NLO $t\bar{t} + 1$ jet production merged with shower in POWHEG

Simone Alioli

in collaboration with S. Moch and P. Uwer

Workshop on Heavy Particles at the LHC

ETH - Zurich

5 January 2011

Simone Alioli (DESY)

Workshop on Heavy Particles at the LHC

OUTLINE

- The POWHEG method and the POWHEG-BOX
- $t\bar{t} + 1jet$ production in the POWHEG-BOX
- Conclusions & future outlooks

INTRODUCTION

SMC (LO+SHOWER)

- ${\sc x}$ LO accuracy. Large dependence on $\mu_{\rm R}$ and $\mu_{\rm F}$
 - Extra emissions accurate only in soft/collinear approx.
 - Sudakov suppression of soft/collinear emissions
 - Realistic events in the output

NLO

- Accuracy up to a further order in $\alpha_{
 m S}$
- Reduced dependence on $\mu_{
 m R}$ and $\mu_{
 m F}$
- Parton level output only. Low final-state multiplicity.
 - Numerical instability due to large cancellations

Try to merge benefits (and avoid drawbacks) of both approaches!

- **X** A K factor = $\frac{\sigma_{NLO}}{\sigma_{LO}}$ correction may improve inclusive quantities
- X Matrix element corrections added to obtain better shape predictions (e.g. CKKW, MLM)
 - ⇒ Only add further real contributions (maintaining LO normalization)
 - ⇒ A matching prescription to avoid double-counting of radiation must be defined
 - ⇒ Large uncertainty under scale variations due to the lack of virtual corrections $\alpha_{\rm S}^n(f\mu) \approx \alpha_{\rm S}^n(\mu)(1 b_0\alpha_{\rm S}(\mu)\log{(f^2)})^n \approx \alpha_{\rm S}^n(\mu)(1 \pm n\alpha_{\rm S}(\mu))$

INTRODUCTION

Use full NLO calculation as "hard subprocess" for the SMC \Rightarrow NLO+PS

Many ideas to avoid double-counting, but two general method perform this merging for hadronic collisions fully tested

- MC@NLO [Frixione & Webber, JHEP 0206:029,2002]
- POWHEG [Nason,JHEP 0411:040,2004] [Frixione, Nason & Oleari, JHEP 0711:070,2007]

MC@NLO can now also be interfaced with PYTHIA and HERWIG++ showers. POWHEG method adopted also in HERWIG++ and SHERPA programs.

Merging of NLO+PS with ME corrections.NLO accuracy can be reached reweightingME+PS by a Φ_B -dependent K-factor.[Nason& Hamilton, arXiv:1004.1764]Unaffordable evaluation!Approximate solution MENLOPS tested for W and $t\bar{t}$.approach also implemented in SHERPA[Hoche,Krauss,Schonherr&Siegert,arXiv:1009.1127]

NLO AND SMC FORMULAS

I

• NLO calculation (subtraction method):

$$d\Phi_{n+1} = d\Phi_n \, d\Phi_{\rm rad} \qquad d\Phi_{\rm rad} \div dt \, dz \, \frac{d\varphi}{2\pi}$$

$$d\sigma_{\text{NLO}} = \left\{ B(\Phi_n) + V(\Phi_n) + \left[\underbrace{\frac{divergent}{R(\Phi_n, \Phi_{\text{rad}}) - C(\Phi_n, \Phi_{\text{rad}})}}_{finite} \right] d\Phi_{\text{rad}} \right\} d\Phi_n$$

$$nclusive NLO cross section at fixed underlying Born
$$\int d\sigma_{\text{NLO}} d\Phi_{\text{rad}} = \bar{B}(\Phi_n) \quad , \qquad V(\Phi_n) = \underbrace{\frac{divergent}{V_b(\Phi_n)} + \int C(\Phi_n, \Phi_{\text{rad}}) d\Phi_{\text{rad}}}_{C(\Phi_n, \Phi_{\text{rad}})} d\Phi_{\text{rad}}$$$$

finite

• Standard SMC's first emission:

$$d\sigma_{\rm SMC} = \underbrace{B(\Phi_n)}^{Born} d\Phi_n \left\{ \Delta_{\rm SMC}(t_0) + \Delta_{\rm SMC}(t) \qquad \underbrace{\frac{\alpha_{\rm S}(t)}{2\pi} \frac{1}{t} P(z)}_{\Delta_{\rm SMC}(t)} d\Phi_{\rm rad}^{\rm SMC} \right\}$$
$$\Delta_{\rm SMC}(t) = \exp\left[-\int d\Phi_{\rm rad}' \frac{\alpha_{\rm S}(t')}{2\pi} \frac{1}{t'} P(z') \theta(t'-t) \right]$$

