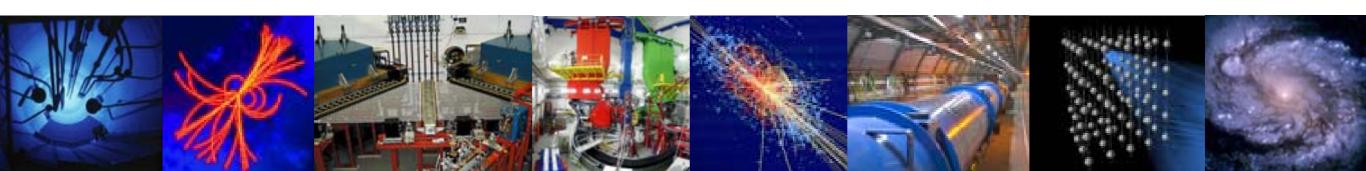
High-Precision Predictions for Higgs and Top-Quark Pair Production at Hadron Colliders

Effective Field Theories for LHC Processes


Matthias Neubert

Institute for Physics, Johannes Gutenberg University Mainz

Workshop on Heavy Particles at the LHC

ETH Zürich, 5-7 January 2011

Based on:

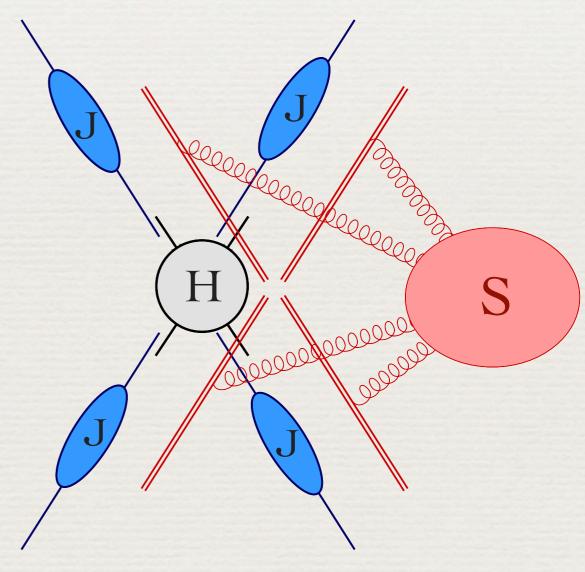
* IR singularities of scattering amplitudes in non-abelian gauge theories

Thomas Becher, MN: 0901.0722 (PRL), 0903.1126 (JHEP), 0904.1021 (PRD) Andrea Ferroglia, Ben Pecjak, MN, Li Lin Yang: 0907.4791 (PRL), 0908.3676 (JHEP)

- * Threshold resummation for Higgs production Valentin Ahrens, Thomas Becher, MN, Li Lin Yang: 0808.3008 (PRD), 0809.4283 (EPJC) & 1008.3162 (PLB)
- * Threshold resummation for top-pair production Andrea Ferroglia, Ben Pecjak, MN, Li Lin Yang: 0912.3375 (PLB), 1003.5827 (JHEP)

A tale of many scales

- * Collider processes characterized by many scales: s, s_{ij} , M_i , Λ_{QCD} , ...
- * Large Sudakov logarithms arise, which need to be resummed (e.g. parton showers, mass effects, aspects of underlying event)
- * Effective field theories provide modern, elegant approach to this problem based on scale separation (factorization theorems) and RG evolution (resummation)


Soft-collinear factorization

Sen 1983; Kidonakis, Oderda, Sterman 1998

* Factorize cross section:

$$d\sigma \sim H(\lbrace s_{ij}\rbrace, \mu) \prod_{i} J_i(M_i^2, \mu) \otimes S(\lbrace \Lambda_{ij}^2\rbrace, \mu)$$

- Define components in terms of field theory objects in SCET
- Resum large Sudakov logarithms directly in momentum space using RG equations

Soft-collinear effective theory (SCET)

Bauer, Pirjol, Stewart et al. 2001 & 2002; Beneke et al. 2002; ...

* Two-step matching procedure:

- Integrate out hard modes, describe collinear and soft modes by fields in SCET
- * Integrate out collinear modes (if perturbative) and match onto a theory of Wilson lines

$$S_{ij}$$
 hard

$$M_i^2$$
 __collinear

$$\Lambda_{ij}^2 = \frac{M_i^4}{s_{ij}} - \frac{\text{soft}}{s_{ij}}$$

NLO+NNLL resummation

in few cases (Drell-Yan, Higgs production) NNLO+N3LL resummation

- * Necessary ingredients:
 - * Hard functions: from fixed-order results for on-shell amplitudes (but need amplitudes!)
 - * Jet functions: from imaginary parts of twopoint functions (depend on cuts, jet definitions)
 - * Soft functions: from matrix elements of Wilson-line operators
 - + Anomalous dimensions: known!
- * Yields jet cross sections, not parton rates
- * Goes beyond parton showers, which are accurate only at LL order even after matching

Anomalous dimension to two loops

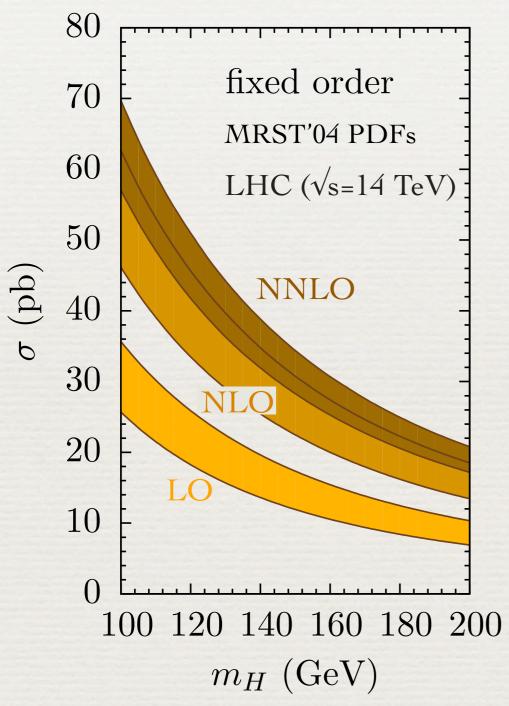
* General result for arbitrary processes: Becher, MN 2009

$$\Gamma(\{\underline{p}\},\{\underline{m}\},\mu) = \sum_{(i,j)} \frac{\boldsymbol{T}_i \cdot \boldsymbol{T}_j}{2} \, \gamma_{\text{cusp}}(\alpha_s) \, \ln \frac{\mu^2}{-s_{ij}} + \sum_i \gamma^i(\alpha_s)$$
 massless partons
$$-\sum_{(I,J)} \frac{\boldsymbol{T}_I \cdot \boldsymbol{T}_J}{2} \, \gamma_{\text{cusp}}(\beta_{IJ},\alpha_s) + \sum_I \gamma^I(\alpha_s) + \sum_{I,j} \boldsymbol{T}_I \cdot \boldsymbol{T}_j \, \gamma_{\text{cusp}}(\alpha_s) \, \ln \frac{m_I \mu}{-s_{Ij}}$$

$$+ \sum_{(I,J,K)} i f^{abc} \, \boldsymbol{T}_I^a \, \boldsymbol{T}_J^b \, \boldsymbol{T}_K^c \, F_1(\beta_{IJ},\beta_{JK},\beta_{KI}) + \sum_{I,J} \sum_k i f^{abc} \, \boldsymbol{T}_I^a \, \boldsymbol{T}_J^b \, \boldsymbol{T}_K^c \, f_2\Big(\beta_{IJ}, \ln \frac{-\sigma_{Jk} \, v_J \cdot p_k}{-\sigma_{Ik} \, v_I \cdot p_k}\Big) + \mathcal{O}(\alpha_s^3) \, .$$

- * Generalizes structure found for massless case
- * Novel three-parton terms appear at two loops

Mitov, Sterman, Sung 2009; Becher, MN 2009 Ferroglia, MN, Pecjak, Yang 2009



EFT-based predictions for Higgs production at Tevatron and LHC

Ahrens, Becher, MN, Yang 2008 & update for ICHEP 2010 http://projects.hepforge.org/rghiggs/

nnp://projects.neptorge.org/rgniggs/

Large higher-order corrections

- Corrections are large:
 70% at NLO + 30% at NNLO
 [130% and 80% if PDFs and
 α_s are held fixed]
- Only gg channel contains leading singular terms, which give 90% of NLO and 94% of NNLO correction
- Contributions of qg and qq channels are small: -1% and -8% of the NLO correction

Harlander, Kilgore 2002; Anastasiou, Melnikov 2002 Ravindran, Smith, van Neerven 2003

Effective theory analysis

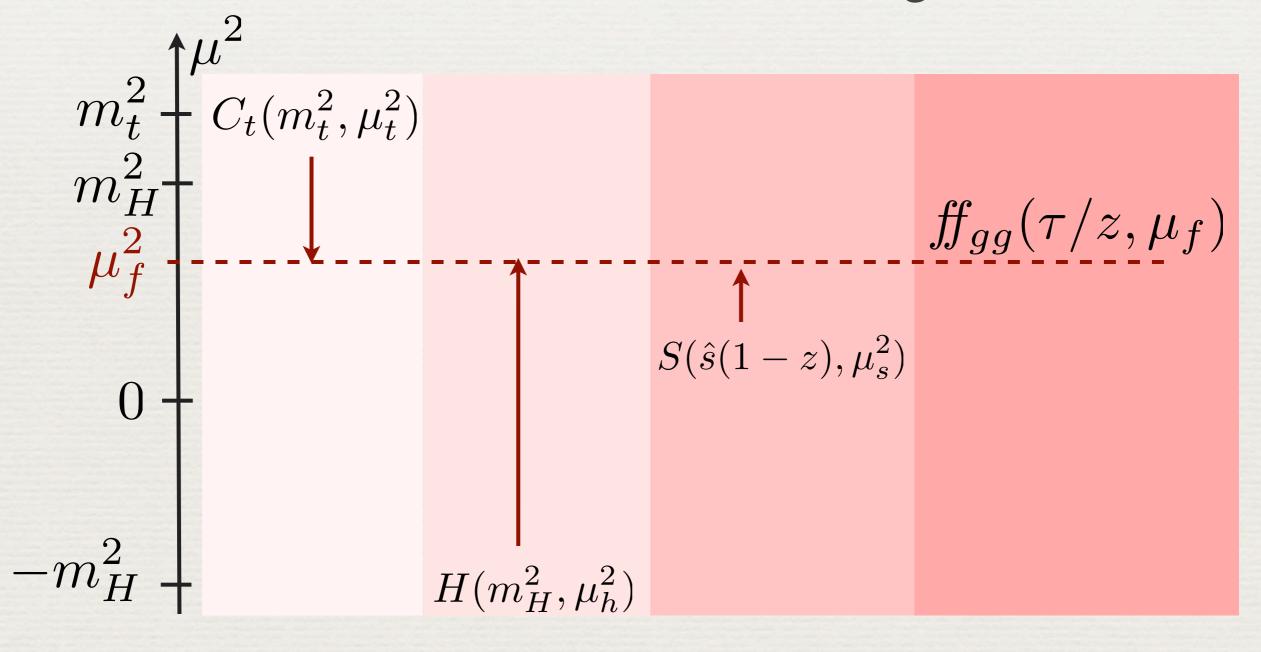
- * Separate contributions associated with different scales, turning a multi-scale problems into a series of single-scale problems
- * Evaluate each contribution at its natural scale, leading to improved perturbative behavior
- * Use renormalization group to evolve contributions to a common factorization scale, thereby exponentiating (resumming) large corrections

When this is done consistently, large K-factors should not arise, since no large perturbative corrections are left unexponentiated!

