

Higher order threshold effects for top and squark pair production

Christian Schwinn

— Univ. Freiburg —

05.01.2011

(Based on M.Beneke, P.Falgari, CS, arXiv:0907.1443 [hep-ph], arXiv:1007.5414 [hep-ph]

M.Beneke, M.Czakon, P.Falgari, A.Mitov, CS arXiv:0911.5166 [hep-ph]

M.Beneke, P.Falgari, S. Klein, CS, in progress)

Pair production of heavy coloured particles at Tevatron/LHC

 $NN' \rightarrow HH' + X$

• N, N': pp, $p\bar{p}$; HH': top-quark, squark, gluino... pairs

Precise knowledge of total cross sections:

- top-quarks: sensitivity on mass, constraining gluon PDFs
- new particles: Exclusion bounds, model discrimination,...

C. Schwinn

Total $t\bar{t}$ cross section:

Tevatron: $\Delta \sigma_{t\bar{t}} = 6.8\%$; LHC Goal: $\Delta \sigma_{t\bar{t}} \approx 5\%$

Theory status: NLO+NLL: $\Delta \sigma_{t\bar{t}} \approx 10 - 20\%$ (Cacciari et.al., Moch/Uwer; Kidonakis/Vogt,...)

NNLO: in progress (\Rightarrow talks by Czakon, Ferroglia)

Estimate of dominant higher order corrections: NNLO_{approx}, NNLL (\Rightarrow this talk, also Moch/Uwer(+Langenfeld), Ahrens et.al., Kidonakis)

Total $t\bar{t}$ cross section:

Tevatron: $\Delta \sigma_{t\bar{t}} = 6.8\%$; LHC Goal: $\Delta \sigma_{t\bar{t}} \approx 5\%$

Theory status: NLO+NLL: $\Delta \sigma_{t\bar{t}} \approx 10 - 20\%$ (Cacciari et.al., Moch/Uwer; Kidonakis/Vogt,...)

NNLO: in progress (\Rightarrow talks by Czakon, Ferroglia)

Estimate of dominant higher order corrections: NNLO_{approx}, NNLL (\Rightarrow this talk, also Moch/Uwer(+Langenfeld), Ahrens et.al., Kidonakis)

Total $t\bar{t}$ cross section:

Tevatron: $\Delta \sigma_{t\bar{t}} = 6.8\%$; LHC Goal: $\Delta \sigma_{t\bar{t}} \approx 5\%$

Theory status: NLO+NLL: $\Delta \sigma_{t\bar{t}} \approx 10 - 20\%$ (Cacciari et.al., Moch/Uwer; Kidonakis/Vogt,...)

NNLO: in progress (\Rightarrow talks by Czakon, Ferroglia)

Estimate of dominant higher order corrections: NNLO_{approx}, NNLL (\Rightarrow this talk, also Moch/Uwer(+Langenfeld), Ahrens et.al., Kidonakis)

Squark and gluino production processes:

- NLO SUSY-QCD (Beenakker et.al. 96, implemented in PROSPINO)
- EW corrections (Bornhauser et.al. 07, Hollik et.al. , 07-10)
- NLL, NLLO_{approx} (Kulesza/Motyka; Beenakker et.al.; Langenfeld/Moch 09/10)

C. Schwinn

Threshold effects for tops and squarks

3

Soft corrections: (Resummation in Mellin space: Sterman 87; Catani, Trentadue 89, Kidonakis, Sterman 97, Bonciani et.al. 98, ...) $\Rightarrow \alpha_s \log^2(8\beta^2) \qquad \Rightarrow \alpha_s \log(8\beta^2)$ Coulomb gluon corrections (Fadin, Khoze 87; Peskin, Strassler 90, NRQCD,...)

