

Workshop on Heavy Particles at the LHC

Resonant Single Top Production

at Hadron Colliders

Adrian Signer IPPP, Durham University

IN COLLABORATION WITH

P FALGARI, F GIANNUZZI, P MELLOR AND A PAPANASTASIOU

5.-7. January 2011, Zurich, Switzerland

introduction

- background
- non-factorizable corrections

method

- effective theory approach
- virtual corrections
- real corrections

application

- overview single-top 't' and 's'-channel
- tree level, virtual corrections, real corrections

results

- 't'-channel LHC
- 's'-channel LHC
- 't' and 's'-channel Tevatron

conclusions

outlook

Production of an on-shell heavy (unstable) particle X: $p_X^2 = m_X^2$

- often this is a reasonable approximation but
- cuts on decay products not possible
- off-shell effects of X not taken into account

Production of an on-shell heavy (unstable) particle X, including decay: $p_X^2 = m_X^2$

- (improved) narrow width approximation, $M_{
 m decay}^2 = m_X^2$
- NLO correction of production and decay included
- lacktriangle cuts on decay products possible but off-shell effects of X not taken into account

Production of an on-shell heavy (unstable) particle X, including decay: $p_X^2 = m_X^2$

- (improved) narrow width approximation, $M_{
 m decay}^2 = m_X^2$
- NLO correction of production and decay included
- lacktriangle cuts on decay products possible but off-shell effects of X not taken into account

Production of an off-shell heavy (unstable) particle X, including decay: $p_X^2 \neq m_X^2$

- tree-level background diagrams (no particle X, but same final state)
- virtual and real background diagrams
- valid for any p_X^2 , (off-shell effects taken into account) but calculation complicated

Production of a resonant heavy (unstable) particle X, including decay: $p_X^2 \sim m_X^2$

- tree-level background diagrams (no particle X, but same final state)
- use pole approximation (at one loop)
 - factorizable corrections
 - non-factorizable corrections

gauge invariant separation

- real background diagrams
- off-shell effects of X are taken into account, calculation simplified

non-factorizable corrections

non-factorizable corrections have been extensively studied [Fadin et.al; Melnikov et.al; Beenakker et.al; Denner et.al.; Jadach et.al; . . .] but are usually neglected at hadron colliders, because:

- they seem to be more difficult to compute (not really)
- they are generally small [Beenakker et.al; Pittau]
 - resonant \rightarrow non-resonant propagator unless $E \lesssim \Gamma$ is small (soft)
 - cancellations for "inclusive" observables [Fadin, Khoze, Martin]

purpose of this work:

- do not neglect non-factorizable corrections
- try to obtain an efficient way to identify and compute minimal amount required

in this talk I will not consider many other (sometimes related) issues such as

- (soft) connection of unstable particle to beam remnant
- issues related to using pole mass for unstable particle $\delta m_t \simeq \Lambda_{\rm QCD}$??

ET and normal approach

- small scale $(p_X^2-m_X^2)/m_X^2\sim\delta\ll 1$ o effective theory (ET) approach
- expand in all small parameters α and $(p_X^2 m_X^2)/m_X^2 \to$ power counting:

$$\alpha \sim \frac{p_X^2 - m_X^2}{m_X^2} \equiv \frac{\Delta}{m_X^2} \sim \frac{\Gamma_X}{m_X} \sim \delta \ll 1$$

- integrate out hard modes: $\mathcal{L}(\phi, A, \psi) \to \mathcal{L}_{\text{eff}}(c_i, \phi_s, A_s, A_c, \psi_s, \psi_c)$ UPET is nothing but a mix between SCET and H'Q'ET
- virtual corrections and total cross section
 - expand integrand, method of regions [Beneke, Smirnov]
 - new identification [Chapovsky, Khoze, AS, Stirling]
 factorizable corrections = hard corrections (ET)
 non-factorizable corrections = soft corrections (ET)
 - applications for total cross section: $e^+e^- \to t\bar{t}$ near threshold [Hoang et.al; Beneke et.al; Melnikov et.al; . . .] $e^+e^- \to W^+W^-$ near threshold [Beneke et.al.]
- arbitrary real corrections problematic (new scales from definition of observable)
- follow fixed-order approach, but expand $d\sigma^{\rm real}$ to match IR singularities of $d\sigma^{\rm virt}$

use method of regions [Beneke, Smirnov] and expand integrand (in principle to any order):