Scale hierarchy

* Will analyze the Higgs cross section assuming the scale hierarchy ($z=M_H^2/\hat{s}$)

$$2m_t \gg m_H \sim \sqrt{\hat{s}} \gg \sqrt{\hat{s}}(1-z) \gg \Lambda_{\rm QCD}$$


* Treating one scale at a time leads to a sequence of effective theories:

$$\begin{array}{c|c} \mathbf{SM} & \mu_t \\ n_f = 6 \end{array} \qquad \begin{array}{c|c} \mathbf{SM} & \mu_h \\ n_f = 5 \end{array} \qquad \begin{array}{c|c} \mu_h \\ \hline \\ hc, \overline{hc}, s \end{array} \qquad \begin{array}{c|c} \mu_s \\ \hline \\ c, \overline{c} \end{array} \qquad \begin{array}{c|c} \mathbf{SCET} \\ \hline \\ c, \overline{c} \end{array}$$

* Effects associated with each scale absorbed into matching coefficients

Scale hierarchy

* Evaluate each part at its characteristic scale and evolve to a common scale using RGEs:

RG evolution equations

* Top function:

$$\frac{d}{d \ln \mu} C_t(m_t^2, \mu^2) = \gamma^t(\alpha_s) C_t(m_t^2, \mu^2)$$

* Hard function $H(m_H^2, \mu^2) = |C_S(-m_H^2 - i\epsilon, \mu^2)|^2$:

$$\frac{d}{d\ln\mu} C_S(-m_H^2 - i\epsilon, \mu^2) = \left[\Gamma_{\text{cusp}}^A(\alpha_s) \left(\ln\frac{-m_H^2 - i\epsilon}{\mu^2}\right) + \gamma^S(\alpha_s)\right] C_S(-m_H^2 - i\epsilon, \mu^2)$$

* Soft function:

Sudakov (cusp) logarithms

$$\frac{dS(\omega^{2}, \mu^{2})}{d \ln \mu} = -\left[2\Gamma_{\text{cusp}}(\alpha_{s}) \left[\ln \frac{\omega^{2}}{\mu^{2}}\right] + 2\gamma^{W}(\alpha_{s})\right] S(\omega^{2}, \mu^{2})
-4\Gamma_{\text{cusp}}(\alpha_{s}) \int_{0}^{\omega} d\omega' \frac{S(\omega'^{2}, \mu^{2}) - S(\omega^{2}, \mu^{2})}{\omega - \omega'}$$

RG evolution equations

* Closed analytic solutions (Laplace transform):

Becher, MN 2006

$$C(z, m_t, m_H, \mu_f) = \left[C_t(m_t^2, \mu_t^2) \right]^2 \left| C_S(-m_H^2 - i\epsilon, \mu_h^2) \right|^2 U(m_H, \mu_t, \mu_h, \mu_s, \mu_f)$$

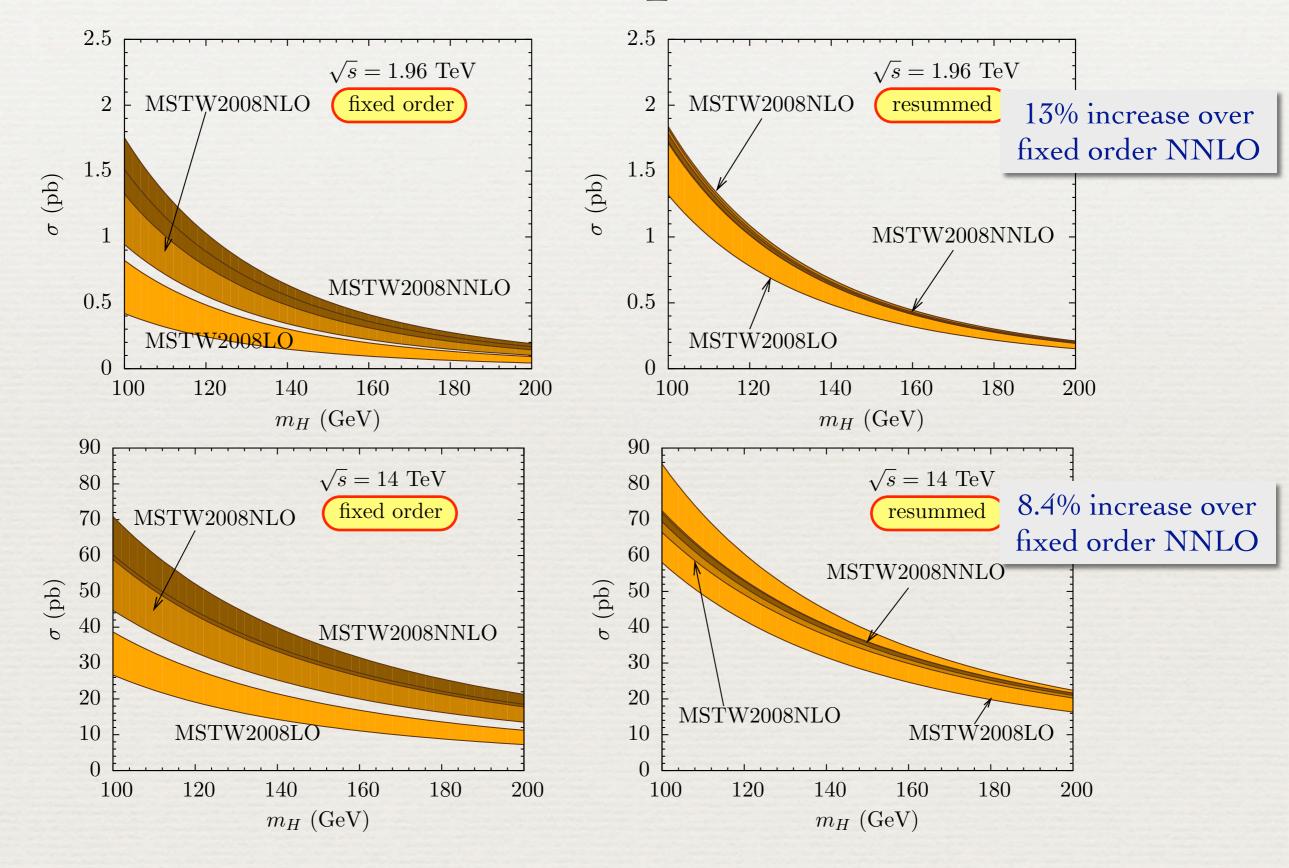
$$\times \frac{z^{-\eta}}{(1-z)^{1-2\eta}} \widetilde{s}_{\text{Higgs}} \left(\ln \frac{m_H^2 (1-z)^2}{\mu_s^2 z} + \partial_{\eta}, \mu_s^2 \right) \frac{e^{-2\gamma_E \eta}}{\Gamma(2\eta)}$$

with:

$$U(m_H, \mu_t, \mu_h, \mu_s, \mu_f) = \frac{\alpha_s^2(\mu_s^2)}{\alpha_s^2(\mu_f^2)} \left[\frac{\beta(\alpha_s(\mu_s^2))/\alpha_s^2(\mu_s^2)}{\beta(\alpha_s(\mu_t^2))/\alpha_s^2(\mu_t^2)} \right]^2 \left| \left(\frac{-m_H^2 - i\epsilon}{\mu_h^2} \right)^{-2a_{\Gamma}(\mu_h^2, \mu_s^2)} \right| \times \left| \exp\left[4S(\mu_h^2, \mu_s^2) - 2a_{\gamma S}(\mu_h^2, \mu_s^2) + 4a_{\gamma B}(\mu_s^2, \mu_f^2) \right] \right|.$$

and:

$$\mu_t \approx m_t$$
, $\mu_h^2 \approx -m_H^2$, μ_s set dynamically


Advantages over standard approach

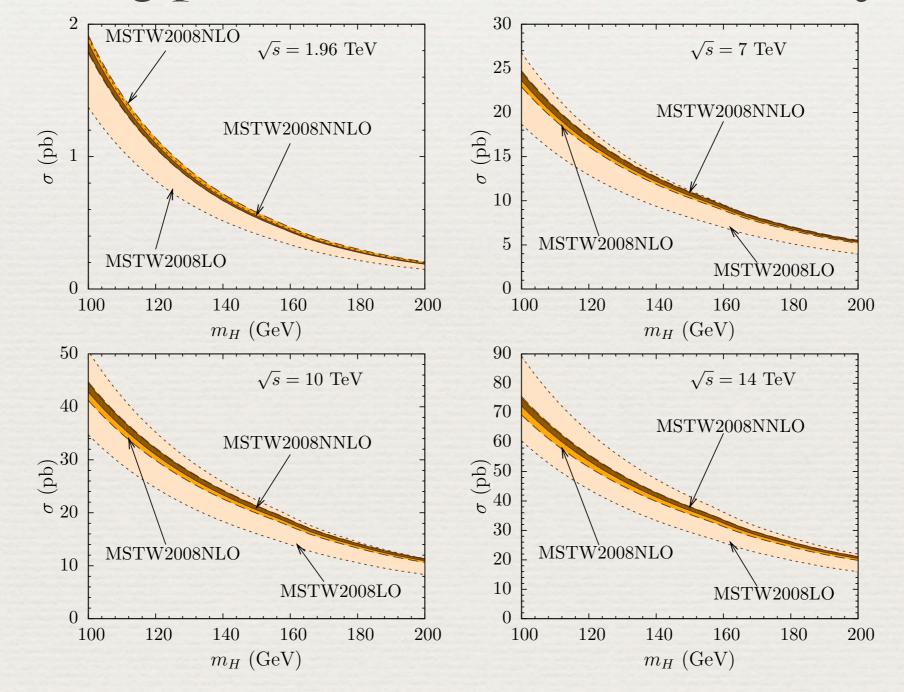
* Traditionally, threshold resummation is performed in Mellin-moment space

e.g.: Catani, de Florian, Grazzini, Nason 2003

- * While equivalent at any order in α_s, our approach offers certain advantages:
 - * Dependence on physical scales explicit
 - * Large corrections $\sim (C_A \pi \alpha_s)^n$ from analytic continuation of gluon form factor resummed
 - * No integrals over Landau pole of running coupling $\alpha_s(\mu^2)$, hence no regularization prescription
 - * No need for numerical Mellin inversion
 - Trivial matching onto fixed-order results

