Loose: no isolation (E/p) requirement for mu (e)
- r from Z→II sample
- f from QCD-enhanced region

Dilepton channel:

Ŷ

9 ttbar candidate events observed

• Sample composition:

4.82±0.65 background events expected

	ee	$\mu\mu$	еµ
Z+jets (DD)	0.25 ± 0.18	0.67 ± 0.38	-
$Z(\rightarrow \tau \tau)$ +jets (MC)	0.07 ± 0.04	0.14 ± 0.07	0.13 ± 0.06
Non-Z leptons (DD)	0.16 ± 0.18	-0.08 ± 0.07	0.47 ± 0.28
Single top (MC)	0.08 ± 0.02	0.07 ± 0.03	0.22 ± 0.04
Dibosons (MC)	0.04 ± 0.02	0.07 ± 0.03	0.15 ± 0.05
Total (non $t\bar{t}$)	0.60 ± 0.27	0.88 ± 0.40	0.97 ± 0.30
$t\bar{t}(MC)$	1.19 ± 0.19	1.87 ± 0.26	3.85 ± 0.51
Total expected	1.79 ± 0.38	2.75 ± 0.55	4.82 ± 0.65
Observed	2	3	4

- Cross-section estimate: Cut and count
- Preliminary result:

Channel	$\sigma_{t\bar{t}}$ [pb]	
ee	193 +243 +84 -152 -48	
$\mu\mu$	185 + 184 + 56 - 124 - 47	
еµ	$129 \begin{array}{c} +100 \\ -72 \end{array} \begin{array}{c} +32 \\ -18 \end{array}$	
Combined	151 +78 +37 -62 -24	

arXiv:1012.1792

Dilepton channel:

• Systematics:

	Relative cross-section uncertainty [%]		
Source	ee	$\mu\mu$	eμ
Statistical uncertainty	-79/+126	-67 / +100	-56 / +77
Object selection			
Lepton reconstruction, identification, trigger	-2/+11	-4/+3	-1 / +3
Jet energy reconstruction	-7 / +13	-14 / +9	-3 / +5
Background rates			
Fake leptons	-31 / +24	-4 / +1	-15 / +8
Z+jets	-12/+4	-19/+5	-2 / +1
Monte-Carlo simulation statistics	-5/+3	-3/+4	± 2
Theoretical cross-sections	± 3	-5 / +4	± 3
Signal simulation			
Initial/final state radiation	-4 / +5	-2/+3	-2/+3
Parton distribution functions	-2/+1	-2/+3	-2/+3
Parton shower and hadronisation	-9/+14	-6/+9	± 3
Next-to-leading order generator	-8/+11	-11 / +13	-3 / +4
Integrated luminosity	-11/+16	-11/+16	-12 / +14
Total systematic uncertainty	-25 / +44	-25 / +30	-14 / +25
Statistical + systematic uncertainty	-83/+134	-72/+104	-57 / +81

Cross-section combination:

- Use binned profile Likelihood fit to estimate combined cross-section
- Number of expected events:

$$N^{exp}(\sigma_{t\bar{t}}, \alpha_{j}) = L \cdot \epsilon_{t\bar{t}}(\alpha_{j}) \cdot \sigma_{t\bar{t}} + \sum_{bkg} L \cdot \epsilon_{bkg}(\alpha_{j}) \cdot \sigma_{bkg}(\alpha_{j}) + N_{DD}(\alpha_{j})$$

• Likelihood: (signal) (bkg from MC) (bkg from data)

$$\mathcal{L}(\sigma_{t\bar{t}}, L, \alpha_{j}) = \text{Poisson}\left(N^{obs} | N^{exp}(\sigma_{t\bar{t}}, \alpha_{j})\right) \times \text{Gauss}(L_{0}|L, \delta_{L}) \times \prod_{j \in \text{syst}} \Gamma_{j}(\alpha_{j})$$

- Gaussians and Gamma-distributions for systematics α_i
- Luminosity uncertainty: 11%

	Cross-section [pb]	Signal significance $[\sigma]$
Single lepton channels	$142 \pm 34 ^{+50}_{-31}$	4.0
Dilepton channels	$151 \begin{array}{c} +78 \\ -62 \end{array} \begin{array}{c} +37 \\ -24 \end{array}$	2.8
All channels	$145 \pm 31 {}^{+42}_{-27}$	4.8

arXiv:1012.1792 M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer, and M. Wiedermann, HATHOR HAdronic Top and Heavy quarks crOss section calculatoR, arXiv:1007.1327 [hep-ph].