Counting of threshold corrections:

$$\hat{\sigma}_{pp'} \propto \sigma^{(0)} \exp\left[\underbrace{\ln\beta g_0(\alpha_s \ln\beta)}_{(LL)} + \underbrace{g_1(\alpha_s \ln\beta)}_{(NLL)} + \underbrace{\alpha_s g_2(\alpha_s \ln\beta)}_{(NNLL)} + \ldots\right]$$

$$\times \sum_{k=0}^{k} \left(\frac{\alpha_s}{\beta}\right)^k \times \left\{1(LL, NLL); \alpha_s, \beta(NNLL); \ldots\right\}:$$

Combination of Coulomb- and soft effects? Heavy particles nonrelativistic near threshold:

 $E \sim m \beta^2 \;, ~~ ert ec p ert \sim m eta$

4

soft gluon momenta of same order: $q_s \sim m\beta^2 \sim E$ \Rightarrow heavy particles "feel" soft radiation

Combination of Coulomb- and soft effects? Heavy particles nonrelativistic near threshold:

 $E \sim m \beta^2 \;, ~~ |\vec{p}| \sim m \beta$

4

soft gluon momenta of same order: $q_s \sim m \beta^2 \sim E$

 \Rightarrow heavy particles "feel" soft radiation

Factorization of cross section

(Beneke, Falgari, CS 09/10)

$$\hat{\sigma}_{pp'\to HH'}|_{\hat{s}\to 4M^2} = \sum_{R,i} H_i \int d\omega \, W_i^R(\omega) J^R(E-\omega)$$

Hard, soft and Coulomb functions:

$$H_i =$$
 , $W_i^R =$, $J^R =$

Soft radiation "sees" only total colour charge *R* of heavy particles (Singlet, octet,... Extends one-loop results by Sterman/Kidonakis 97, Bonciani et.al. 98, Kulesza/Moytka 08, Beenakker et.al. 09)

Threshold effects for tops and squarks

Combination of Coulomb- and soft effects? Heavy particles nonrelativistic near threshold:

 $E \sim m \beta^2 \;, ~~ |\vec{p}| \sim m \beta$

4

soft gluon momenta of same order: $q_s \sim m \beta^2 \sim E$

 \Rightarrow heavy particles "feel" soft radiation

Factorization of cross section

(Beneke, Falgari, CS 09/10)

$$\hat{\sigma}_{pp' \to HH'}|_{\hat{s} \to 4M^2} = \sum_{R,i} H_i \int d\omega \, W_i^R(\omega) J^R(E-\omega)$$

- disentangles hard, soft and Coulomb contribution for total cross section for *S*-wave production and up to NNLL (more complicated colour structure for other observables: Ferroglia e.a., Ahrens e.a. 09)
- can perform simultaneous summation of threshold Logs and Coulomb corrections (also Hagiwara, Sumino, Yokoya; Kiyo et.al. 08)

Factorization scale dependence of *H*, *W* cancels against PDFs:

$$\frac{d\sigma}{d\mu} = \frac{d}{d\mu} \left(f_1 \otimes f_2 \otimes H \otimes W \otimes J \right) = 0$$

- $\frac{df_i}{d\mu} \Rightarrow$ Altarelli-Parisi equation (3-loop: Moch/Vermaseren/Vogt 04/05)
- $\frac{dH_i}{d\mu} \Rightarrow$ related to IR singlarities (2-loop: Becher, Neubert; Ferroglia et.al. 09)
- ⇒ RGE for soft function (NNLL: Beneke/Falgari/CS; Czakon/Mitov/Sterman 09)

$$\frac{d}{d\log\mu}W_{i}^{R_{\alpha}}(z^{0},\mu) = \left(2\gamma_{\mathsf{cusp}}(C_{r}+C_{r'})\log\left(\frac{iz_{0}\bar{\mu}}{2}\right) - 2(\gamma_{H.s}^{R_{\alpha}}+\underbrace{\gamma_{s}^{r}+\gamma_{s}^{r'}})\right)W_{i}^{R_{\alpha}}(z^{0},\mu)$$
as for Drell-Yan/Higgs