SMC Sudakov

Simone Alioli (DESY)

$$d\sigma_{\text{POWHEG}} = \bar{B}(\Phi_n) \ d\Phi_n \left\{ \Delta_{\text{POWHEG}}(\Phi_n, p_{\text{T}}^{\min}) + \Delta_{\text{POWHEG}}(\Phi_n, k_{\text{T}}) \frac{R(\Phi_n, \Phi_{\text{rad}})}{B(\Phi_n)} \ \theta \left(k_{\text{T}} - p_{\text{T}}\right) \ d\Phi_{\text{rad}} \right\}$$

NLO cross section for inclusive quantities.

$$\checkmark \quad \bar{B} = B(\Phi_n) + V(\Phi_n) + \int \left[R(\Phi_n, \Phi_{\text{rad}}) - C(\Phi_n, \Phi_{\text{rad}}) \right] \, d\Phi_{\text{rad}} < 0$$

Negative weights where NLO > LO, i.e. where perturbation expansion breaks down!

Probability of not emitting with transverse momentum harder than $p_{\rm T}$:

$$\Delta_{\text{POWHEG}}(\Phi_n, p_{\text{T}}) = \exp\left[-\int d\Phi_{\text{rad}}' \frac{R(\Phi_n, \Phi_{\text{rad}}')}{B(\Phi_n)} \theta\left(k_{\text{T}}(\Phi_n, \Phi_{\text{rad}}') - p_{\text{T}}\right)\right]$$

It has the same LL accuracy of a SMC since for small $k_{\rm T}$'s

$$\frac{R(\Phi_n, \Phi_{\rm rad})}{B(\Phi_n)} d\Phi_{\rm rad} \approx \frac{\alpha_{\rm S}(t)}{2\pi} \frac{1}{t} P(z) \, dt \, dz \, \frac{d\varphi}{2\pi} \qquad \text{and} \qquad \bar{B} \approx B \left(1 + \mathcal{O}(\alpha_{\rm S})\right)$$

The large $k_{
m T}$'s accuracy is preserved since $\Delta_{
m POWHEG}(\Phi_n,p_{
m T})pprox 1$ and

 $d\sigma_{\text{POWHEG}} \approx \frac{\bar{B}(\Phi_n)}{B(\Phi_n)} R(\Phi_n, \Phi_{\text{rad}}) d\Phi_n d\Phi_{\text{rad}} \approx R(\Phi_n, \Phi_{\text{rad}}) \left(1 + \mathcal{O}(\alpha_{\text{S}})\right) d\Phi_n d\Phi_{\text{rad}}$

THE POWHEG-BOX [S.A., NASON, OLEARI, RE, JHEP 1006:043, 2010]

- Framework for the implementation of a POWHEG generator for a generic NLO process
- Practical implementation of the theoretical construction of the POWHEG general formulation presented in [Frixione,Nason,Oleari,JHEP 0711:070,2007]
- FKS subtraction approach automatically implemented, hiding all technicalities to the user
- Publicly available code at the webpage

http://powhegbox.mib.infn.it

The user should only communicate to the ${\tt POWHEG-BOX}$:

- ▶ The list of flavour of Borns and Reals, e.g. [5,2,23,6,3,0] for $b u \rightarrow Z t s g$
- The Born phase space Born_phsp(xborn) for xborn(1...ndims) randoms
- The inizialization of the couplings init_couplings and the setting of the scales set_fac_ren_scales(muf,mur)
- setborn (p (0:3,1:nlegborn), bflav (1:nlegborn), born, bjk, bmunu) The Born squared amplitudes $\mathcal{B} = |\mathcal{M}|^2$, the color-ordered Born squared amplitudes \mathcal{B}_{jk} and the helicity correlated Born squared amplitudes $\mathcal{B}_{k,\mu\nu}$
- > setreal(p(0:3,1:nlegreal),rflav(1:nlegreal),amp2) The Real squared amplitudes R
- ▶ setvirtual (p(0:3,1:nlegborn), vflav(1:legborn), virtual) The finite part of the interference of Born and virtual amplitude contributions $V_{\rm b} = 2 \text{Re}\{\mathcal{B} \times \mathcal{V}\}$,

after factorizing out $\mathcal{N} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\frac{\mu_{\rm R}^2}{Q^2}\right)^{\epsilon}$