- hard corrections $\ell \sim m_X$ (= factorizable corrections)
- soft corrections $\ell \sim m_X \, \delta$ (= non-factorizable corrections)

• leads to resummation of hard part (= leading part in Δ) of self-energy insertions

$$\mathcal{L}_{\text{eff}} = 2m_X \, \phi_s^{\dagger} \left(iv \cdot \partial - \frac{c_{\phi\phi}}{2} \right) \phi_s + \dots$$

• matching coefficients are gauge invariant ($c_{\phi\phi} = -i\Gamma$ in pole scheme) full result is gauge invariant at each order in δ , but gauge invariance is not an input

integrate out hard modes → effective Lagrangian

$$\mathcal{L} = \phi^{\dagger} B \phi + c_{p} \phi(\Pi \psi_{i}) + c_{d} \phi(\Pi \chi_{j}) + c_{b} (\Pi \psi_{i} \chi_{j}) + \bar{\psi} D_{s} \psi + \dots$$

- matching coefficients c_i contain effects of hard modes
- matching done on shell, $p_X^2 = \bar{s} = m_X^2 + \mathcal{O}(\Delta)$, with \bar{s} the complex position of pole
- soft (and collinear . . .) d.o.f. still dynamical
- can be combined with further resummations (e.g. non-relativistic → ET has more complicated structure)
- direct link to anomalous couplings via L_{eff}

for arbitrary observable it is not clear what expansion parameter is

- lacktriangle observable can introduce new scales ightarrow change in structure of ET
- take full real matrix element and apply (say) subtraction method

$$\int d\Phi_{n+1} |M_{n+1}|^2 = \int d\Phi_{n+1} \left(|M_{n+1}|^2 - |M_{n(+1)}^{\text{sing}}|^2 \right) + \int d\Phi_{n+1} |M_{n(+1)}^{\text{sing}}|^2$$

$$\simeq \int d\Phi_{n+1} \left(|M_{n+1}|^2 - |M_{n(+1)}^{\text{sing}}|^2 \right) + \int d\Phi_{n+1} |M_{n(+1)}^{\text{sing exp}}|^2$$

- $\int d\Phi_{n+1} |M_{n(+1)}^{
 m sing}|^2$ matches singularity structure of full virtual correction $\int d\Phi_n |M_n^{
 m v}|^2$
- $\int d\Phi_{n+1} |M_{n(+1)}^{\mathrm{sing}}|^2$ matches singularity structure of virtual term $\int d\Phi_n |M_n^{\mathrm{v}}|^2$
- ullet we subtract something and add back something different, but difference is higher order in δ
- expansion only required for n parton kinematics

single top: t-channel

s-channel

(W t not considered here)

- total rate and distributions for on-shell top quarks at NLO known [Bordes et.al; Stelzer et.al; Harris et.al; Campbell et.al; Cao et.al; . . .]
- implemented in MC@NLO [Frixione et.al.] and POWHEG [Alioli et.al.]
- comparison 5-flavour scheme vs. 4-flavour scheme [Campbell et.al.]
- EW corrections [Beccaria et.al.]
- effects of BSM operators [Willenbrock et.al.]
- resummation of threshold logs [Kidonakis, Wang et.al.]

• s and t channel mix (beyond LO) \rightarrow more appropriate to talk about (tJ), (tb) (and (tW)) cross sections

- final state $W(=\ell
 u), J_b, J$ for 't'-channel and $W(=\ell
 u), J_b, J_{ar b}$ for 's'-channel
- signal for top is WJ_b pair with invariant mass $(p_W+p_{J_b})^2\equiv s_{Wb}\sim m_t^2$
- small parameter: $\delta \sim \frac{s_{Wb}-m_t^2}{m_t^2} \equiv \frac{\Delta}{m_t^2}$; counting: $\alpha_s^2 \sim \alpha_{ew} \sim \frac{\Gamma_t}{m_t} \sim \delta \ll 1$
- lacktriangle use (improved) narrow width for W decay
- use 5 flavour scheme, $m_b = 0$, and "fixed" order, i.e. no parton shower etc.