Solution in Mellin space (Korchemsky/Marchesini 92);

momentum space (Becher/Neubert 06)

Soft anomalous dimension (Beneke, Falgari, CS 09; Czakon, Mitov, Sterman 09)

$$\gamma_{H,s}^{R_{\alpha}} = \frac{\alpha_s}{4\pi} \left(-2C_{R_{\alpha}}\right) + \left(\frac{\alpha_s}{4\pi}\right)^2 C_{R_{\alpha}} \left[-C_A \left(\frac{98}{9} - \frac{2\pi^2}{3} + 4\zeta_3\right) + \frac{40}{18}n_f\right] + \mathcal{O}(\alpha_s^3).$$

(extracted from Becher/Neubert 09, Korchemsky/Radyushkin 92, Kidonakis 09)

Threshold effects for tops and squarks

Factorization scale dependence of H, W cancels against PDFs:

$$\frac{d\sigma}{d\mu} = \frac{d}{d\mu} \left(f_1 \otimes f_2 \otimes H \otimes W \otimes J \right) = 0$$

- $\frac{df_i}{d\mu} \Rightarrow$ Altarelli-Parisi equation (3-loop: Moch/Vermaseren/Vogt 04/05)
- $\frac{dH_i}{d\mu} \Rightarrow$ related to IR singlarities (2-loop: Becher, Neubert; Ferroglia et.al. 09)
- \Rightarrow RGE for soft function (NNLL: Beneke/Falgari/CS; Czakon/Mitov/Sterman 09)

Resummation:

Beneke/Signer/Smirnov 99,...)

Squark -antisquarks at LHC

• Two production channels:

$$q_i \bar{q}_j o \tilde{q}_k \overline{\tilde{q}_l} \quad , \qquad gg o \tilde{q}_k \overline{\tilde{q}_l}$$

- Simplified setup: equal squark masses, no stop
- Matching to NLO result

(Beenakker et.al. 96, $\operatorname{PROSPINO}$)

Squark -antisquarks at LHC

• Two production channels:

$$q_i \bar{q}_j o \tilde{q}_k \overline{\tilde{q}_l} \quad , \qquad gg o \tilde{q}_k \overline{\tilde{q}_l}$$

- Simplified setup: equal squark masses, no stop
- Matching to NLO result

(Beenakker et.al. 96, PROSPINO)

Choice of scales for resummation in momentum space

Threshold effects for tops and squarks

Heavy Particles@LHC Zürich

Comparison to Mellin-approach: (Kulesza, Motyka 08/09, Beenakker et.al. 09)

Good agreement for appropriate choice of scales ($\mu_h = \mu_f$: NLL_s):

$m_{ ilde{q}}$ [GeV]	NLO[pb]	NLL _{Mellin} [pb]	NLL _s [pb]	NLL [pb]			
$500 \\ 1000 \\ 2000$	1.6×10^{1} 2.89×10^{-1} 1.11×10^{-3}	$\begin{array}{c} 1.61 \times 10^{1} \ (1.2\%) \\ 2.93 \times 10^{-1} (1.7\%) \\ 1.14 \times 10^{-3} (3.4\%) \end{array}$	$\begin{array}{c} 1.62 \times 10^1 \ (1.3\%) \\ 2.94 \times 10^{-1} (1.7\%) \\ 1.14 \times 10^{-3} (3.1\%) \end{array}$	$\begin{array}{c} 1.67 \times 10^{1} \ (4.2\%) \\ 3.06 \times 10^{-1} (5.8\%) \\ 1.24 \times 10^{-3} \ (11\%) \end{array}$			
(LHC 14 TeV, $m_{\tilde{g}} = m_{\tilde{q}}$)							

Scale uncertainty reduced by combined resummation

NLO
$$\frac{m_{\tilde{q}}}{2} < \mu_f < 2m_{\tilde{q}}$$

NLL: vary all scales $\frac{\tilde{\mu}_i}{2} < \mu_i < 2\tilde{\mu}_i$, add in quadrature

 \Rightarrow significant reduction for combined resummation!

