
introduction
•my interpretation of “data analysis techniques” is here “doing a 

data analysis”

• follow the steps from the beginning (data taking) to the end (the 
result)
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‣ the luminosity

‣ the trigger, from the point of view of the analysis

‣ the reconstruction and detector response

‣ the simulation

‣ differential cross-section measurement: a di-jet correction

‣  searches: the H > WW > lvlv

‣ multivariate techniques

thanks to the following people, for interesting discussions, for liberally 
“borrowing” slides, or both: D. Benedetti, C. Bernet, T. Camporesi, G. 
Cowan, K. Cranmer, K. Ellis, S. Gennai , A. Ghezzi, A. Hoecker, R. Van 
Kooten, M. Nguyen, M. Paganoni, M. Pelliccioni, E. Rizvi, R. Rossin ...



the pile-up
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the pile-up
• At LHC, the interaction rate is higher than the bunch crossing rate

•Within a bunch crossing in LHC, more interactions happen

• An event of interesting physics will be recorded together with 
other events overlapped, that are proton-proton interactions 
with low physics interest

• they are equivalent to a non-interesting event (minimum bias)
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• given an average number of 
interactions, the number of PU 
events per bunch-crossing is 
expected to have roughly a 
poissonian distribution



•multiply the luminosity (per bunch) by the minimum bias cross-
section (71.3 mb) gets the expected rate per bunch:

• divide by the revolution frequency of a bunch to get the number of 
PU events:

• calculate average distributions over longer periods, weighting by 
the luminosities

measure the pile-up
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effects of pile-up

• fill in the detector with deposits:

• jet reconstruction algorithms incorporate pile-up deposits

• lepton isolation cones are filled in with pile-up deposits

• new jets might appear in the event 

•more hits in the tracker appear

• the trigger is affected

•MET resolution worsens

• ....
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how to deal with it
• apply strict requirements on the 

vertexing of tracks - need a precise 
vertex reconstruction algorithm

•measure the pile-up density event by 
event, and use it to subtract from the 
jets energy a pile-up term (FastJet)

• do the same with isolation cones
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• subtract in the isolation cone the contribution of tracks that do 
not aim at the same vertex of the lepton

• reconstruct the MET only with particles that aim at a given 
vertex

M. Cacciari, G. Salam and G. Soyez, FastJet http://www.lpthe.jussieu.fr/~salam/fastjet/



H > WW > lvlv
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one plot for the Higgs boson
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production rate

L1 output

storing rate

new physics



H > WW > lvlv

•pros

•main production channel over a large mass range

•main decay channel for intermediate and high masses

•cons

• no invariant mass reconstruction is possible, since two neutrinos 
escape the detection
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the backgrounds

• two identified leptons + missing energy in the final state
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irreducible: same final 
state of the signal, 

exploit different 
kinematics of the 

production

there are two 
additional b-jets in the 
detector, due to the top 
decay, veto on jets (or 

on b-jets)

jets in the detector can 
give a lepton-like 

signature (non prompt 
leptons, or fake leptons 

form track+calo 
deposit): very high 

cross section

W: σ = 31 103 pb
Z: σ = 3.5 103 pbσ = 15 pb

l  

v  

σ = 4.5 pb



the triggers and first steps
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doubleMu7

Ele17_CaloIdL_CaloIsoVL_Ele8_CaloIdL_CaloIsoVL

Mu8_Ele17_CaloIdL

Mu17_Ele8_CaloIdL

muons are easily 
identified in the detector

electrons need to be 
separated from jets 

already at trigger level: 
higher thresholds and 

ID requirements

cross-triggers are not 
symmetric, to maximize 

the efficiency while 
keeping the rate low

the analysis starts on samples selected by those 
triggers (if more than one trigger selects the events, 

any double countings have to be eliminated)

efficiencies calculated 
with the tag&probe on 

each leg separately



the analysis
• no invariant mass reconstruction --> counting experiment:

• isolate a phase space region where the signal-to-background ratio 
is maximized