Common ingredients of any NLO calculation in a subtraction method

- \checkmark The combinatorics and the projection of real contributions over the singular regions
- ✓ The counterterms, built up from soft and collinear approximations of real emissions, and the ISR and FSR phase space.
- ✓ The NLO differential cross section. BYPRODUCT: NLO distributions in FKS subtraction
- ✓ The calculation of upper bounds for an efficient generation of Sudakov-suppressed events
- The generation of hardest radiation, according to the POWHEG Sudakov
- ✓ The communication with a SMC program, either passing the generated events on-the-fly or storing them on a LesHouches events file.

Available processes

- Single vector-boson production with decay
- Vector boson plus one jet production with decay NEW
- Single-top production in the s-, t- and Wt- channel
- Higgs boson production in gluon and vector boson fusion
- Jet pair production NEW
- Heavy-quark pair production

$t\bar{t} + 1jet$ production

MOTIVATIONS:

- Top quark physics allows to study the EWSB mechanism, due to the larger mass
- Large fraction of inclusive $t\bar{t}$ events contains additional jet(s). Increasing relative importance of the $t\bar{t} + jet(s)$ sample at the LHC with respect to the TeVatron.
- Dominant background to Higgs production in VBF, for configurations that avoid the large rapidity gap between jets veto. Also important background for many SUSY signals.
- Fully exclusive NLO calculations have been performed: Dittmaier,Uwer and Weinzierl [Phys.Rev.Lett.98:262002,2007] for stable top-quarks and Melnikov and Shulze [Nucl.Phys.B840:129-159,2010] with unitarity methods and LO top-quark decay correlations included.
- Up to $t\bar{t} + 2$ jets at NLO in HELAC-NLO

STRATEGY AND IMPROVEMENTS:

- Initial goal is to have a fully exclusive NLO calculations, merged with shower, including spin correlations for top decays products at the LO.
- Extension to include the factorizable NLO corrections to the top-decay
- Inclusion of $b\bar{b} + 1$ jet and $c\bar{c} + 1$ jet.

OUTLINE OF THE CALCULATION – BORN AND REALS

- Born amplitudes evaluated with MadGraph and compared with Mangano,Nason, Ridolfi routines for real emission in $Q\bar{Q}$ production [Nucl.Phys.B373:295-345,1992].
- Color-correlated Born amplitudes obtained from MadGraph routines, modifying MadGraph calls to include appropriate color insertion operators (Eikonal Approx.).
- Helicity-correlated Born amplitudes obtained from MadGraph routines, modifying MadGraph calls to keep track of amplitudes values for different helicities and making use of the completeness relation

$$\mathcal{B}_{j}^{\mu\nu} = N \sum_{\{i\}, s_{j}, s_{j}'} \mathcal{M}\left(\{i\}, s_{j}\right) \mathcal{M}^{\dagger}\left(\{i\}, s_{j}'\right) \left(\epsilon_{s_{j}}^{\mu}\right)^{*} \epsilon_{s_{j}'}^{\nu}$$

- Real emissions matrix elements obtained with MadGraph, factorization in soft and collinear limits explicitly checked in double and quadruple precision.
- All results also checked against Dittmaier-Uwer-Weinzierl paper for single phase space point values published on [Phys.Rev.Lett.98:262002,2007]. Accuracy up to ten digits.

OUTLINE OF THE CALCULATION – VIRTUALS

- Library of virtual amplitudes built out of Dittmaier-Uwer-Weinzierl code.
- Decompositon according to helicity and color structure times scalar functions depending on the external momenta only.
- Amplitudes evaluated analytically, then further manipulated with computer algebra programs and translated in C++ code
- Reduction of up to 4 points tensor integrals performed with Passarino-Veltman reduction
- 5-points tensor integrals reduced à la Denner-Dittmaier, avoiding inverse Gram determinants
- Scalar integrals evaluated with FF package.
- Light flavours renormalized in the $\overline{\rm MS}$ scheme, top quark loop in gluon self-energy subtracted at zero momentum. On-shell scheme for top mass renormalization.
- C++ interface returns the finite part of virtual amplitudes, as required by the POWHEG-BOX. Soft-virtuals automatically constructed by the POWHEG-BOX using color-correlated Born amplitudes. Collinear remnants (finite leftover of factorization of initial-state collinear singularities in $\overline{\mathrm{MS}}$ scheme) also automated.