Cross section predictions

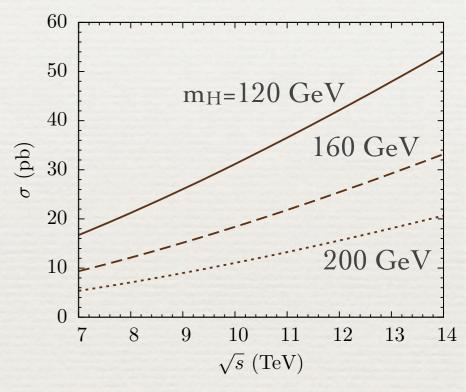
Update for ICHEP 2010


- + Consider lower LHC energies (√s=7, 10 TeV)
- * Include electroweak radiative corrections, some of which were obtained after our paper

Actis, Passarino, Sturm, Uccirati 2008 & 2009 Anastasiou, Boughezal, Petriello 2009

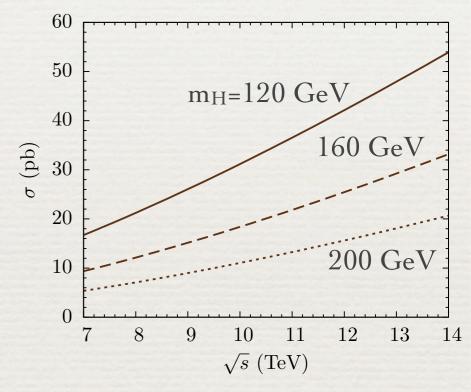
* Include (as before) QCD corrections with NNNLL resummation (also large kinematical corrections specific for time-like processes) matched onto NNLO fixed-order results

Ahrens, Becher, MN, Yang 2010


* Cross section predictions after resummation, including perturbative uncertainties only:

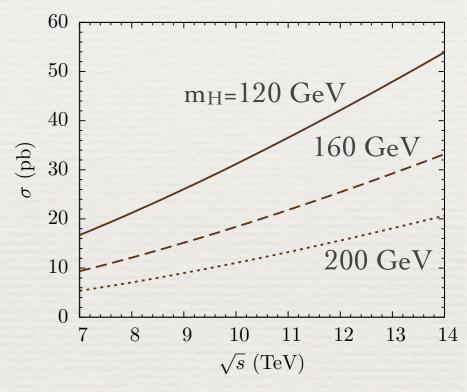
Ahrens, Becher, MN, Yang 2010

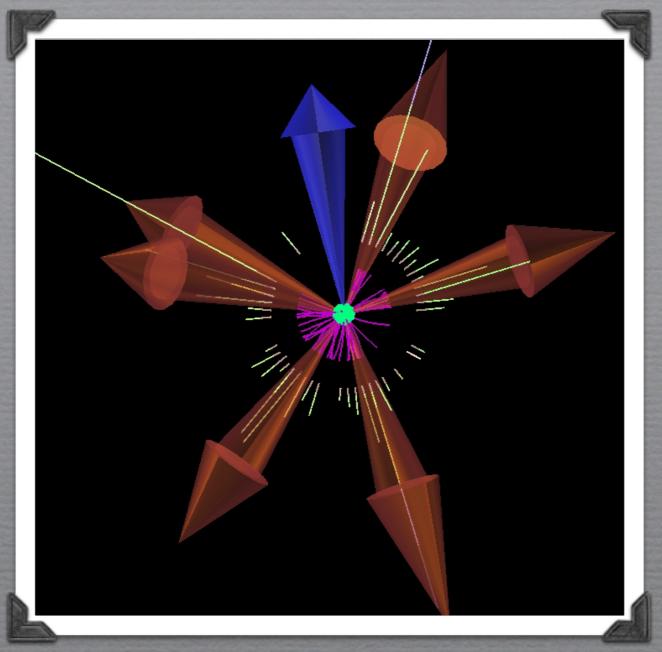
* State-of-the-art results (most complete to date) using MSTW2008NNLO PDFs:


$m_H [{\rm GeV}]$	Tevatron	LHC (7 TeV)	LHC (10 TeV)	LHC (14 TeV)
115	$1.215^{+0.031+0.141}_{-0.007-0.135}$	$18.19^{+0.53+1.46}_{-0.14-1.39}$	$33.7^{+1.0+2.6}_{-0.2-2.5}$	$57.9^{+1.6+4.4}_{-0.3-4.2}$
120	$1.073^{+0.026+0.126}_{-0.006-0.121}$	$16.73^{+0.48+1.34}_{-0.13-1.28}$	$31.2^{+0.9+2.4}_{-0.2-2.3}$	$54.0^{+1.5+4.1}_{-0.3-3.9}$
125	$0.950^{+0.022+0.113}_{-0.005-0.108}$	$15.43^{+0.44+1.23}_{-0.12-1.18}$	$29.0^{+0.8+2.2}_{-0.2-2.1}$	$50.4^{+1.4+3.8}_{-0.3-3.6}$
130	$0.844^{+0.019}_{-0.004}^{+0.102}_{-0.098}$	$14.27^{+0.40+1.14}_{-0.11-1.09}$	$27.0^{+0.7+2.1}_{-0.2-2.0}$	$47.2^{+1.3+3.5}_{-0.3-3.4}$
135	$0.753^{+0.016+0.093}_{-0.004-0.088}$	$13.23^{+0.36+1.06}_{-0.10-1.01}$	$25.2^{+0.7+1.9}_{-0.2-1.8}$	$44.3^{+1.2+3.3}_{-0.3-3.2}$
140	$0.672^{+0.014}_{-0.003}{}^{+0.084}_{-0.080}$	$12.29^{+0.33+0.98}_{-0.09-0.94}$	$23.5^{+0.6+1.8}_{-0.2-1.7}$	$41.6^{+1.1+3.1}_{-0.3-3.0}$
145	$0.602^{+0.012+0.076}_{-0.003-0.072}$	$11.44^{+0.31+0.91}_{-0.08-0.88}$	$22.1^{+0.6+1.7}_{-0.1-1.6}$	$39.2^{+1.0+2.9}_{-0.2-2.8}$
150	$0.541^{+0.010+0.070}_{-0.002-0.066}$	$10.67^{+0.28+0.85}_{-0.08-0.82}$	$20.7^{+0.5+1.6}_{-0.1-1.5}$	$37.0^{+1.0+2.7}_{-0.2-2.6}$
155	$0.486^{+0.009+0.064}_{-0.002-0.060}$	$9.95^{+0.26+0.80}_{-0.07-0.77}$	$19.4^{+0.5+1.5}_{-0.1-1.4}$	$34.9^{+0.9+2.6}_{-0.2-2.5}$
160	$0.433^{+0.008+0.058}_{-0.002-0.054}$	$9.21^{+0.24+0.74}_{-0.07-0.71}$	$18.1^{+0.5+1.4}_{-0.1-1.3}$	$32.7^{+0.8+2.4}_{-0.2-2.3}$
165	$0.385^{+0.006+0.052}_{-0.002-0.049}$	$8.50^{+0.22+0.68}_{-0.06-0.66}$	$16.8^{+0.4+1.3}_{-0.1-1.2}$	$30.5^{+0.8+2.2}_{-0.2-2.1}$
170	$0.345^{+0.005+0.047}_{-0.002-0.044}$	$7.89^{+0.20+0.63}_{-0.06-0.61}$	$15.7^{+0.4+1.2}_{-0.1-1.1}$	$28.6^{+0.7+2.1}_{-0.2-2.0}$
175	$0.310^{+0.005+0.043}_{-0.001-0.040}$	$7.36^{+0.18+0.59}_{-0.05-0.57}$	$14.7^{+0.4+1.1}_{-0.1-1.1}$	$27.0^{+0.7+1.9}_{-0.2-1.9}$
180	$0.280^{+0.004+0.040}_{-0.001-0.037}$	$6.88^{+0.17+0.56}_{-0.05-0.54}$	$13.8^{+0.3+1.0}_{-0.1-1.0}$	$25.5^{+0.6+1.8}_{-0.2-1.8}$
185	$0.252^{+0.003+0.036}_{-0.001-0.033}$	$6.42^{+0.15+0.52}_{-0.04-0.50}$	$13.0^{+0.3+1.0}_{-0.1-0.9}$	$24.0^{+0.6+1.7}_{-0.1-1.7}$
190	$0.228^{+0.003+0.033}_{-0.001-0.031}$	$6.02^{+0.14+0.49}_{-0.04-0.47}$	$12.2^{+0.3+0.9}_{-0.1-0.9}$	$22.7^{+0.5+1.6}_{-0.1-1.6}$
195	$0.207^{+0.002+0.031}_{-0.001-0.028}$	$5.67^{+0.13+0.46}_{-0.04-0.45}$	$11.6^{+0.3+0.9}_{-0.1-0.8}$	$21.6^{+0.5+1.6}_{-0.1-1.5}$
200	$0.189^{+0.002+0.028}_{-0.001-0.026}$	$5.35^{+0.12+0.44}_{-0.03-0.42}$	$11.0^{+0.3+0.8}_{-0.1-0.8}$	$20.6^{+0.5+1.5}_{-0.1-1.4}$

Ahrens, Becher, MN, Yang 2010

* State-of-the-art results (most complete to date) using CT10 PDFs:


$m_H [{\rm GeV}]$	Tevatron	LHC (7 TeV)	LHC (10 TeV)	LHC (14 TeV)
115	$1.215^{+0.031}_{-0.007}^{+0.105}_{-0.095}$	$18.34^{+0.54+0.95}_{-0.14-1.00}$	$34.1^{+1.0+1.8}_{-0.2-1.9}$	$58.8^{+1.7+3.1}_{-0.4-3.5}$
120	$1.073^{+0.026+0.096}_{-0.005-0.087}$	$16.86^{+0.49+0.87}_{-0.13-0.91}$	$31.5^{+0.9+1.6}_{-0.2-1.8}$	$54.7^{+1.6+2.9}_{-0.3-3.2}$
125	$0.950^{+0.022+0.088}_{-0.005-0.079}$	$15.54^{+0.45+0.80}_{-0.12-0.83}$	$29.3^{+0.8+1.5}_{-0.2-1.6}$	$51.1^{+1.4+2.6}_{-0.3-3.0}$
130	$0.845^{+0.019+0.081}_{-0.004-0.072}$	$14.36^{+0.41+0.74}_{-0.11-0.76}$	$27.2^{+0.8+1.4}_{-0.2-1.5}$	$47.8^{+1.3+2.5}_{-0.3-2.7}$
135	$0.753^{+0.016+0.075}_{-0.004-0.067}$	$13.31^{+0.37+0.68}_{-0.10-0.70}$	$25.4^{+0.7+1.3}_{-0.2-1.4}$	$44.8^{+1.2+2.3}_{-0.3-2.5}$
140	$0.673^{+0.014+0.069}_{-0.003-0.061}$	$12.35^{+0.34+0.63}_{-0.09-0.65}$	$23.7^{+0.7+1.2}_{-0.2-1.3}$	$42.1^{+1.1+2.1}_{-0.3-2.3}$
145	$0.604^{+0.012+0.064}_{-0.003-0.057}$	$11.50^{+0.31+0.59}_{-0.08-0.60}$	$22.2^{+0.6+1.1}_{-0.2-1.2}$	$39.7^{+1.1+2.0}_{-0.2-2.2}$
150	$0.542^{+0.010+0.059}_{-0.002-0.052}$	$10.71^{+0.29+0.55}_{-0.08-0.56}$	$20.9^{+0.6+1.0}_{-0.1-1.1}$	$37.4^{+1.0+1.9}_{-0.2-2.0}$
155	$0.487^{+0.009+0.055}_{-0.002-0.049}$	$9.99^{+0.26+0.51}_{-0.07-0.52}$	$19.6^{+0.5+1.0}_{-0.1-1.0}$	$35.2^{+0.9+1.7}_{-0.2-1.9}$
160	$0.435^{+0.008+0.050}_{-0.002-0.045}$	$9.24^{+0.24+0.48}_{-0.07-0.48}$	$18.2^{+0.5+0.9}_{-0.1-0.9}$	$33.0^{+0.9+1.6}_{-0.2-1.7}$
165	$0.387^{+0.007+0.046}_{-0.002-0.041}$	$8.52^{+0.22+0.44}_{-0.06-0.44}$	$16.9^{+0.4+0.8}_{-0.1-0.9}$	$30.7^{+0.8+1.5}_{-0.2-1.6}$
170	$0.347^{+0.006+0.043}_{-0.002-0.038}$	$7.91^{+0.20+0.41}_{-0.05-0.41}$	$15.8^{+0.4+0.8}_{-0.1-0.8}$	$28.8^{+0.7+1.4}_{-0.2-1.5}$
175	$0.313^{+0.005+0.039}_{-0.001-0.035}$	$7.38^{+0.19+0.38}_{-0.05-0.38}$	$14.8^{+0.4+0.7}_{-0.1-0.7}$	$27.2^{+0.7+1.3}_{-0.2-1.4}$
180	$0.282^{+0.004+0.037}_{-0.001-0.032}$	$6.89^{+0.17+0.36}_{-0.05-0.36}$	$13.9^{+0.3+0.7}_{-0.1-0.7}$	$25.7^{+0.6+1.2}_{-0.2-1.3}$
185	$0.254^{+0.004+0.034}_{-0.001-0.030}$	$6.43^{+0.16+0.34}_{-0.04-0.33}$	$13.1^{+0.3+0.6}_{-0.1-0.7}$	$24.2^{+0.6+1.1}_{-0.1-1.2}$
190	$0.230^{+0.003+0.032}_{-0.001-0.028}$	$6.02^{+0.15+0.32}_{-0.04-0.31}$	$12.3^{+0.3+0.6}_{-0.1-0.6}$	$22.9^{+0.6+1.1}_{-0.1-1.2}$
195	$0.210^{+0.003+0.030}_{-0.001-0.026}$	$5.67^{+0.14+0.30}_{-0.04-0.30}$	$11.6^{+0.3+0.6}_{-0.1-0.6}$	$21.8^{+0.5+1.0}_{-0.1-1.1}$
200	$0.191^{+0.002+0.028}_{-0.001-0.024}$	$5.35^{+0.13+0.29}_{-0.03-0.28}$	$11.1^{+0.3+0.5}_{-0.1-0.5}$	$20.8^{+0.5+1.0}_{-0.1-1.0}$