• count the number of events

• compare to standard model expectations
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the two leptons are 
close to each other

example of a discriminating variable;



fight the backgrounds

• evaluate (and subtract) backgrounds in the signal phase space 
region

• the simulation is reliable as much as the description of the 
theoretical model and the description of the detector

• determine the amount of backgrounds from data when these 
assumptions fail (the systematic uncertainty is expected to be big)

• the more the simulation is trusted, the less is compulsory to rely 
on data
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σ =
Nobs −Nbkg

ε ·
�
Ldt



get the cross-section
• assume a good knowledge of the background from simulation 

(efficiency wrt various selections)

• the absolute cross-section is the only missing information

• fit (or count) the simulation to data, and get the cross-section 
value
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the Z contribution is 
dominant under the Z 

resonance peak
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h_VV_Mll
h_W_Mll
h_top_Mll
h_ttbar_Mll
h_DY_Mll

the uncertainty is due to 
the statistics available 
and the contamination 

of other samples

evaluate the impact on the 
analysis: probably does not 
need the same precision as a 
cross-section measurement



side-bands

•when the background is expected 
to behave smoothly, for 
example in case of random 
combinations

• assume a simple shape, and 
extrapolate the background 
under the signal peak from the 
sides

• fit the distribution with signal 
shape (a resonance) and 
background (exponential, linear)
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control region
• assume the knowledge of the background shape, at a certain 

level of the analysis

• fit the shape to data in a signal-free region, where that 
background is dominant and extrapolate it to the signal region

• in case of low statistics, count the number of events and 
extrapolate

80

N bkg−A
inferred = N bkg−B

DATA

�
N bkg−A

MC

N bkg−B
MC

�

uncertainty due 
to the data 

statistics and 
other systematic 

sources

uncertainty due to: background 
model, control region 

contamination, propagation of 
other systematic sources, 

MC stats

A B



ABCD method
•measure also the shape from data, to perform the extrapolation 

from a control region to a signal region

• assume the bkg pdf to be factorized:

• the correlation check done with simulation is a less stringent 
requirement than the good description of the shape

• in case of low statistics, count the number of events and 
extrapolate
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f bkg(x, y) = f bkg
x (x) · f bkg

y (y)

N bkg
A = N bkg

B · N
bkg
C

N bkg
D

uncertainty due 
to the data 

statistics and 
other systematic 

sources

uncertainty due to: control 
region contamination, 
propagation of other 
systematic sources

C

A B

D



W+jets background

• lepton identification and isolation are meant to reduce the 
probability for a jet to mimic a prompt lepton (fake rate)
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W: σ = 31 103 pb
Higgs: σ ~ 1 pb

e

v

(fake) e

HCAL

ECAL 

tracker

•goodness of fit in the tracker
• track pointing to the primary vertex
•electrons shower shape variables
•goodness of fit for muons
•geometrical matching between 

different sub-detectors responses

in the simulation, the 
contamination critically depends 

on the detector description



fake rate
•measure from data the fake rate and use it to evaluate the 

background contamination

• sample with no prompt leptons: QCD dijet (di-jet trigger is 
therefore necessary for the Higgs search!)
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r =
identified, isolated (fake) lepton

fakeable object
definition depends on 
the object (e,µ) and 

the statistics 
available, and is part 
of the systematics

survives the selections 
of the analysis

• select a (almost pure) W+jets sample by loosening the ID on one 
lepton (single lepton triggers necessary for Higgs search!)