The powheg-box: $t\bar{t} + 1jet$ production

- Non trivial process definition because Born contributions are IR divergent. Need to introduce a process-defining cutoff.
- In a NLO computation is sufficient to ask that the observable O_n is infrared safe and that O_{n+1} vanish fast enough if two singular region are approached at the same time.
- POWHEG generates the Born process first, then it attaches radiation. Need to introduce a process-defining cutoff, but still not possible to generate an unweighted set of underlying Born configurations covering the whole phase space. Same problem as in V + 1 *jet* and Di-jets productions.
- Using an analysis cut larger than the process defining cut is not enough because the shower can raise or lower the jet and recoiling momenta $(p_T^V \text{ or } p_T^{t\bar{t}})$ independently
- Two possible solutions implemented in POWHEG-BOX:
 - Use a generation cut much smaller than the analysis cut and consider its variations to asses the independence of results. Then combine different samples to get full phase space coverage, avoiding overlaps.
 - Generate weighted events, suppressing the divergence

$$\bar{B}_{\text{supp}} = \bar{B} \times F(p_{\text{T}}), \qquad F(p_{\text{T}}) = \left(\frac{p_{\text{T}}^2}{p_{\text{T}}^2 + p_{\text{T}}, \text{supp}^2}\right)^n$$

n = 1 for $t\bar{t} + 1$ jet or V + 1 jet, n = 3 for Dijets. Event weight $= F^{-1}$.

GENERATION CUT AND NEGATIVE-WEIGHTED EVENTS

- Negative values of $\tilde{B}(\Phi_B, X) = B(\Phi_B) + V(\Phi_B) + \left| \frac{\partial \Phi_{\rm rad}}{\partial X} \right| [R(\Phi_B, \Phi_{\rm rad}) C(\Phi_B, \Phi_{\rm rad})]$ are expected in extreme regions of the phase-space. Only after integration over $d\Phi_{\rm rad}$ negative weights should disappear.
- Folding the radiative phase-space reduces the occurrence of negative weights, e.g.

 $\tilde{B}_{\text{folded}}(\Phi_B, x_1, X_2, X_3) = \tilde{B}(\Phi_B, x_1, X_2, X_3) + \tilde{B}(\Phi_B, 1/2 + x_1, X_2, X_3)$

- Fully analogous to the negative weights in the S events in MC@NLO, but negative weights in the H event sample of MC@NLO cannot be reduced (due to shower approx. subtraction).
- Using signed events, weighted events or positive-weights only does not change the final results. Performance costs for obtaining positive-weighted events may be balanced if the analysys includes detector simulations or requires positive weights only.

FIXED ORDER COMPARISONS

- Non trivial check due to the different subtraction methods:
 - (Massive) Dipole subtraction in Dittmaier-Uwer-Weinzierl
 - FKS subtraction, extendend to deal with soft emissions out of massive colored particles, in POWHEG-BOX

Regularized (subtracted) reals and virtuals are different, but results independent from method chosen.

- Fixed renormalization and factorization scales at $m_t = 174$ GeV, CTEQ6M pdf .
- Inclusive $-k_T$ jet algo (Collins-Soper) $k_T > 20$ GeV, R = 1 with E_t recombination scheme via FastJet. Comparisons for TeVatron $\sqrt{S} = 1.96$ TeV
- Top quarks always tagged, excluded from jet reconstruction

GENERATION OF RADIATION AND COLOUR ASSIGNMENTS

 Hardest radiation generated according the exact differential of Sudakov FF with veto method. Checked against independent integration of single emission probability ⇒

- To obtain the large $-N_c$ NLL accuracy of the Sudakov form factor the color connections in the large N_c limits must be specified for events with 4 or more colored partons at LO.
- These are assigned evaluating, at fixed underlying Born kinematics, all the planar contributions to the amplitude and choosing between them according to the respective weight. For $t\bar{t} + 1jet$, the large N_c amplitudes have been evaluated analytically.