Ahrens, Becher, MN, Yang 2010

* State-of-the-art results (most complete to date) using NNPDF2.0 PDFs:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c} 120 & 1.184^{+0.032+0.129}_{-0.016-0.129} & 17.82^{+0.54+1.25}_{-0.29-1.25} & 32.8^{+1.0+2.2}_{-0.5-2.2} & 56.3^{+1.7+3.7}_{-0.7-3.7} \\ 125 & 1.049^{+0.027+0.116}_{-0.014-0.116} & 16.45^{+0.50+1.15}_{-0.28-1.15} & 30.5^{+0.9+2.0}_{-0.5-2.0} & 52.6^{+1.5+3.4}_{-0.8-3.4} \\ 130 & 0.932^{+0.023+0.105}_{-0.013-0.105} & 15.23^{+0.45+1.07}_{-0.28-1.07} & 28.5^{+0.8+1.9}_{-0.5-1.9} & 49.3^{+1.4+3.2}_{-0.8-3.4} \\ 135 & 0.831^{+0.020+0.096}_{-0.011-0.096} & 14.13^{+0.41+0.99}_{-0.27-0.09} & 26.6^{+0.8+1.8}_{-0.5-1.8} & 46.3^{+1.3+3.0}_{-0.8-3.0} \\ 140 & 0.742^{+0.017+0.087}_{-0.010-0.087} & 13.14^{+0.38+0.93}_{-0.27-0.99} & 24.9^{+0.7+1.7}_{-0.5-1.7} & 43.6^{+1.2+2.8}_{-0.8-2.8} \\ 145 & 0.665^{+0.015+0.080}_{-0.090-0.080} & 12.24^{+0.35+0.86}_{-0.25-0.86} & 23.3^{+0.7+1.5}_{-0.5-1.5} & 41.1^{+1.1+2.6}_{-0.8-2.6} \\ 150 & 0.597^{+0.013+0.073}_{-0.008-0.073} & 11.42^{+0.32+0.81}_{-0.24-0.81} & 21.9^{+0.6+1.5}_{-0.4-1.5} & 38.8^{+1.1+2.5}_{-0.7-2.5} \\ 155 & 0.536^{+0.011+0.067}_{-0.007-0.067} & 10.66^{+0.30+0.76}_{-0.23-0.76} & 20.6^{+0.6+1.4}_{-0.4-1.4} & 36.6^{+1.0+2.3}_{-0.7-2.5} \\ 160 & 0.478^{+0.010+0.061}_{-0.061} & 9.88^{+0.27+0.70}_{-0.22-0.70} & 19.2^{+0.5+1.3}_{-0.4-1.3} & 34.3^{+0.9+2.2}_{-0.7-2.0} \\ 170 & 0.380^{+0.007+0.055}_{-0.005-0.055} & 9.11^{+0.25+0.65}_{-0.19-0.61} & 16.6^{+0.5+1.1}_{-0.4-1.0} & 32.0^{+0.9+2.0}_{-0.7-2.0} \\ 175 & 0.342^{+0.006+0.046}_{-0.005-0.050} & 8.46^{+0.24+0.61}_{-0.19-0.61} & 16.6^{+0.5+1.1}_{-0.4-1.0} & 32.0^{+0.9+2.0}_{-0.7-2.0} \\ 180 & 0.308^{+0.007+0.050}_{-0.005-0.050} & 8.46^{+0.24+0.61}_{-0.19-0.65} & 15.6^{+0.4+1.0}_{-0.4-1.1} & 30.0^{+0.8+1.9}_{-0.6-1.7} \\ 185 & 0.277^{+0.005+0.094}_{-0.003} & 6.90^{+0.19+0.50}_{-0.16-0.50} & 13.8^{+0.4+0.9}_{-0.3} & 23.9^{+0.7+1.5}_{-0.6-1.6} \\ 190 & 0.250^{+0.004+0.036}_{-0.002-0.033} & 6.90^{+0.19+0.50}_{-0.16-0.50} & 13.8^{+0.4+0.9}_{-0.3-0.8} & 23.9^{+0.7+1.5}_{-0.6-1.6} \\ 190 & 0.250^{+0.004+0.036}_{-0.002-0.033} & 6.90^{+0.19+0.50}_{-0.16-0.50} & 13.8^{+0.4+0.9}_{-0.3-0.8} & 22.8^{+0.6+1.4}_{-0.5-1.4} \\ 12.3^{+0.4+0.8}_{-0.3-$	$m_H [{\rm GeV}]$	Tevatron	LHC (7 TeV)	LHC (10 TeV)	LHC (14 TeV)
$\begin{array}{c} 125 & 1.049 + 0.027 + 0.116 \\ -0.014 - 0.116 \\ -0.014 - 0.116 \\ 16.45 + 0.28 - 1.15 \\ 130 & 0.932 + 0.023 + 0.105 \\ -0.023 + 0.015 \\ -0.013 - 0.015 \\ 15.23 + 0.45 + 1.07 \\ -0.011 - 0.096 \\ 14.13 + 0.41 + 0.99 \\ -0.011 - 0.096 \\ 14.13 + 0.41 + 0.99 \\ -0.011 - 0.096 \\ 14.13 + 0.41 + 0.99 \\ -0.011 - 0.096 \\ 14.13 + 0.41 + 0.99 \\ -0.011 - 0.096 \\ 14.13 + 0.41 + 0.99 \\ -0.011 - 0.099 \\ 26.6 + 0.81 + 1.8 \\ -0.5 - 1.8 \\ 46.3 + 1.34 + 3.3 \\ -0.8 - 3.0 \\ 44.9 + 0.7 + 1.7 \\ 43.6 + 1.2 + 2.8 \\ 46.3 + 1.3 + 3.0 \\ -0.8 - 3.0 \\ 44.9 + 0.7 + 1.7 \\ 43.6 + 1.2 + 2.8 \\ 46.3 + 1.3 + 3.0 \\ -0.8 - 3.0 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ -0.8 - 2.6 \\ 41.1 + 1.1 + 2.6 \\ 41.1 $	115	$1.341^{+0.037+0.143}_{-0.018-0.143}$	$19.35^{+0.60+1.36}_{-0.29-1.36}$	$35.4^{+1.1+2.4}_{-0.5-2.4}$	$60.3^{+1.8+3.9}_{-0.7-3.9}$
$\begin{array}{c} 130 & 0.932^{+0.023+0.105}_{-0.013-0.105} & 15.23^{+0.45+1.07}_{-0.28-1.07} & 28.5^{+0.8+1.9}_{-0.5-1.9} & 49.3^{+1.4+3.2}_{-0.8-3.2} \\ 135 & 0.831^{+0.020+0.096}_{-0.011-0.096} & 14.13^{+0.41+0.99}_{-0.27-0.99} & 26.6^{+0.8+1.8}_{-0.5-1.8} & 46.3^{+1.3+3.0}_{-0.8-3.0} \\ 140 & 0.742^{+0.017+0.087}_{-0.010-0.087} & 13.14^{+0.38+0.93}_{-0.26-0.93} & 24.9^{+0.7+1.7}_{-0.5-1.7} & 43.6^{+1.2+2.8}_{-0.8-2.8} \\ 145 & 0.665^{+0.015+0.080}_{-0.090-0.080} & 12.24^{+0.35+0.86}_{-0.25-0.86} & 23.3^{+0.7+1.5}_{-0.5-1.5} & 41.1^{+1.1+2.6}_{-0.8-2.6} \\ 150 & 0.597^{+0.013+0.073}_{-0.008-0.073} & 11.42^{+0.32+0.81}_{-0.24-0.81} & 21.9^{+0.6+1.5}_{-0.4-1.5} & 38.8^{+1.1+2.5}_{-0.7-2.5} \\ 155 & 0.536^{+0.011+0.067}_{-0.007-0.067} & 10.66^{+0.30+0.76}_{-0.23-0.76} & 20.6^{+0.61.4}_{-0.4-1.4} & 36.6^{+1.0+2.3}_{-0.7-2.3} \\ 160 & 0.478^{+0.010+0.061}_{-0.006-0.061} & 9.88^{+0.27+0.70}_{-0.22-0.70} & 19.2^{+0.5+1.3}_{-0.4-1.2} & 34.3^{+0.9+2.2}_{-0.7-2.0} \\ 170 & 0.380^{+0.007+0.050}_{-0.005-0.055} & 9.11^{+0.25+0.65}_{-0.21-0.05} & 17.8^{+0.5+1.2}_{-0.4-1.2} & 32.0^{+0.9+2.0}_{-0.7-2.0} \\ 175 & 0.342^{+0.006+0.046}_{-0.004-0.046} & 7.90^{+0.22+0.57}_{-0.18-0.57} & 15.6^{+0.4+1.0}_{-0.4-1.0} & 28.4^{+0.8+1.8}_{-0.6-1.8} \\ 180 & 0.308^{+0.005+0.042}_{-0.003-0.042} & 7.38^{+0.20+0.53}_{-0.17-0.53} & 14.7^{+0.4+1.0}_{-0.4-1.0} & 26.8^{+0.7+1.7}_{-0.6-1.8} \\ 190 & 0.250^{+0.004+0.036}_{-0.002-0.036} & 6.46^{+0.18+0.47}_{-0.15-0.47} & 13.0^{+0.4+0.9}_{-0.30-0.9} & 25.3^{+0.7+1.5}_{-0.6-1.6} \\ 190 & 0.250^{+0.004+0.036}_{-0.002-0.036} & 6.46^{+0.18+0.47}_{-0.14-0.44} & 12.3^{+0.4+0.8}_{-0.3-0.8} & 22.8^{+0.7+1.5}_{-0.5-1.4} \\ 195 & 0.227^{+0.004+0.033}_{-0.002-0.033} & 6.08^{+0.17+0.44}_{-0.14-0.44} & 12.3^{+0.4+0.8}_{-0.3-0.8} & 22.8^{+0.7+1.5}_{-0.5-1.4} \\ 195 & 0.227^{+0.004+0.033}_{-0.002-0.033} & 6.08^{+0.17+0.44}_{-0.14-0.44} & 12.3^{+0.4+0.8}_{-0.3-0.8} & 22.8^{+0.5-1.4}_{-0.5-1.4} \\ 195 & 0.227^{+0.004+0.033}_{-0.002-0.033} & 6.08^{+0.17+0.44}_{-0.14-0.44} & 12.3^{+0.4+0.8}_{-0.3-0.8} & 22.8^{+0.5-1.4}_{-0.5-1.4} \\ 195 & 0.$	120	$1.184^{+0.032+0.129}_{-0.016-0.129}$	$17.82^{+0.54+1.25}_{-0.29-1.25}$	$32.8^{+1.0+2.2}_{-0.5-2.2}$	$56.3^{+1.7+3.7}_{-0.7-3.7}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125	$1.049^{+0.027+0.116}_{-0.014-0.116}$	$16.45^{+0.50+1.15}_{-0.28-1.15}$	$30.5^{+0.9+2.0}_{-0.5-2.0}$	$52.6^{+1.5+3.4}_{-0.8-3.4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130	$0.932^{+0.023+0.105}_{-0.013-0.105}$	$15.23^{+0.45+1.07}_{-0.28-1.07}$	$28.5^{+0.8+1.9}_{-0.5-1.9}$	$49.3^{+1.4+3.2}_{-0.8-3.2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	135	$0.831^{+0.020+0.096}_{-0.011-0.096}$	$14.13^{+0.41+0.99}_{-0.27-0.99}$	$26.6^{+0.8+1.8}_{-0.5-1.8}$	$46.3^{+1.3+3.0}_{-0.8-3.0}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	140	$0.742^{+0.017}_{-0.010}$	$13.14^{+0.38+0.93}_{-0.26-0.93}$	$24.9^{+0.7+1.7}_{-0.5-1.7}$	$43.6^{+1.2+2.8}_{-0.8-2.8}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145	$0.665^{+0.015}_{-0.009}^{+0.015}_{-0.080}$	$12.24^{+0.35+0.86}_{-0.25-0.86}$	$23.3^{+0.7+1.5}_{-0.5-1.5}$	$41.1^{+1.1+2.6}_{-0.8-2.6}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150	$0.597^{+0.013+0.073}_{-0.008-0.073}$	$11.42^{+0.32+0.81}_{-0.24-0.81}$	$21.9^{+0.6+1.5}_{-0.4-1.5}$	$38.8^{+1.1+2.5}_{-0.7-2.5}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	155	$0.536^{+0.011+0.067}_{-0.007-0.067}$	$10.66^{+0.30+0.76}_{-0.23-0.76}$	$20.6^{+0.6+1.4}_{-0.4-1.4}$	$36.6^{+1.0+2.3}_{-0.7-2.3}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160	$0.478^{+0.010+0.061}_{-0.006-0.061}$	$9.88^{+0.27+0.70}_{-0.22-0.70}$	$19.2^{+0.5+1.3}_{-0.4-1.3}$	$34.3^{+0.9+2.2}_{-0.7-2.2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	165	$0.425^{+0.008+0.055}_{-0.005-0.055}$	$9.11^{+0.25+0.65}_{-0.21-0.65}$	$17.8^{+0.5+1.2}_{-0.4-1.2}$	$32.0^{+0.9+2.0}_{-0.7-2.0}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170	$0.380^{+0.007+0.050}_{-0.005-0.050}$	$8.46^{+0.24+0.61}_{-0.19-0.61}$	$16.6^{+0.5+1.1}_{-0.4-1.1}$	$30.0^{+0.8+1.9}_{-0.6-1.9}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	175	$0.342^{+0.006+0.046}_{-0.004-0.046}$	$7.90^{+0.22+0.57}_{-0.18-0.57}$	$15.6^{+0.4+1.0}_{-0.4-1.0}$	$28.4^{+0.8+1.8}_{-0.6-1.8}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	180	$0.308^{+0.005+0.042}_{-0.003-0.042}$	$7.38^{+0.20+0.53}_{-0.17-0.53}$	$14.7^{+0.4+1.0}_{-0.3-1.0}$	$26.8^{+0.7+1.7}_{-0.6-1.7}$
$195 \qquad 0.227^{+0.004+0.033}_{-0.002-0.033} \qquad 6.08^{+0.17+0.44}_{-0.14-0.44} \qquad 12.3^{+0.4+0.8}_{-0.3-0.8} \qquad 22.8^{+0.6+1.4}_{-0.5-1.4}$	185	$0.277^{+0.005+0.039}_{-0.003-0.039}$	$6.90^{+0.19+0.50}_{-0.16-0.50}$	$13.8^{+0.4+0.9}_{-0.3-0.9}$	$25.3^{+0.7+1.6}_{-0.6-1.6}$
	190	$0.250^{+0.004+0.036}_{-0.002-0.036}$	$6.\overline{46^{+0.18+0.47}_{-0.15-0.47}}$	$1\overline{3.0^{+0.4+0.9}_{-0.3-0.9}}$	
$200 \qquad \boxed{0.207^{+0.003+0.031}_{-0.002-0.031}} \qquad 5.74^{+0.17+0.42}_{-0.13-0.42} \qquad 11.7^{+0.3+0.8}_{-0.3-0.8} \qquad 21.7^{+0.6+1.4}_{-0.5-1.4}$	195	$0.227^{+0.004+0.033}_{-0.002-0.033}$	$6.08^{+0.17+0.44}_{-0.14-0.44}$	$12.3^{+0.4+0.8}_{-0.3-0.8}$	$22.8^{+0.6+1.4}_{-0.5-1.4}$
	200	$0.\overline{207^{+0.003+0.031}_{-0.002-0.031}}$	$5.74^{+0.17+0.42}_{-0.13-0.42}$	$11.7^{+0.3+0.8}_{-0.3-0.8}$	$21.7^{+0.6+1.4}_{-0.5-1.4}$

EFT-based predictions for top-pair production at Tevatron and LHC:

First NNLL+NLO results for distributions

Ahrens, Ferroglia, MN, Pecjak, Yang 2009 & 2010

State of the art

+ Fixed-order NLO calculations:

* total cross section

* differential

+ AFBt:

Nason, Dawson, Ellis 1988 Beenakker et al. 1989

Nason, Dawson, Ellis 1989 Mangano, Nason, Ridolfi 1992 Frixione, Mangano, Nason, Ridolfi 1995

Kühn, Rodrigo 1998

- * Fixed-order NNLO calculations:
 - * none exist! (but several pieces available)
 - * "leading terms" (enhanced near threshold)
 Beneke, Falgari, Schwinn 2009
 for total cross section Czakon, Mitov, Sterman 2009 Ahrens, Ferroglia, MN, Pecjak, Yang 2010