•multiply by r to get the number of events in the signal region

• hypothesis: the fake rate is the same



the result
•with the number of measured events, and the estimated 

backgrounds, one draws the conclusion
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• for each Higgs mass, the selections choice has been optimized on 
a multi-dimensional rectangular grid

• is it the best choice?



multi variate techniques
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multi variate techniques

• rectangular selections do not fully exploit the topology of the 
events

• build more sophisticated discriminants to separate signal from 
backgrounds

• need a good knowledge of both signal and background

• need high Monte Carlo statistics
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H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
Toolkit for Multivariate Data Analysis with ROOT, http://tmva.sourceforge.net/



likelihood discriminant
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LS(i) = fS(�xi) =
�

j�(vars)

fS,j(xij)

estimates for each event 
the confidence of being 

signal-like

yi = f(�xi) : Rn → Rsearch for a classification of the 
events, that maps the set of the 

analysis variables into a single one 

RL(i) =
LS(i)

LB(i) + LS(i)

For more, uncorrelated, 
variables: “easily” built

For linearly correlated variables, 
first decorrelate them



fisher discriminant

• project high-dimensional dataset 
onto a line and perform classification in 
this one-dimensional space

• optimization: maximize the distance 
between means, while minimizing the 
variance within each class

• very effective with  linear correlations
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J(�w) =
(�yS� − �yB�)2

σ2
yS

+ σ2
yB

sig
nal

back
gr

projection

build the linear 
combination:

y(�x, �w) = w0 +
�

xi · wi

find the best weight by 
minimizing the criterion:



neural networks
• to cope with non-linear correlations, try a more sophisticated 

combination of the inputs
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input 
variables, 

none of them 
is a smoking 

gun

factors of the 
“base” in which 

the non linear y is 
decomposed 

the non-linear 
base element

need to find the 
weights, i.e. to train the 

neural network



on the training
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loss function: how many 
times I make a mistake in 

the classification

values of y:
1 = signal
0 = background

minimize the loss function: 
• start from random weights
• change them according to the L gradient
• loop several times on the training samples

divide the simulated sample into training and testing, 
continue the training until the performances on the training stabilize, 

stop before the ones on the testing worsen

in overtraining, 
the NN is 

adapting to 
statistical 

fluctuations of 
the training 

sample
training cycle

overtraining

test

train



boosted decision trees
• rank the variables in terms of 

discriminating power

• apply subsequent selections in each of 
the variables

• stop when:
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• minimal #events per node
• maximum number of nodes
• maximum depth specified
• a split doesn’t give a minimum 

separation gain

• in each final node (leaf) return S/B 
discrimination (discrete or continuous)

• independent of monotonous variable 
transformations
• immune against outliers
•weak variables are ignored
• very sensitive to statistical 

fluctuations in training data

boosting: combine a whole 
forest of Decision Trees, 
derived from the same 

sample, e.g. using different 
event weights.

separation 
indices



matrix elements
• the MVA techniques is describe the final state topology with a 

parametrization, built on the simulation

•matrix elements are this description, at the level of the physical 
process
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need to include the 
effects due to the 
detector for each 

physics object 
considered

calculate the 
probability for 

each background 
and build a 

likelihood ratio



selecting the events
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Receiver Operating Characteristics (ROC) 
Curve: how efficiency versus purity

for each discriminant, now make the choice: 
what is signal, what is background?

yi = f(�xi) : Rn → R

• choose the working point by maximizing a figure of merit:

S√
B

S√
S +B

S�
B + (∆B)2

search: 
sensitivity over 

background 
fluctuations

known signal: 
sensitivity over 

fluctuations of the total 
sample

search: 
sensitivity over 

background fluctuations 
plus systematics



summary table

• useful table for the choice of the method to be used, among the 
ones provided by TMVA
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what about systematics?
• in terms of training, a systematic effect yields a sub-optimal 

discriminant

• in terms of results, a systematic in the model reflects in the the 
efficiency and purity estimates, and in the event counts

• compare data to MC for the y(x) variable

• train the discriminator on different models

• try and understand effects by training on reduced sets of 
variables
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the H > WW > lvlv case
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boosted decision tree 
output, for the SM 
Higgs hypothesis of 
160 GeV mass

rectangular cuts BDT cut



in conclusion

• data are arriving... when the going gets tough, the toughs get 
going, ... and have fun!
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‣ the luminosity

‣ the trigger, from the point of view of the analysis

‣ the reconstruction and detector response

‣ the simulation

‣ differential cross-section measurement: a di-jet correction

‣  searches: the H > WW > lvlv

‣ multivariate techniques