• If radiation is generated, the color connections are fully reconstructed assuming that the emitted parton is color connected to the emitter.

POWHEG FIRST EMISSION

PRELIMINARY

- For inclusive quantities, NLO and POWHEG hardest emission only coincide up to NNLO contributions.
- Fractional difference and difference over stat. error defined as

$$\frac{\Delta\sigma}{\sigma} = \frac{\sigma_1 - \sigma_2}{(\sigma_1 + \sigma_2)/2}, \qquad \chi = \frac{\sigma_1 - \sigma_2}{\sqrt{\delta\sigma_1^2 + \delta\sigma_2^2}}$$

 Results for TeVatron, same analysis as NLO

POWHEG FIRST EMISSION

- For more exclusive quantities, more marked differences
- Resummation of soft/coll. logs partly included in the POWHEG formula
- Still "unphysical" distributions, only hardest emission is present

- Merging with HERWIG and PYTHIA showers
- Top quarks momenta reconstruted according to shower history
- Small differences introduced by showering for inclusive quantities

PRELIMINARY

- Effects of the shower clearly visible in most observables.
- Dependence on jet cuts changes the normalization
- · More realistic final states, kinematic constraints avoided

- Effects of the shower clearly visible in most observables.
- Dependence on jet cuts changes the normalization
- More realistic final states, kinematic constraints avoided

- Results for LHC show more marked differences after shower also for inclusive observables
- Different jet cut: $p_{\rm T}^{\rm jet} > 50~{\rm GeV}$
- Similar behaviour for exclusive observables sensible to shower effects

CONCLUSIONS & OUTLOOKS

SO FAR:

- The POWHEG-BOX proved to be a useful tool to match NLO calculations to SMC programs
- $t\bar{t}+1 {\rm jet}$ process implemented quite straightforwardly despite its complexity: virtuals available as external library
- NLO results in accord with Dittmaier, Uwer&Weinzierl despite different subtraction method
- Generation problems solved thanks to V + 1jet and Di-jet studies.

ONGOING WORK AND PROSPECTIVE STUDIES:

- More extensive validations and comparisons with available NLO and resummed results.
- Inclusion of top-quark correlations in decays, similarly to [Frixione, Nason and Ridolfi, JHEP 0709]
- Extension to deal with $b\bar{b} + 1$ jet and $c\bar{c} + 1$ jet
- Phenomenological studies at the TeVatron and at the LHC (e.g. charge asimmetry, scales and PDFs dependence)
- Merging $t\bar{t}$ and $t\bar{t} + 1jet$ samples

Thank you for your attention!

EXTRA SLIDES

VECTOR BOSON PLUS JET PRODUCTION AND DECAY

Comparison with Z + 1j TeVatron data

DIJETS

Simone Alioli (DESY)

DIJETS

Simone Alioli (DESY)

Workshop on Heavy Particles at the LHC

COMPARISON WITH TEVATRON DIJET DATA

COMPARISON WITH ATLAS DIJET DATA

NLO ACCURACY OF POWHEG FORMULA (1)

• Use the POWHEG formula

$$d\sigma = \bar{B}(\Phi_n) \ d\Phi_n \ \left\{ \Delta(\Phi_n, p_{\rm T}^{\rm min}) + \Delta(\Phi_n, k_{\rm T}) \frac{R(\Phi_{n+1})}{B(\Phi_n)} \ \theta(k_{\rm T} - p_{\rm T}^{\rm min}) \ d\Phi_{\rm rad} \right\}$$

 $\bullet\,$ to calculate the expectation value of a generic observable $<{\cal O}>=$

$$= \int \bar{B}(\Phi_{n}) \, d\Phi_{n} \Biggl\{ \Delta(\Phi_{n}, p_{\mathrm{T}}^{\min}) O_{n}(\Phi_{n}) + \int_{p_{\mathrm{T}}^{\min}} \Delta(\Phi_{n}, k_{\mathrm{T}}) \frac{R(\Phi_{n+1})}{B(\Phi_{n})} O_{n+1}(\Phi_{n+1}) \, d\Phi_{\mathrm{rad}} \Biggr\}$$