* "leading terms" for distributions

Ahrens, Ferroglia, MN, Pecjak, Yang 2009

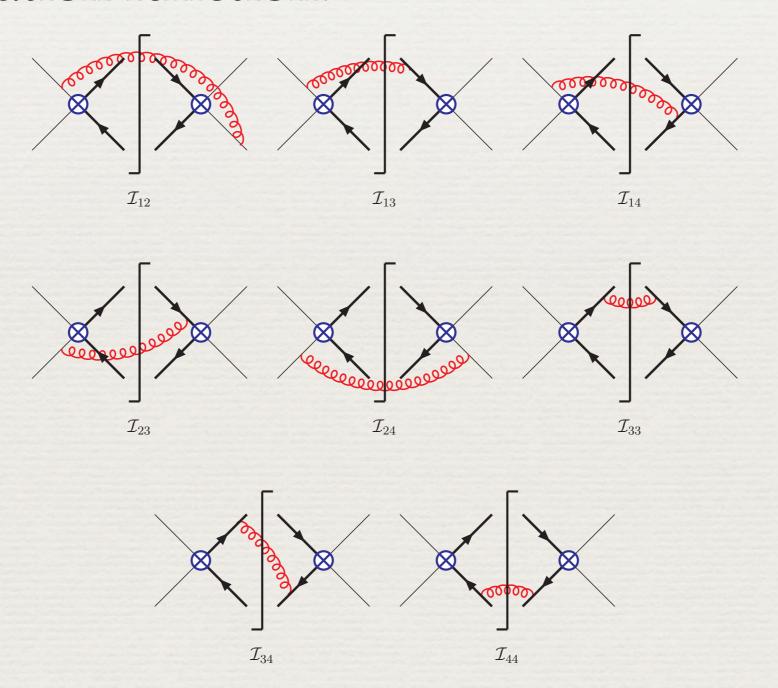
State of the art

- * Threshold resummation at NLL:
 - total cross section
 - * distributions
 - + A_{FB}^{t} :

Bonciani, Catani, Mangano, Nason 1998 Berger, Contopanagos 1995 Kidonakis, Laenen, Moch, Vogt 2001

Kidonakis, Vogt 2003; Banfi, Laenen 2005

Almeida, Sterman, Vogelsang 2008


- * Resummation at NNLL+NLO matching:
 - total cross section
 - + distributions

Beneke, Falgari, Schwinn 2009 Czakon, Mitov, Sterman 2009

Ahrens, Ferroglia, MN, Pecjak, Yang 2010

Top-pair production at NLO+NNLL

* Soft functions from time-like Wilson-line correlation function:

Top-pair production at NLO+NNLL

Ferroglia, MN, Pecjak, Yang 2009

* Anomalous-dimension matrices in s-channel singlet-octet basis for $q\bar{q}, gg \to t\bar{t}$ channels:

$$\Gamma_{q\bar{q}} = \left[C_F \gamma_{\text{cusp}}(\alpha_s) \ln \frac{-s}{\mu^2} + C_F \gamma_{\text{cusp}}(\beta_{34}, \alpha_s) + 2\gamma^q(\alpha_s) + 2\gamma^Q(\alpha_s) \right] \mathbf{1}$$

$$+ \frac{N}{2} \left[\gamma_{\text{cusp}}(\alpha_s) \ln \frac{(-s_{13})(-s_{24})}{(-s)m_t^2} - \gamma_{\text{cusp}}(\beta_{34}, \alpha_s) \right] \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$+ \gamma_{\text{cusp}}(\alpha_s) \ln \frac{(-s_{13})(-s_{24})}{(-s_{14})(-s_{23})} \left[\begin{pmatrix} 0 & \frac{C_F}{2N} \\ 1 & -\frac{1}{N} \end{pmatrix} + \frac{\alpha_s}{4\pi} g(\beta_{34}) \begin{pmatrix} 0 & \frac{C_F}{2} \\ -N & 0 \end{pmatrix} \right] + \mathcal{O}(\alpha_s^3)$$

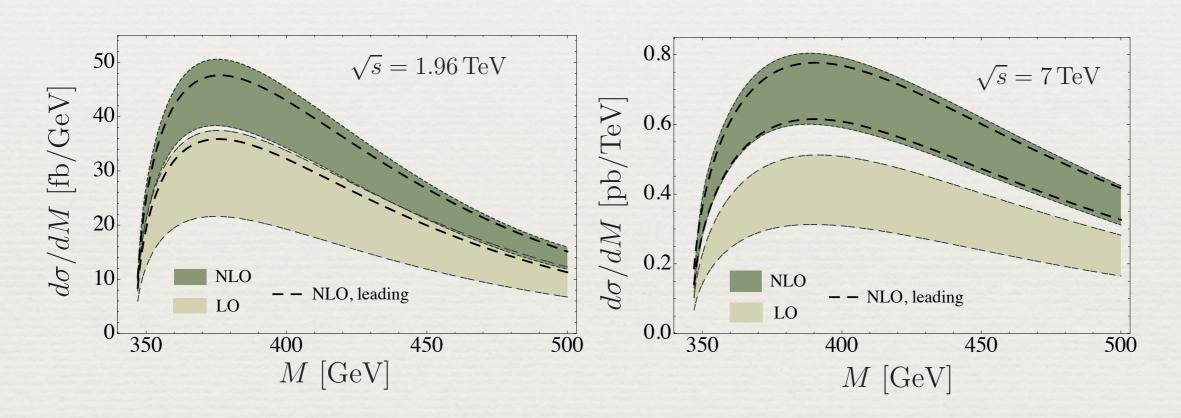
$$\Gamma_{gg} = \left[N \gamma_{\text{cusp}}(\alpha_s) \ln \frac{-s}{\mu^2} + C_F \gamma_{\text{cusp}}(\beta_{34}, \alpha_s) + 2\gamma^g(\alpha_s) + 2\gamma^Q(\alpha_s) \right] \mathbf{1}$$

$$+ \frac{N}{2} \left[\gamma_{\text{cusp}}(\alpha_s) \ln \frac{(-s_{13})(-s_{24})}{(-s)m_t^2} - \gamma_{\text{cusp}}(\beta_{34}, \alpha_s) \right] \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{55}$$

$$+ \gamma_{\text{cusp}}(\alpha_s) \ln \frac{(-s_{13})(-s_{24})}{(-s_{14})(-s_{23})} \left[\begin{pmatrix} 0 & \frac{1}{2} & 0 \\ 1 & -\frac{N}{4} & \frac{N^2 - 4}{4N} \\ 0 & \frac{N}{4} & -\frac{N}{4} \end{pmatrix} + \frac{\alpha_s}{4\pi} g(\beta_{34}) \begin{pmatrix} 0 & \frac{N}{2} & 0 \\ -N & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right] + \mathcal{O}(\alpha_s^3).$$

Top-pair production at NLO+NNLL

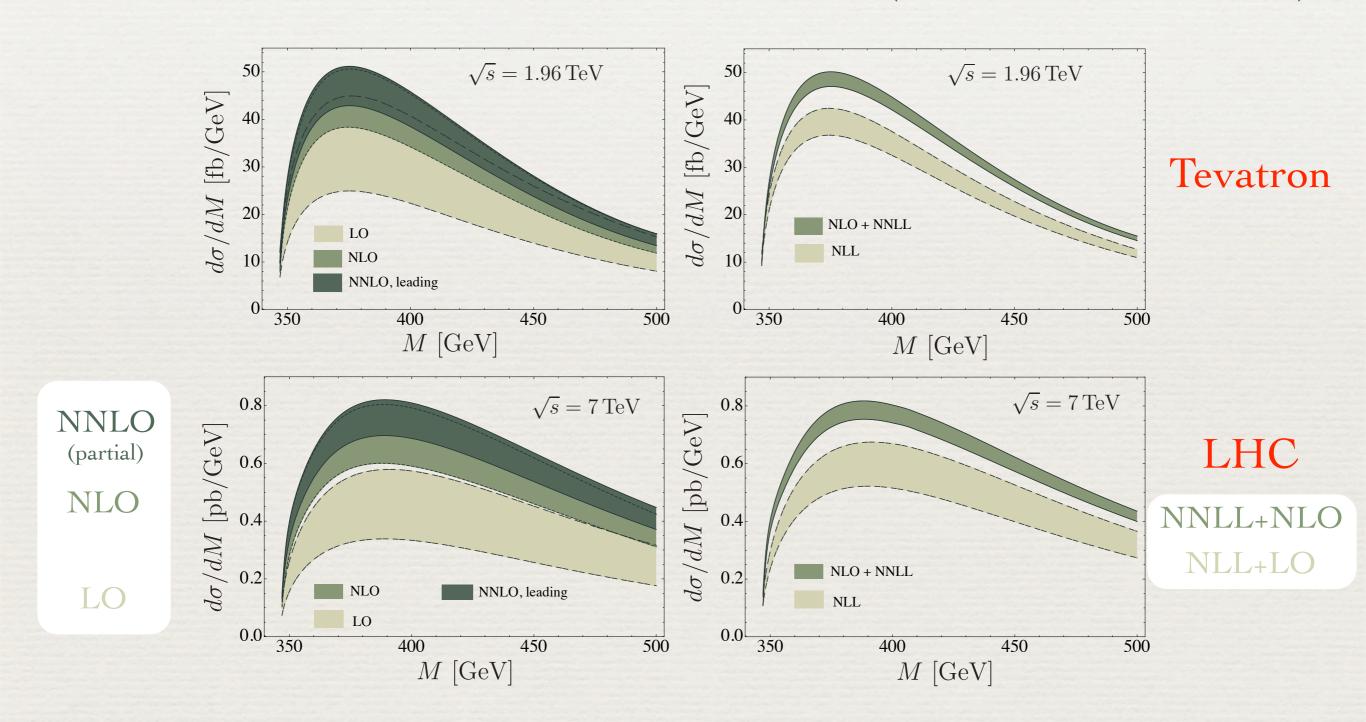
- * Can use these results to predict leading singular terms near partonic threshold $z=M^2/\hat{s}\to 1$
- + Obtain NNLO coefficients of distributions


$$P'_n(z) = \left[\frac{1}{1-z} \ln^n \left(\frac{M^2(1-z)^2}{\mu^2 z} \right) \right]_+$$