Threshold effects for tops and squarks

Heavy Particles@LHC Zürich

All threshold enhanced $\mathcal{O}(\alpha_s^2)$ terms (Beneke, Czakon, Falgari, Mitov, CS 09 Implemented in HATHOR, Aliev et.al. 10) Pure soft corrections: (also Moch/Uwer+Langenfeld (08/09)) $\Delta \sigma_{\rm s}^{(2)} \sim \alpha_s^2 (c_{\rm LL}^{(2)} \, \ln^4 \beta + c_{\rm NLL}^{(2)} \ln^3 \beta + c_{\rm NNLL,2}^{(2)} \, \ln^2 \beta + c_{\rm NNLL,1}^{(2)} \, \ln \beta)$ 2-loop $\gamma_{H,s}$ **Potential** corrections: 2nd Coulomb, NLO potentials $\Delta \sigma_{\rm p}^{(2)} \sim \alpha_s^2 \, (\tfrac{c_{C^2}}{\beta^2} + \tfrac{1}{\beta} (c_{{\rm C},{\rm 0}}^{(2)} + c_{{\rm C},{\rm 1}}^{(2)} \, \log\beta) + \, c_{{\rm n-C}}^{(2)} \, \ln\beta \,)$ spin-dependent (using Beneke, Signer, Smirnov 99, Czarnecki/Melnikov 97/01) **mixed Coulomb/soft/hard** corrections: $\Delta \sigma_{\mathbf{p}\otimes \,\mathbf{sh}}^{(2)} \sim \frac{\alpha_s}{\beta} \alpha_s (c_{\mathsf{LL}}^{(1)} \ln \beta^2 + c_{\mathsf{NLL}}^{(1)} \ln \beta + c + H^{(1)})$ $\Delta \sigma^{(2)}_{\mathbf{s} \otimes \mathbf{h}} \sim \alpha_s^2 H^{(1)}(c_{\mathrm{LL}}^{(1)} \ln \beta^2 + c_{\mathrm{NLL}}^{(1)} \ln \beta)$

(H_1 : process and colour-channel dependent, $t\bar{t}$: Czakon/Mitov 09)

Threshold effects for tops and squarks

$\sigma_{t\bar{t}}(pb)$	Tevatron	LHC7	LHC10	LHC14	
NLO	$6.50^{+0.32+0.33}_{-0.70-0.24}$	150^{+18+8}_{-19-8}	380^{+44+17}_{-46-17}	842_{-97-32}^{+97+30}	
NLO+NLL	$6.57^{+0.52+0.33}_{-0.30-0.24}$	151^{+23+8}_{-12-9}	382^{+60+17}_{-32-18}	$848^{+136+30}_{-75-32}$	
NLO+NNLL	$6.77^{+0.27+0.35}_{-0.48-0.25}$	155^{+4+8}_{-9-9}	390^{+14+17}_{-26-18}	858_{-64-33}^{+35+31}	
$NNLO_{\mathrm{app}}(\beta)$	$7.10^{+0.0+0.36}_{-0.26,-0.26}$	162^{+2+9}_{-3-9}	407^{+9+17}_{-5-18}	895^{+24+31}_{-6-33}	
$NNLO_{\mathrm{app}}(\beta) + NNLL$	$7.13^{+0.22+0.36}_{-0.24-0.26}$	162^{+4+9}_{-1-9}	405^{+14+17}_{-2-18}	892^{+38+31}_{-3-33}	
$NNLO_{app}(\beta) + NNLL+BS$	$7.14^{+0.14+0.36}_{-0.22-0.26}$	162^{+4+9}_{-1-9}	407^{+14+17}_{-2-18}	896_{-3-33}^{+38+31}	
$\overline{\left(m_t=173.1~{ m GeV},~ ilde{\mu}_f=mt}$, MSTW08NNLO)		(Beneke, Fa	(Beneke, Falgari, Klein, CS preliminary)		