• No surprises so far with a sub-set

• Expect to surpass Tevatron limit

on squarks and gluinos with the

of the data available

current data set

<u>Searches in di-jets spectra:</u>

- Model independent searches for massive particles in di-jet invariant mass spectra (resonances)
- Excludes excited quarks in region 0.50 < m [TeV] < 1.53

SUSY:

Summary:

Ŷ

- Observation of b-Hadrons shows ATLAS' very good tracking performance
- Top quark signal established in single and dilepton channels using 3 pb⁻¹, submitted to journal and available on arxiv:1012.1972
- Initial ATLAS top cross-section measurement in agreement with predictions and CMS:

 σ (pp→ttbar) = 145 ±31⁺⁴² pb

- Larger data set with 35 pb⁻¹ being analyzed
- Searches for resonances in di-jet events exceed current Tevatron limits using a small fraction of available data (3.1 pb⁻¹)
- Results also in SUSY sector expected
- Outlook: LHC is expected to collect ~1 fb⁻¹ in 2011, maybe with 8 TeV
- Run might be prolonged for 2012 and ~5 fb⁻¹ (Chamonix)

Monte Carlo Samples:

- Ttbar: MC@NLO v3.41 with CTEQ66 assuming m_{top} =172.5 GeV cross-section normalized to 164.6 pb to match from NNLO_{approx} calc.
- W/Z bosons: ALPGEN v2.13 with CTEQL1 cross-sections multiplied by 1.22 to match NNLO calc.
- Z boson: PHYTHIA in region $10 < m_{\parallel}$ [GeV] < 40
- Separate samples with bbar and ccbar in the final state at ME level
- Single top: MC@NLO v3.41 with 'diagram removal scheme'
- Hadronization done with HERWIG
- Underlying event done with JIMMY

arXiv:1012.1792

ATLAS-CONF-2010-098

<u>Observation of B^{\pm} :</u>

- Channel: $B^{\pm} \rightarrow J/\Psi K^{\pm}$ (BR~0.1%) with $J/\Psi \rightarrow \mu^{+}\mu^{-}$ (BR~6%)
- Calibration tool for inner detector and flavor tagging
- Event selection:
 - Proper collision event with at least three tracks
 - At least two oppositely charged muons (pT > 1 GeV, $|\eta|$ <2.7)
 - J/Ψ candidate:
 - Tracks fit one common vertex
 - p_τ(μ) > 4 (2.5) GeV
 - Invariant mass in window 2915 < m_{\mu+\mu-} [GeV] < 3275

- B[±] candidate:
 - Additional track fit to vertex
 - $p_{\tau} > 10$ GeV for three-track obj.
- Perform unbinned Likelihood fit

	m_B , MeV	σ_m , MeV	N _{sig}	N_{bkg}	S
B^{\pm}	5283.2 ± 2.5	39 ± 3	283 ± 22	131 ± 13	1.09 ± 0.07
B^+	5282.6 ± 3.6	40 ± 4	138 ± 15	70 ± 11	1.12 ± 0.11
<i>B</i> ⁻	5283.7 ± 3.3	39 ± 4	146 ± 15	61 ± 8	1.06 ± 0.10
MC	5281.8 ± 0.2	39.8 ± 0.2			1.100 ± 0.003

Jets in ATLAS:

- Use Anti-kT algorithm with R=0.4 on topological clusters
- Calibration based on EM-scale objects using p_τ and η-dependent scale factors from simulation

ATLAS-CONF-2010-054 ATLAS-CONF-2010-056