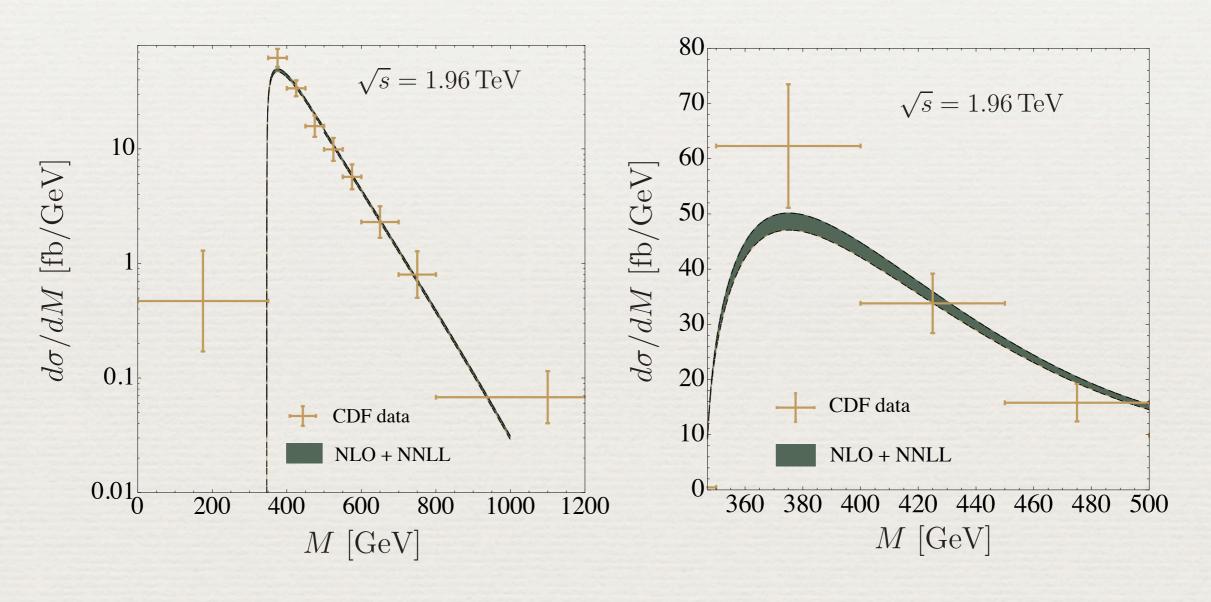
and (partially) of $\delta(1-z)$

- * Yields presently best estimate of NNLO terms
- * Note: includes some subleading terms ~ $\ln(z)$ beyond distributions $P_n(z) = \left[\frac{\ln^n(1-z)}{1-z}\right]_+$

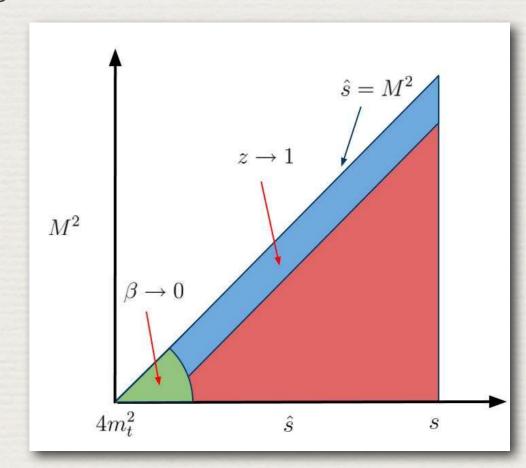
Dominance of threshold terms


* Fixed-order results for invariant mass distribution at Tevatron and LHC:

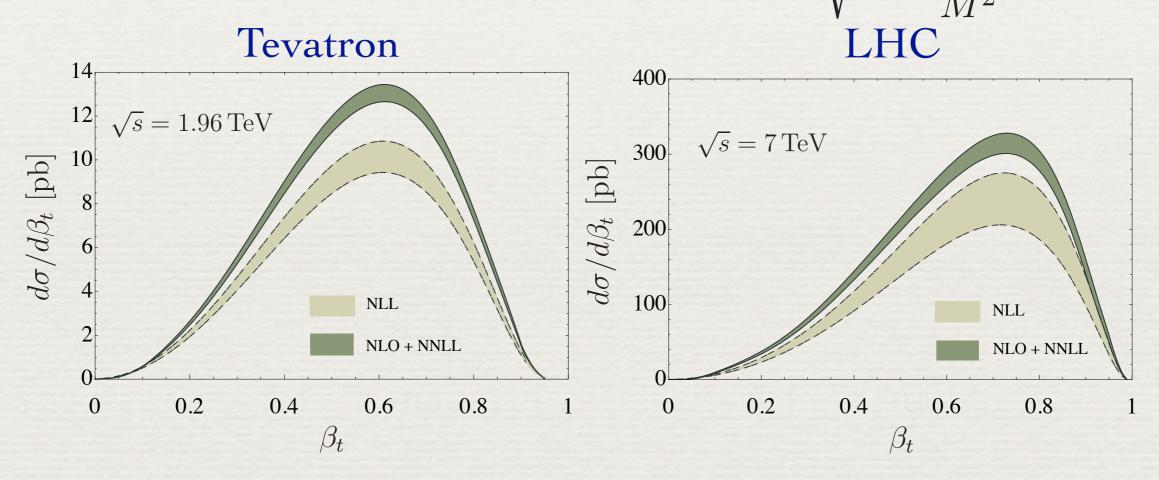
* Leading singular terms near partonic threshold $z = M^2/\hat{s} \rightarrow 1$ give dominant contributions even at low and moderate M values


Invariant mass distributions

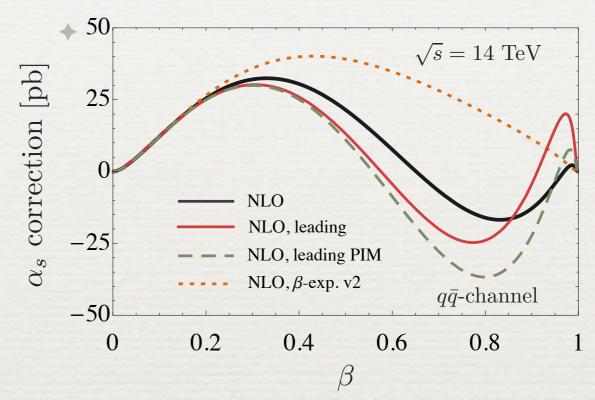
* Fixed-order vs. resummed PT (matched to NLO):

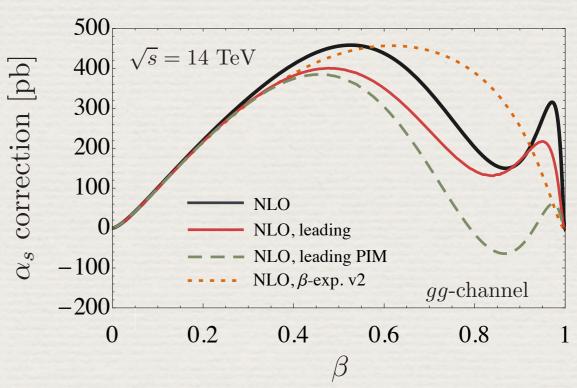


Comparison with CDF data


* Overlay (not a fit!) for m_t=173.1 GeV:

- * Usually, resummation is done around absolute threshold at $\hat{s}=4m_t^2$ (non-relativistic top quarks)
- * Mixed Coulomb and soft gluon singularities arise for $\beta = \sqrt{1 4m_t^2/\hat{s}} \rightarrow 0$
- * Obtain partial NNLO results based on small-β expansion Moch, Uwer 2008; Beneke et al. 2009
- * In our approach, soft gluon effects are resummed also far above absolute threshold!

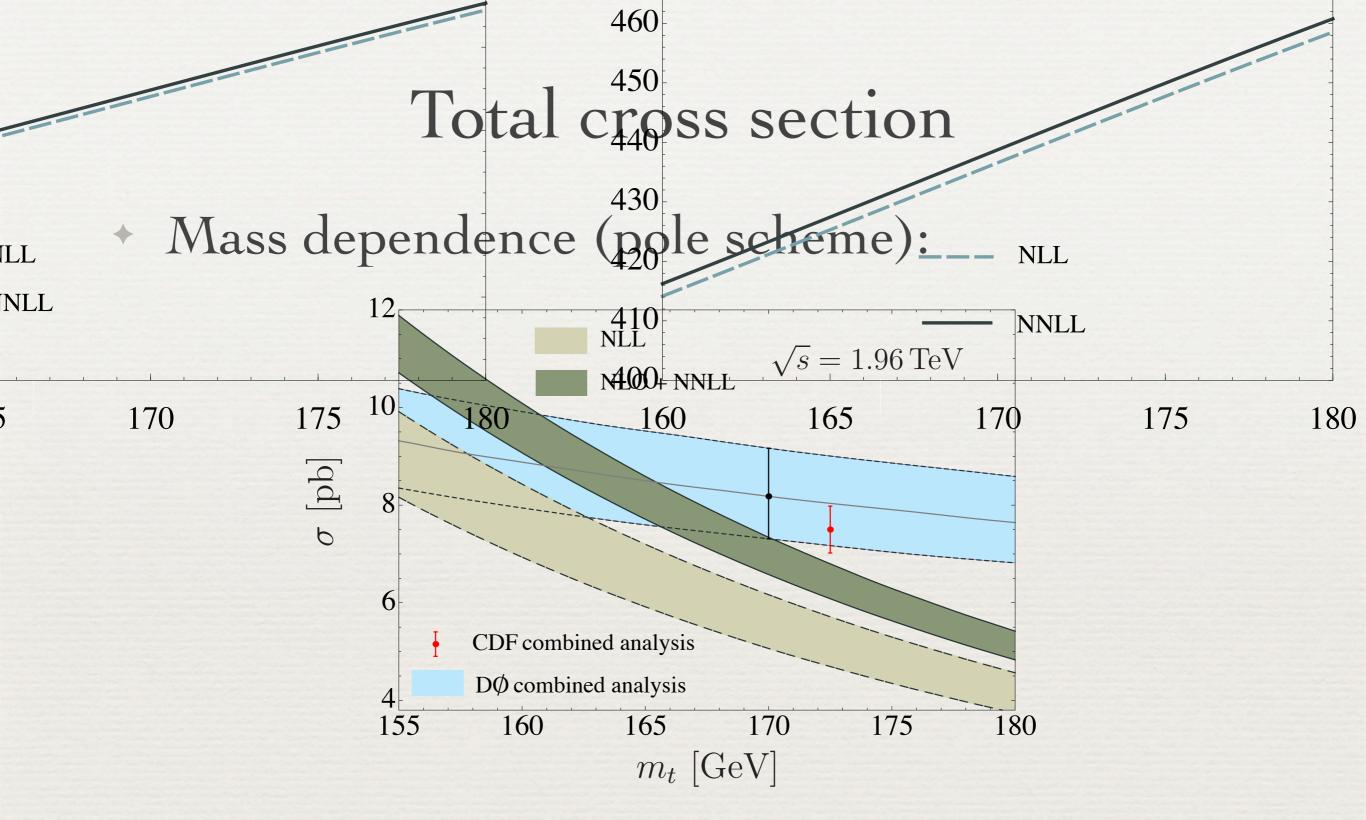

* Transform from M^2 to relative 3-velocity of top quarks in $t\bar{t}$ rest frame: $\beta_t = \sqrt{1 - \frac{4m_t^2}{M^2}}$