- Resummation in momentum space using fixed μ_s from minimising $\Delta \sigma_{\text{soft}}^{\text{NLO}}(\mu_s)$ $\Rightarrow \tilde{\mu}_s = 85/146 \text{ GeV}$ for Tevatron/LHC7: no big scale hierarchy
- vary μ_s , μ_h , μ_f from $0.5\tilde{\mu} < \mu < 2\tilde{\mu}$, add uncertainties in quadrature
- (N)NLL includes (N)LO Coulomb resummation
- BS: include bound-state contributions below threshold
- Preliminary estimate of uncertianty from $\alpha_s^2 C^{(2)}$ terms: ~ 3%

Alternative threshold expansions

Pair invariant mass cross sections (Kidonakis, Sterman 97, Ahrens et.al. 10)

$$\frac{d\sigma(t\bar{t})}{dM_{t\bar{t}}} \quad \Rightarrow \left[\frac{\log^n(1-z)}{1-z}\right]_+ \ , \ z = \frac{M_{t\bar{t}}^2}{\hat{s}}$$

One particle inclusive cross sections: (Laenen, Oderda, Sterman 98)

$$\frac{d\sigma(t+X)}{ds_4} \quad \Rightarrow \left[\frac{\log^n\left(s_4/m^2\right)}{s_4}\right] \quad , \ s_4 = p_X^2 - m_t^2$$

$\sigma_{t\bar{t}}(pb)$	Tevatron	LHC7	LHC10	LHC14
NLO	$6.50^{+0.32+0.33}_{-0.70-0.24}$	150^{+18+8}_{-19-8}	380_{-46-17}^{+44+17}	842^{+97+30}_{-97-32}
$NNLO_{\mathrm{app}}(\beta)$	$7.10^{+0.0+0.36}_{-0.26,-0.26}$	162^{+2+9}_{-3-9}	407^{+9+17}_{-5-18}	895^{+24+31}_{-6-33}
$NLO + NNLL \left(M_{t\bar{t}} ight)$ (Ahrens et.al. 10)	$6.48^{+0.17+0.32}_{-0.21-0.25}$	146^{+7+8}_{-7-8}	368^{+20+19}_{-14-15}	813^{+50+30}_{-36-35}
$NNLO_{app}(s_4)$ (mt=173; Kidonakis 10)	$7.08^{+0.00+0.36}_{-0.24-0.27}$	163^{+7+9}_{-5-9}	415^{+17+18}_{-21-19}	920^{+50+33}_{-39-35}
		$(m_t =$	= 173.1 GeV, μ_f =	= mt, MSTW08NNLO)

Threshold effects for tops and squarks

Heavy Particles@LHC Zürich

Threshold corrections $\sim \log^n \beta$, $\frac{1}{\beta^n}$

- Factorization of soft and Coulomb corrections
- $\log \beta$ resummation from momentum space solution to RGEs
- combined Soft and Coulomb resummation possible
- theoretical progress: now NNLL resummation feasible

Squark-antisquark production

- total corrections 4 10% for $m_{\tilde{q}} = 300$ GeV-2 TeV
- reduced μ_f -dependence for combined soft/gluon resummation

Threshold expansion to $\mathcal{O}(\alpha_s^2)$ of $t\bar{t}$ cross section

NNLL resummation for $t\bar{t}$

- \bullet dominant higher-order corrections included in $\mathsf{NNLO}_{\mathrm{approx}}$
- discrepancy to NNLL from integrated $\frac{d\sigma}{dM_{tt}^2}$? (Ahrens et.al. 10)

Matching of scattering amplitude

(for S-wave production)