$$= \int \bar{B}(\Phi_{n}) \, d\Phi_{n} \, \Biggl\{ \Biggl[\Delta(\Phi_{n}, p_{\mathrm{T}}^{\min}) + \int_{p_{\mathrm{T}}^{\min}} \Delta(\Phi_{n}, k_{\mathrm{T}}) \frac{R(\Phi_{n+1})}{B(\Phi_{n})} \, d\Phi_{\mathrm{rad}} \Biggr] O_{n}(\Phi_{n})$$

$$+ \int_{p_{\mathrm{T}}^{\min}} \Delta(\Phi_{n}, k_{\mathrm{T}}) \frac{R(\Phi_{n+1})}{B(\Phi_{n})} \left[O_{n+1}(\Phi_{n+1}) - O_{n}(\Phi_{n}) \right] \, d\Phi_{\mathrm{rad}} \Biggr\}$$

- O_n, O_{n+1} are the actual forms of \mathcal{O} in the n, n+1-body phase space.
- ${\cal O}$ is required to be infrared-safe and to vanish fast enough when two singular regions are approached at the same time

NLO ACCURACY OF POWHEG FORMULA (2)

Now observe that

$$\begin{split} &\int_{p_{\mathrm{T}}^{\mathrm{min}}} d\Phi_{\mathrm{rad}} \frac{R(\Phi_{n+1})}{B(\Phi_{n})} \Delta(\Phi_{n}, k_{\mathrm{T}}) \ = \ \int_{p_{\mathrm{T}}^{\mathrm{min}}}^{\infty} dp_{\mathrm{T}}' \int d\Phi_{\mathrm{rad}} \ \delta(k_{\mathrm{T}} - p_{\mathrm{T}}') \frac{R(\Phi_{n+1})}{B(\Phi_{n})} \Delta(\Phi_{n}, p_{\mathrm{T}}') \\ &= -\int_{p_{\mathrm{T}}^{\mathrm{min}}}^{\infty} dp_{\mathrm{T}}' \Delta(\Phi_{n}, p_{\mathrm{T}}') \frac{d}{dp_{\mathrm{T}}'} \int_{p_{\mathrm{T}}^{\mathrm{min}}} d\Phi_{\mathrm{rad}} \ \theta(k_{\mathrm{T}} - p_{\mathrm{T}}') \frac{R(\Phi_{n+1})}{B(\Phi_{n})} \\ &= \int_{p_{\mathrm{T}}^{\mathrm{min}}}^{\infty} dp_{\mathrm{T}}' \frac{d}{dp_{\mathrm{T}}'} \Delta(\Phi_{n}, p_{\mathrm{T}}') \ = \ 1 - \Delta(\Phi_{n}, p_{\mathrm{T}}^{\mathrm{min}}) \end{split}$$

- Furthermore we can replace $\bar{B}(\Phi_n) \approx B(\Phi_n) (1 + O(\alpha_s))$
- and also $\Delta(\Phi_n, k_T) \approx 1 + \mathcal{O}(\alpha_S)$ since $[O_{n+1} O_n] \rightarrow 0$ at small k_T 's
- The final result is (up to $p_{\rm T}^{\rm min}$ power-suppressed terms)

$$\langle \mathcal{O} \rangle = \int d\Phi_n \bar{B}(\Phi_n) \, 1 \, O_n(\Phi_n)$$

+
$$\int 1 \frac{R(\Phi_{n+1})}{1} \left[O_{n+1}(\Phi_{n+1}) - O_n(\Phi_n) \right] \, d\Phi_{\text{rad}} + \mathcal{O}(\alpha_{\text{S}})$$

MC@NLO

 $d\sigma_{\text{MC@NL0}} = \underbrace{\overline{B}_{\text{SMC}}(\Phi_n)}_{\text{B}_{\text{rad}}} d\Phi_n \left\{ \Delta_{\text{SMC}}(t_0) + \Delta_{\text{SMC}}(t) \frac{R_{\text{SMC}}(\Phi_n, \Phi_{\text{rad}}^{\text{SMC}})}{B(\Phi_n)} d\Phi_{\text{rad}}^{\text{SMC}} \right\} \\ + \underbrace{\left[R(\Phi_n, \Phi_{\text{rad}}^{\text{SMC}}) - R_{\text{SMC}}(\Phi_n, \Phi_{\text{rad}}^{\text{SMC}}) \right]}_{\text{MC@NL0}} d\Phi_n \ d\Phi_{\text{rad}}^{\text{SMC}} \\ \overline{B}_{\text{SMC}}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int \left[R_{\text{SMC}}(\Phi_n, \Phi_{\text{rad}}^{\text{SMC}}) - C(\Phi_n, \Phi_{\text{rad}}^{\text{SMC}}) \right] \ d\Phi_{\text{rad}}^{\text{SMC}} \\ \Delta_{\text{SMC}}(t) = \exp \left[- \int d\Phi_{\text{rad}}' \frac{R_{\text{SMC}}(\Phi_n, \Phi_{\text{rad}}')}{B(\Phi_n)} \theta(t'-t) \right] \iff \text{HERWIG or PYTHIA Sudakov!}$