* Top quarks are relativistic, $\beta_t \sim 0.4$ -0.9

Comparison of different approximations to NLO corrections (including parton luminosities):

- our approximation lies
 much closer to NLO
 result than small-β
 approximation (Moch, Uwer)
- reproduces fine details
 of the curves
- improvement over traditional PIM curve (Kidonakis)



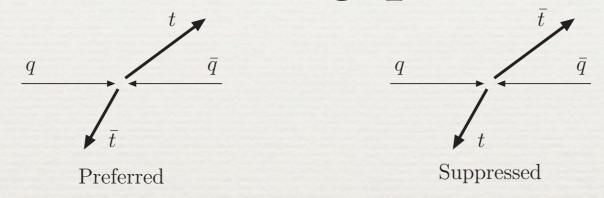
* Detailed predictions for total cross sections:

Cross section (pb)	Tevatron	LHC (7 TeV)	LHC (10 TeV)	LHC (14 TeV)
$\sigma_{ m LO}$	$4.49^{+1.71+0.24}_{-1.15-0.19}$	84^{+29+4}_{-20-5}	217^{+70+10}_{-49-11}	$495^{+148+19}_{-107-24}$
$\sigma_{ m NLL}$	$5.07^{+0.37}_{-0.36}^{+0.28}_{-0.18}$	112^{+18+5}_{-14-5}	276^{+47+10}_{-37-11}	$598^{+108+19}_{-94}$
$\sigma_{ m NLO, leading}$	$5.49^{+0.78}_{-0.78}^{+0.31}_{-0.20}$	134^{+16+7}_{-17-7}	341^{+34+14}_{-38-14}	$761^{+64}_{-75}{}^{+25}_{-26}$
$\sigma_{ m NLO}$	$5.79^{+0.79}_{-0.80}{}^{+0.33}_{-0.22}$	133^{+21+7}_{-19-7}	341^{+50+14}_{-46-15}	$761^{+105}_{-101}{}^{+26}_{-27}$
$\sigma_{ m NLO+NNLL}$	$6.30^{+0.19}_{-0.19}{}^{+0.31}_{-0.23}$	149+7+8	373^{+17+16}_{-15-16}	821+40+24
$\sigma_{ m NNLO,approx}$ (scheme A)	$6.14^{+0.49}_{-0.53}{}^{+0.31}_{-0.23}$	146+13+8	369^{+34+16}_{-30-16}	$821^{+71}_{-65}{}^{+27}_{-29}$
$\sigma_{\text{NNLO, approx}}$ (scheme B)	$6.05^{+0.43}_{-0.50}{}^{+0.31}_{-0.23}$	139^{+9+7}_{-9-7}	349^{+23+15}_{-23-15}	773^{+47+25}_{-50-27}

scale uncertainty PDF uncertainty

- * Singular terms dominate NLO corrections
- * Resummation stabilizes scale dependence

* Extract $m_t = (163.0^{+7.2}_{-6.3}) \, \text{GeV}$, in fair agreement with world average $m_t = (173.1 \pm 1.3) \, \text{GeV}$


Conclusions

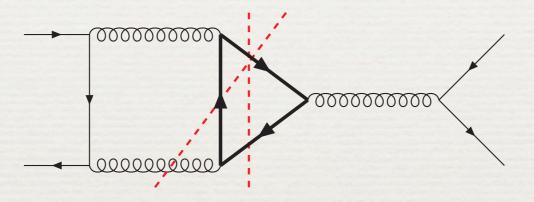
- * Effective field theory provides efficient tools for addressing difficult collider-physics problems
- * Systematic "derivation" of factorization theorems and simple, transparent resummation techniques
- * Detailed applications exist for Drell-Yan, Higgs, and top-quark pair production; first result for jets at hadron colliders emerging recently
- * Longer-term goal is to understand resummation at NNLL+NLO order for jet processes, such as pp→n jets+V (with n≤3, V=γ,Z,W)

Backup slides

Forward-backward asymmetry

* At Tevatron, top-quarks are emitted preferably in direction of incoming quark:

* Define inclusive asymmetry:


$$A_{\text{FB}}^{t} \equiv \frac{\int_{4m_{t}^{2}}^{s} dM \left(\int_{0}^{1} d\cos\theta \frac{d^{2}\sigma^{N_{1}N_{2} \to t\bar{t}X}}{dMd\cos\theta} - \int_{-1}^{0} d\cos\theta \frac{d^{2}\sigma^{N_{1}N_{2} \to t\bar{t}X}}{dMd\cos\theta} \right)}{\int_{4m_{t}^{2}}^{s} dM \left(\int_{0}^{1} d\cos\theta \frac{d^{2}\sigma^{N_{1}N_{2} \to t\bar{t}X}}{dMd\cos\theta} + \int_{-1}^{0} d\cos\theta \frac{d^{2}\sigma^{N_{1}N_{2} \to t\bar{t}X}}{dMd\cos\theta} \right)}$$

* Most recent exptl. results (ICHEP 2010):

 $A_{FB}^{t}|_{CDF} = (15.8 \pm 7.2_{stat} \pm 1.7_{sys})\%$ (ttbar frame)

Forward-backward asymmetry

* Non-zero contributions arise first at one-loop order, from interference terms such as:

+ Predictions:

	$0.2 < \mu_f/{\rm TeV} < 0.8$		$m_t/2 < \mu_f < 2m_t$	
	$\Delta \sigma_{\mathrm{FB}} \; [\mathrm{pb}]$	$A_{\mathrm{FB}}^t \ [\%]$	$\Delta \sigma_{\mathrm{FB}} \; [\mathrm{pb}]$	$A_{\mathrm{FB}}^t \ [\%]$
NLL	$0.29^{+0.16}_{-0.16}$	$5.8^{+3.3}_{-3.2}$	$0.31^{+0.16}_{-0.17}$	$5.9^{+3.4}_{-3.3}$
NLO, leading	$0.19^{+0.09}_{-0.06}$	$5.2^{+0.4}_{-0.4}$	$0.31^{+0.16}_{-0.10}$	$5.7^{+0.5}_{-0.4}$
NLO	$0.25^{+0.12}_{-0.07}$	$6.7^{+0.6}_{-0.4}$	$0.40^{+0.21}_{-0.13}$	$7.4^{+0.7}_{-0.6}$
NLO+NNLL	$0.40^{+0.06}_{-0.06}$	$6.6^{+0.6}_{-0.5}$	$0.45^{+0.08}_{-0.07}$	$7.3^{+1.1}_{-0.7}$
NNLO, approx (scheme A)	$0.37^{+0.10}_{-0.08}$	$6.4^{+0.9}_{-0.7}$	$0.48^{+0.11}_{-0.10}$	$7.5_{-0.9}^{+1.3}$
NNLO, approx (scheme B)	$0.34^{+0.08}_{-0.07}$	$5.8^{+0.8}_{-0.6}$	$0.45^{+0.09}_{-0.09}$	$6.8^{+1.1}_{-0.8}$

* Small-\beta expansion misses important NLO effects

Cross section (pb)	Tevatron	LHC (7 TeV)	LHC (10 TeV)	LHC (14 TeV)
$\sigma_{ m NLO}$	$5.79^{+0.79}_{-0.80}{}^{+0.33}_{-0.22}$	133^{+21+7}_{-19-7}	341^{+50+14}_{-46-15}	$761^{+105}_{-101}{}^{+26}_{-27}$
$\sigma_{ m NLO, leading}$	$5.49^{+0.78}_{-0.78}^{+0.31}_{-0.20}$	134^{+16+7}_{-17-7}	341^{+34+14}_{-38-14}	$761^{+64}_{-75}{}^{+25}_{-26}$
$\sigma_{\rm NLO, \ \beta-exp. \ v1}$	$8.22^{+0.54}_{-0.88}^{+0.49}_{-0.33}$	157^{+12+8}_{-16-8}	395^{+24+14}_{-36-15}	$877^{+49}_{-73}{}^{+29}_{-30}$
$\sigma_{\rm NLO,~\beta-exp.~v2}$	$6.59^{+0.96}_{-0.95}^{+0.38}_{-0.25}$	151^{+15+8}_{-18-8}	386^{+30+15}_{-39-16}	$863^{+49}_{-73}{}^{+29}_{-30}$
$\sigma_{ m NLO+NNLL}$	$6.30^{+0.19}_{-0.19}{}^{+0.31}_{-0.23}$	149^{+7+8}_{-7-8}	373^{+17+16}_{-15-16}	$821^{+40}_{-42}{}^{+24}_{-31}$
$\sigma_{\mathrm{NNLO}, \beta\text{-exp. v1}}$	$7.37^{+0.01}_{-0.20}{}^{+0.39}_{-0.20}$	156^{+2+8}_{-5-8}	$392^{+4}_{-11}{}^{+16}_{-17}$	$865^{+5}_{-17-30}^{+29}$
$\sigma_{\rm NNLO, \beta-exp.+potential\ v1}$	$7.30^{+0.01}_{-0.18}{}^{+0.39}_{-0.28}$	158^{+3+8}_{-6-8}	$398^{+7}_{-13}{}^{+16}_{-17}$	$880^{+12}_{-22}{}^{+29}_{-31}$
$\sigma_{ m NNLO,~\beta-exp.~v2}$	$6.98^{+0.17}_{-0.40}{}^{+0.37}_{-0.27}$	156^{+2+8}_{-6-8}	394^{+2}_{-10-17}	$871^{+0}_{-14}{}^{+29}_{-31}$
$\sigma_{\rm NNLO, \beta-exp.+potential\ v2}$	$6.95^{+0.16}_{-0.39}{}^{+0.36}_{-0.26}$	159^{+3+8}_{-7-8}	$401^{+6}_{-12}{}^{+17}_{-17}$	$888^{+7}_{-19-32}^{+30}$

scale uncertainty PDF uncertainty

* Likely that this remains true at NNLO