single top: tree level

amplitude:
$$\mathcal{A}^{\text{tree}} = \delta_{31}\delta_{42} \left(\underbrace{g_{ew}^3 \, A_{(-1)}^{(3,0)}}_{\delta^{1/2}} + \underbrace{g_{ew}^3 \, A_{(0)}^{(3,0)}}_{\delta^{3/2}} + \dots \right) + \underbrace{T_{31}^a T_{42}^a \, g_{ew} g_s^2 \, A^{(1,2)}}_{\delta \text{ signal!}}$$

amplitude squared: (no inteference due to colour ightarrow no $\delta^{3/2}$ term)

$$|M|^{2} = \underbrace{g_{ew}^{6} N_{c}^{2} \left| A_{(-1)}^{(3,0)} \right|^{2}}_{\delta} + \underbrace{g_{ew}^{6} N_{c}^{2} 2 \operatorname{Re} \left(A_{(-1)}^{(3,0)} \left[A_{(0)}^{(3,0)} \right]^{*} \right)}_{\delta^{2}} + \underbrace{g_{ew}^{2} g_{s}^{4} N_{c} C_{F} / 2 \left| A^{(1,2)} \right|^{2}}_{\delta^{2}} + \dots$$

tree-level (squared) $\sim \delta$, compute all $\sim \delta^{3/2}$ contributions to $|M|^2$ ($\sim \mathcal{O}(\alpha_s)$ corrections) consider subset of resonant virtual diagrams (before expansion in δ this is gauge dependent)

 $\mathrm{hard} \to c_{\mathrm{prod}} \quad \mathrm{soft} = 0$

 $hard \rightarrow c_{dec} \quad soft \rightarrow non-fact$

 $hard \rightarrow c_{prod}$ soft $\rightarrow non-fact$

hard $\sim \delta^2$ soft \rightarrow non-fact

 $\mathrm{hard} \to c_{\phi\phi} \quad \mathrm{soft} \to \mathrm{non\text{-}fact}$

hard part of QCD self-energy is superleading, i.e. $\mathcal{O}(1)$ with LO amplitude $\sim \delta^{1/2}$ but in pole scheme the leading hard part is precisely cancelled by counter term soft and subleading hard part of QCD self-energy is NLO, i.e. $\mathcal{O}(\delta^{3/2})$ for $|M|^2$

hard part of EW self-energy is leading, i.e. $\mathcal{O}(\delta^{1/2}) \to \text{resum}$ soft part of EW self-energy is beyond NLO, i.e. $\mathcal{O}(\delta^2)$ for $|M|^2$

explicit calculations and results are very simple!

$$\mathcal{A}^{(1),\text{soft}} = \mathcal{A}^{(0)} \delta V^{\text{soft}}$$

$$\delta V^{\text{soft}} = \frac{\alpha_s C_F}{2\pi} \left(-\frac{\Delta}{\mu m_t} \right)^{-2\epsilon} \left[\frac{1}{\epsilon} \left(1 - \ln \frac{s_{2t} s_{4t}}{m_t^2 s_{24}} \right) + 2 + \text{Li}_2 \left(1 - \frac{s_{2t} s_{4t}}{m_t^2 s_{24}} \right) \right]$$

$$\mathcal{A}^{\text{hard},(b)} = \mathcal{A}^{(0)} \delta V^{\text{hard},(b)} + \frac{\alpha_s C_F}{2\pi} \frac{-ig_{ew}^4 \langle 46 \rangle \langle 3|2|1 \rangle [25]}{(s_{13} + M_W^2) \Delta} \frac{m_t^2}{m_t^2 - s_{2t}} \ln \frac{s_{2t}}{m_t^2}$$

$$\delta V^{\text{hard},(b)} = \frac{\alpha_s C_F}{2\pi} \left[-\frac{1}{2\epsilon^2} + \frac{1}{\epsilon} \left(\ln \frac{s_{2t}}{m_t \mu} - \frac{1}{2} \right) + \text{Li}_2 \left(1 - \frac{m_t^2}{s_{2t}} \right) - 2 - \frac{\pi^2}{24} \right]$$

$$- \frac{1}{2} \ln^2 \frac{s_{2t}}{m_t \mu} + \frac{1}{8} \ln^2 \frac{m_t^2}{\mu^2} + \frac{s_{2t}}{4(m_t^2 - s_{2t})} \ln \frac{m_t^2}{\mu^2}$$

$$+ \frac{1}{2} \ln \frac{s_{2t}}{m_t \mu} \left(2 - \frac{s_{2t}}{m_t^2 - s_{2t}} - \ln \frac{m_t^2}{\mu^2} \right) \right]$$

Comparison between (ET) and earlier (non-ET) NLO calculations [Campbell et.al, Yuan et.al.]