- ✓ NLO accuracy for IR safe observables
- ✓ Exclusive observables are described no worse than in usual (N)LL SMC's
- X Dependence of PS algorithm. Need to express NLO calulation in Φ_{rad}^{SMC} variables

MC@NLO DIP IN HARDEST RADIATION

$$\begin{split} \Delta_{\mathrm{HW}}(t) &= \exp\left[-\int d\Phi_{\mathrm{rad}}' \frac{R_{\mathrm{HW}}(\Phi_n, \Phi_{\mathrm{rad}}')}{B(\Phi_n)} \theta\left(t'-t\right)\right] &\Leftarrow \mathrm{HERWIG} \ \mathrm{Sudakov!} \\ d\sigma_{\mathrm{MCQNLO}} &= \bar{B}_{\mathrm{HW}}(\Phi_n) \ d\Phi_n \ \left\{\Delta_{\mathrm{HW}}(t_0) + \Delta_{\mathrm{HW}}(t) \frac{R_{\mathrm{HW}}(\Phi_n, \Phi_{\mathrm{rad}})}{B(\Phi_n)} \ d\Phi_{\mathrm{rad}}\right\} \ + \\ & \left[R(\Phi_n, \Phi_{\mathrm{rad}}) - R_{\mathrm{HW}}(\Phi_n, \Phi_{\mathrm{rad}})\right] \ d\Phi_n \ d\Phi_{\mathrm{rad}} \\ \bar{B}_{\mathrm{HW}}(\Phi_n) &= B(\Phi_n) + V(\Phi_n) + \int \left[R_{\mathrm{HW}}(\Phi_n, \Phi_{\mathrm{rad}}) - C(\Phi_n, \Phi_{\mathrm{rad}})\right] \ d\Phi_{\mathrm{rad}} \end{split}$$

At high $p_{\rm T}$ the cross section goes as

$$d\sigma_{\text{MC@NLO}} \approx \left(\frac{\bar{B}_{\text{HW}}(\Phi_n)}{B(\Phi_n)} - 1\right) R_{\text{HW}}(\Phi_n, \Phi_{\text{rad}}) d\Phi_n d\Phi_{\text{rad}} + R(\Phi_n, \Phi_{\text{rad}}) d\Phi_n d\Phi_{\text{rad}}$$

Test : Replace $\bar{B}_{\rm HW}(\Phi_n)$ with $B(\Phi_n)$ in generation of S-type events

The dip seems to disappear

NLL ACCURACY OF THE POWHEG SUDAKOV FORM FACTOR

Substitute $\alpha_{\rm S} \to A\left(\alpha_{\rm S}\left(k_{\rm T}^2\right)\right)$ in the Sudakov exponent, with

$$A(\alpha_{\rm S}) = \alpha_{\rm S} \left\{ 1 + \frac{\alpha_{\rm S}}{2\pi} \left[\left(\frac{67}{18} - \frac{\pi^2}{6} \right) C_{\rm A} - \frac{5}{9} n_{\rm f} \right] \right\}$$

and one-loop expression for α_s , to get NLL resummed results for process with up to 3 coloured partons at the Born level [Catani,Marchesini and Webber Nucl.Phys.B349]

 $\mbox{For} > 3$ coloured partons, soft NLL contributions exponentiates only in a matrix sense

- Need to diagonalize the colour structures
- $\bullet\,$ Always possible to take the large N_c limit and get NLL

Comparison with HqT program [Bozzi,Catani,de Florian and Grazzini, Nucl.Phys.B737] \Rightarrow

Better agreement with NNLO results, but still enough flexibility to get rid of this feature!

Simone Alioli (DESY)

REDUCTION OF REAL CONTRIBUTION ENTERING THE SUDAKOV FF