14

$$\mathcal{A}_{pp' \to HH'X} = \sum_{i} C^{(i)}_{\{\alpha\}}(M,\mu) c^{(i)}_{\{a\}} \langle HH'X | \phi_{c;a_1\alpha_1} \phi_{\bar{c};a_2\alpha_2} \psi^{\dagger}_{a_3\alpha_3} \psi'^{\dagger}_{a_4\alpha_4} | pp' \rangle_{\text{EFT}}$$

- ψ^{\dagger} , ψ'^{\dagger} : non-relativistic fields that create H and $H' \Rightarrow (P)NRQCD$
- $\phi_c (\phi_{\bar{c}})$: collinear (anti-collinear) fields that destroy p and $p' \Rightarrow SCET$
- α_i : spin, a_i : colour indices, $c_{\{a\}}^{(i)}$: colour basis
- only (u)soft hadronic final states X for threshold kinematics

Matching of scattering amplitude

(for S-wave production)

$$\mathcal{A}_{pp' \to HH'X} = \sum_{i} C^{(i)}_{\{\alpha\}}(M,\mu) c^{(i)}_{\{a\}} \langle HH'X | \phi_{c;a_1\alpha_1} \phi_{\bar{c};a_2\alpha_2} \psi^{\dagger}_{a_3\alpha_3} \psi'^{\dagger}_{a_4\alpha_4} | pp' \rangle_{\text{EFT}}$$

- ψ^{\dagger} , ψ'^{\dagger} : non-relativistic fields that create H and $H' \Rightarrow (P)NRQCD$
- $\phi_c (\phi_{\bar{c}})$: collinear (anti-collinear) fields that destroy p and $p' \Rightarrow SCET$
- α_i : spin, a_i : colour indices, $c_{\{a\}}^{(i)}$: colour basis
- only (u)soft hadronic final states X for threshold kinematics

Collinear and nonrelativistic fields only connected by (u)soft gluons \Rightarrow Soft-gluon decoupling field redefinition (Bauer, Pirjol, Stewart 01)

$$\phi_c(x) = S_n(x_-)\phi_c^{(0)}(x) \qquad S_n(x) = \mathsf{P}\exp\left[ig_s \int_{-\infty}^0 dt \, n \cdot A_s^a(x+nt)T^a\right]$$

LO NRQCD Lagrangian for particles H, H' in representations R, R':

$$\begin{aligned} \mathcal{L}_{\mathsf{PNRQCD}} &= \boldsymbol{\psi}^{\dagger} \left(i D_{s}^{0} + \frac{\vec{\partial}^{2}}{2m_{H}} + \frac{i \Gamma_{H}}{2} \right) \boldsymbol{\psi} + \boldsymbol{\psi}'^{\dagger} \left(i D_{s}^{0} + \frac{\vec{\partial}^{2}}{2m_{H'}} + \frac{i \Gamma_{H'}}{2} \right) \boldsymbol{\psi}' \\ &+ \int d^{3} \vec{r} \left[\boldsymbol{\psi}^{\dagger} \mathbf{T}^{(R)a} \boldsymbol{\psi} \right] (\vec{r}) \left(\frac{\alpha_{s}}{r} \right) \left[\boldsymbol{\psi}'^{\dagger} \mathbf{T}^{(R')a} \boldsymbol{\psi}' \right] (0) \,, \end{aligned}$$

with $D_s^0 = \partial^0 - ig_s A_s^0(x_0, \vec{0})$.