- ET virtual: hard part vanishes (at this order), soft part contributes and is included
- ET real: interference between production and decay radiation included after expansion this cancels corresponding virtual IR singularities
- non-ET real and virtual: not included
- ET: both top quarks can be off-shell, hard and soft part contribute
- non-ET: one top is always on-shell

7 TeV LHC 't'-channel: $m_t=171.3~{
m GeV}$, MSTW 2008 NLO pdf, $m_t/4 \leq \mu \leq m_t$

define jets: k_{\perp} cluster algorithm \Rightarrow

$$J_b$$
 with $p_{\perp}(J_b) > 20~{
m GeV}$ J_q with $p_{\perp}(J_q) > 20~{
m GeV}$ no further $J_{\bar{b}}$ with $p_{\perp}(J_{\bar{b}}) > 15~{
m GeV}$ $ot\!\!\!/ E_{\perp} + p_{\perp}(\ell) > 60~{
m GeV}$,

top window: $150 \text{ GeV} < \sqrt{(p(J_b) + p(\ell) + p(\nu))^2} < 200 \text{ GeV}$

invariant mass of 'top'

$$M_{\rm inv}^2 \equiv (p(J_b) + p(W))^2$$

7 TeV LHC 't'-channel: $m_t=171.3~{
m GeV}$, MSTW 2008 NLO pdf, $m_t/4 \leq \mu \leq m_t$

define jets: k_{\perp} cluster algorithm \Rightarrow

$$J_b$$
 with $p_{\perp}(J_b) > 20~{
m GeV}$ J_q with $p_{\perp}(J_q) > 20~{
m GeV}$ no further $J_{ar{b}}$ with $p_{\perp}(J_{ar{b}}) > 15~{
m GeV}$ $ot\!\!\!/ E_{\perp} + p_{\perp}(\ell) > 60~{
m GeV}$,

top window: $150 \text{ GeV} < \sqrt{(p(J_b) + p(\ell) + p(\nu))^2} < 200 \text{ GeV}$

spin correlation

$$\cos heta_{
m spec} \equiv rac{ec{p}_q^* \cdot ec{p}_\ell^*}{|ec{p}_q^*| \, |ec{p}_\ell^*|}$$

7 TeV LHC 's'-channel: $m_t=171.3~{
m GeV},$ MSTW 2008 NLO pdf, $m_t/4 \leq \mu \leq m_t$

define jets: k_{\perp} cluster algorithm \Rightarrow

$$J_b$$
 with $p_{\perp}(J_b) > 20~{
m GeV}$ $J_{ar{b}}$ with $p_{\perp}(J_{ar{b}}) > 30~{
m GeV}$ no further J_q with $p_{\perp}(J_q) > 15~{
m GeV}$ $ot\!\!\!/ E_{\perp} + p_{\perp}(\ell) > 60~{
m GeV},$

top window: $150 \text{ GeV} < \sqrt{(p(J_b) + p(\ell) + p(\nu))^2} < 200 \text{ GeV}$

invariant mass of 'top'

$$M_{\rm inv}^2 \equiv (p(J_b) + p(W))^2$$

7 TeV LHC 's'-channel: $m_t = 171.3~{
m GeV}$, MSTW 2008 NLO pdf, $m_t/4 \le \mu \le m_t$

define jets: k_{\perp} cluster algorithm \Rightarrow

$$J_b$$
 with $p_{\perp}(J_b) > 20~{
m GeV}$ $J_{ar{b}}$ with $p_{\perp}(J_{ar{b}}) > 30~{
m GeV}$ no further J_q with $p_{\perp}(J_q) > 15~{
m GeV}$ $ot\!\!\!/ E_{\perp} + p_{\perp}(\ell) > 60~{
m GeV},$

top window: $150 \text{ GeV} < \sqrt{(p(J_b) + p(\ell) + p(\nu))^2} < 200 \text{ GeV}$

transverse momentum 'top'