LO NRQCD Lagrangian for particles H, H' in representations R, R':

$$\begin{split} \mathcal{L}_{\mathsf{PNRQCD}} &= \boldsymbol{\psi}^{\dagger} \left(i D_{s}^{0} + \frac{\vec{\partial}^{2}}{2m_{H}} + \frac{i \Gamma_{H}}{2} \right) \boldsymbol{\psi} + \boldsymbol{\psi}'^{\dagger} \left(i D_{s}^{0} + \frac{\vec{\partial}^{2}}{2m_{H'}} + \frac{i \Gamma_{H'}}{2} \right) \boldsymbol{\psi}' \\ &+ \int d^{3} \vec{r} \left[\boldsymbol{\psi}^{\dagger} \mathbf{T}^{(R)a} \boldsymbol{\psi} \right] (\vec{r}) \left(\frac{\alpha_{s}}{r} \right) \left[\boldsymbol{\psi}'^{\dagger} \mathbf{T}^{(R')a} \boldsymbol{\psi}' \right] (0) \,, \end{split}$$

with $D_s^0 = \partial^0 - ig_s A_s^0(x_0, \vec{0})$.

Decoupling for heavy particle fields:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta(x) &= S_v^{(R)}(x_0) eta^{(0)\dagger}(x), & S_v^{(R)}(x) = \overline{\mathsf{P}} \exp\left[-ig_s \int_0^\infty ds \; v \cdot A^a(x+vs) \mathbf{T}^{(R)a}
ight] \ &\Rightarrow D_s^0 eta &= S_v \partial^0 \psi^0 \end{aligned}$$

same $v = (1, \vec{0})$ for both heavy particles at threshold Works at leading order in PNRQCD

(sufficient at NNLL: Beneke, Czakon, Falgari, Mitov, CS 09; Beneke, Falgari, CS 10)

Apply soft-gluon decoupling to amplitude:

 $\mathcal{A}_{pp' \to HH'X} \Rightarrow \sum_{i} C^{(i)} \langle HH' | \psi^{(0)\dagger} \psi'^{(0)\dagger} | 0 \rangle \langle 0 | \phi_c^{(0)} | p \rangle \langle 0 | \phi_{\bar{c}}^{(0)} | p' \rangle \langle X | S_n S_{\bar{n}} c^{(i)} S_v^{\dagger} S_v^{\dagger} | 0 \rangle$

Apply soft-gluon decoupling to amplitude:

 $\mathcal{A}_{pp' \to HH'X} \Rightarrow \sum_{i} C^{(i)} \langle HH' | \psi^{(0)\dagger} \psi'^{(0)\dagger} | 0 \rangle \langle 0 | \phi_c^{(0)} | p \rangle \langle 0 | \phi_{\bar{c}}^{(0)} | p' \rangle \langle X | S_n S_{\bar{n}} c^{(i)} S_v^{\dagger} S_v^{\dagger} | 0 \rangle$ Inserting into formula for σ , summing over complete set of $|X\rangle$...

$$\hat{\sigma}_{pp'}(\hat{s},\mu) = \sum_{i,i'} H_{ii'}(M,\mu) \int d\omega \sum_{R_{\alpha}} J_{R_{\alpha}}(\sqrt{\hat{s}} - 2M - \frac{\omega}{2}) W_{ii'}^{R_{\alpha}}(\omega,\mu)$$

Irreducible representations $R \otimes R' = \sum_{R_{\alpha}} R_{\alpha}$ e.g. $3 \otimes \overline{3} = 1 \oplus 8$.

Apply soft-gluon decoupling to amplitude:

 $\mathcal{A}_{pp' \to HH'X} \Rightarrow \sum_{i} C^{(i)} \langle HH' | \psi^{(0)\dagger} \psi'^{(0)\dagger} | 0 \rangle \langle 0 | \phi_c^{(0)} | p \rangle \langle 0 | \phi_{\bar{c}}^{(0)} | p' \rangle \langle X | S_n S_{\bar{n}} c^{(i)} S_v^{\dagger} S_v^{\dagger} | 0 \rangle$ Inserting into formula for σ , summing over complete set of $|X\rangle$...

$$\hat{\sigma}_{pp'}(\hat{s},\mu) = \sum_{i,i'} H_{ii'}(M,\mu) \int d\omega \sum_{R_{\alpha}} J_{R_{\alpha}}(\sqrt{\hat{s}} - 2M - \frac{\omega}{2}) W_{ii'}^{R_{\alpha}}(\omega,\mu)$$