$$p_T(t = J_b + W)$$

Tevatron 't'-channel: $m_t = 171.3~{
m GeV}$, MSTW 2008 NLO pdf, $m_t/4 \le \mu \le m_t$

define jets: k_{\perp} cluster algorithm \Rightarrow

 J_b with $p_{\perp}(J_b) > 20~{
m GeV}$ J_q with $p_{\perp}(J_q) > 20~{
m GeV}$ no further $J_{ar{b}}$ with $p_{\perp}(J_{ar{b}}) > 20~{
m GeV}$ $ot\!\!\!/ E_{\perp} + p_{\perp}(\ell) > 30~{
m GeV},$

top window: $150 \text{ GeV} < \sqrt{(p(J_b) + p(\ell) + p(\nu))^2} < 200 \text{ GeV}$

invariant mass of 'top'

$$M_{\rm inv}^2 \equiv (p(J_b) + p(W))^2$$

Tevatron 't'-channel: $m_t = 171.3~{
m GeV}$, MSTW 2008 NLO pdf, $m_t/4 \le \mu \le m_t$

define jets: k_{\perp} cluster algorithm \Rightarrow

$$J_b$$
 with $p_{\perp}(J_b) > 20~{
m GeV}$ J_q with $p_{\perp}(J_q) > 20~{
m GeV}$ no further $J_{\overline{b}}$ with $p_{\perp}(J_{\overline{b}}) > 20~{
m GeV}$ $ot\!\!\!/ E_{\perp} + p_{\perp}(\ell) > 30~{
m GeV},$

top window: $150 \text{ GeV} < \sqrt{(p(J_b) + p(\ell) + p(\nu))^2} < 200 \text{ GeV}$

rapidity of top

$$\eta(t = W + J_b)$$

Tevatron 's'-channel: $m_t = 171.3~{
m GeV}$, MSTW 2008 NLO pdf, $m_t/4 \le \mu \le m_t$

define jets: k_{\perp} cluster algorithm \Rightarrow

$$J_b$$
 with $p_{\perp}(J_b) > 20~{
m GeV}$ J_q with $p_{\perp}(J_q) > 20~{
m GeV}$ no further $J_{ar{b}}$ with $p_{\perp}(J_{ar{b}}) > 15~{
m GeV}$ $ot\!\!\!/ E_{\perp} + p_{\perp}(\ell) > 30~{
m GeV},$

top window: $150 \text{ GeV} < \sqrt{(p(J_b) + p(\ell) + p(\nu))^2} < 200 \text{ GeV}$

invariant mass of 'top'

$$M_{\rm inv}^2 \equiv (p(J_b) + p(W))^2$$

Tevatron 's'-channel: $m_t = 171.3~{\rm GeV}$, MSTW 2008 NLO pdf, $m_t/4 \le \mu \le m_t$

define jets: k_{\perp} cluster algorithm \Rightarrow

$$J_b$$
 with $p_{\perp}(J_b) > 20~{
m GeV}$ J_q with $p_{\perp}(J_q) > 20~{
m GeV}$ no further $J_{ar{b}}$ with $p_{\perp}(J_{ar{b}}) > 15~{
m GeV}$ $ot\!\!\!/ E_{\perp} + p_{\perp}(\ell) > 30~{
m GeV},$

top window: $150 \text{ GeV} < \sqrt{(p(J_b) + p(\ell) + p(\nu))^2} < 200 \text{ GeV}$

'wrong' invariant mass

$$\bar{M}_{\rm inv}^2 \equiv (p(J_{\bar{b}}) + p(W))^2$$

- using ET inspired approach, the computational effort to include off-shell effects at NLO for unstable particles is very modest
 - amounts to inclusion of non-factorizable (= soft) corrections (and all spin correlation effects)
 - combined with "standard" (= hard) corrections for production and decay
- can be extended beyond NLO, well defined power counting to identify minimal amount of computation required for a certain precision
- applicable to unstable fermions, gauge bosons and scalars
- example single top:
 - off-shell effects $\mathcal{O}(\alpha_s \ \delta)$ are small for total cross section and most observables off-shell effects seem to be smeared by 'reconstruction effects'
 - higher order contributions in △ are not too difficult to compute and can be numerically important (e.g. QCD "background")
 - full calculation beyond $\mathcal{O}(\delta^{3/2})$ for $|M|^2$ would require two-loop matching coefficient