Irreducible representations $R \otimes R' = \sum_{R_{\alpha}} R_{\alpha}$ e.g. $3 \otimes \overline{3} = 1 \oplus 8$. Soft function:

$$W_{ii'}^{R_{\alpha}}(\omega) = \int \frac{dz_0}{4\pi} e^{i\omega z_0/2} \langle 0|\overline{\mathsf{T}}[S_v S_v \mathbf{c}^{(i')*} S_{\bar{n}}^{\dagger} S_n^{\dagger}](0) \mathbf{P}^{R_{\alpha}} \mathsf{T}[S_n S_{\bar{n}} \mathbf{c}^{(i)} S_v^{\dagger} S_v^{\dagger}](x_0)|0\rangle$$

Potential function:

$$J_{R_{\alpha}}(E) = \int d^4 z e^{iEz^0} \langle 0 | [\psi^{(0)}\psi^{'(0)}](z^0) P^{R_{\alpha}}[\psi^{(0)\dagger}\psi^{'(0)\dagger}](0) | 0 \rangle = 2 \mathsf{Im} G_C^{R_{\alpha}}(0,0,E)$$

(Same as for $e^-e^+ \rightarrow t\bar{t}$: Fadin, Khoze 87; Beneke, Signer, Smirnov; Hoang, Teubner 99,...)

Threshold effects for tops and squarks

Subleading PNRQCD and SCET interactions:

$$\psi^{\dagger} \vec{x} \cdot \vec{E}_{us}(x_0,0) \psi^{\prime \dagger}, \quad \bar{\xi} \left(x^{\mu}_{\perp} n^{\nu}_{-} W_c \, g F^{\mathrm{us}}_{\mu
u} W^{\dagger}_c
ight) rac{\not n_{+}}{2} \xi \ldots$$

Soft gluons not decoupled by field redefinitions.

Possibly relevant at NNLL in soft \otimes potential corrections :

Related to three-parton colour correlations in IR singularities of amplitudes (Ferroglia et.al. 09)

 σ_{tot} : effects vanish at NNLL!

(Beneke, Czakon, Falgari, Mitov, CS 09)

- no collinear/potential correction $\sim \beta$ for $k_{\perp} = 0$
- no potential/soft corrections due to rotational invariance

(no heavy particle three-momentum available)

Potential corrections:

- 2nd Coulomb correction
- NLO Coulomb potentials:

$$\tilde{V}_{\mathrm{C}}^{(1)}(\boldsymbol{p},\boldsymbol{q}) = \frac{D_{R_{\alpha}}\alpha_{s}^{2}}{\boldsymbol{q}^{2}}\left(a_{1} - \beta_{0}\ln\frac{\boldsymbol{q}^{2}}{\mu^{2}}\right)$$

• Non-Coulomb potential:

$$\tilde{V}_{\mathrm{nC}}^{(1)}(\boldsymbol{p},\boldsymbol{q}) = \frac{4\pi D_{R_{\alpha}}\alpha_{s}}{\boldsymbol{q}^{2}} \left[\frac{\pi\alpha_{s}|\boldsymbol{q}|}{4m} \left(\frac{D_{R_{\alpha}}}{2} + C_{A} \right) + \frac{\boldsymbol{p}^{2}}{m^{2}} + \frac{\boldsymbol{q}^{2}}{m^{2}} v_{\mathrm{spin}} \right],$$

 $(v_{spin} = 0 \text{ (singlet)}; -2/3 \text{ (triplet)})$

Corrections to cross section:

$$\Delta \hat{\sigma}_{\rm nC} = \hat{\sigma}^{(0)} \alpha_s^2 \ln \beta \left[-2D_{R_\alpha}^2 \left(1 + v_{\rm spin} \right) + D_{R_\alpha} C_A \right]$$

(extracted from Beneke, Signer, Smirnov 99, Pineda, Signer 06)