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Summary of lecture 3

� The perturbative part of Event Generators (parton shower)

is based on the factorization properties of matrix elements

� Parton showers compute the dominant collinear and soft

effects to all orders, effectively resumming them

� Parton showers are inherently collinear — large-pT emissions

are either absent, or wrong

� Rates are computed at the LO

� No reliable estimate of perturbative uncertainties

How can we improve on this?



The current frontier(s)

Go beyond LO (K factors and large-pT tails)

Done

Go beyond LL

Being done?



How to go beyond LO?

The key issue is to go beyond the collinear approximation

=⇒ use exact matrix elements of order higher than leading

Which ones?

There are two possible choices, that lead to two vastly

different strategies:

I Matrix Element Corrections −→ tree level

I NLOwPS −→ tree level and loop

I start with MEC



Matrix Element Corrections

Compute (exactly) as many as possible real emission diagrams before
starting the shower. Example: W production

. . . . . .

Problems

• Double counting (the shower can generate the same diagrams)

• The diagrams are divergent

Solutions

−→ Catani, Krauss, Kuhn, Webber (2001), Lönnblad (2002), Mangano (2005)

(CKKW, SMPR, CKKW-L, MLM)



What all solutions have in common

� Separate PS- from ME-dominated kinematics regions. This is done by

“measuring” the hardness of each parton pairs: e.g.

Soft =⇒ use PS Hard =⇒ use ME’s

� This removes double counting (and divergencies in ME’s), but it

introduces an unphysical bias, upon which physical predictions depend

� The bias is removed by at least one of the following operations

Modify ME’s (through reweighting)

Choose suitable PS initial conditions (depend on kinematics)

Forbid emissions/Reject events in the shower phase



CKKW

� Separation criterion: jet kT clustering algorithm (merge if dij < Q2
sep)

� Reweight ME’s with Sudakovs, i.e. the probability that shower could

not have generated softer branchings. Sudakovs are LL ones, e.g.
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,

� Correct the (angular-ordered) shower by vetoeing certain emissions

(those harder than Q2
sep – hardness is measured by kT here)

� The latter two steps guarantee that Q2
sep dependence is of NLL
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� Correct the (angular-ordered) shower by vetoeing certain emissions

(those harder than Q2
sep – hardness is measured by kT here)

� The latter two steps guarantee that Q2
sep dependence is of NLL

I Evolution (θ) and merging (kT ) variables not the same: tricky initial

conditions, and veto must be forced

I Lack some large-angle soft radiation (should have been emitted by

internal lines early in the shower) – a subleading effect?



Accuracy in CKKW

A formal statement has been given only for jet observables in e+e−

collisions, but is believed to be correct also for hadronic observables

I The separation of the ME- and PS-dominated regions introduces a

dependence
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in the n-jet cross section

I At the end of the CKKW procedure, this is reduced to
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ie it is cancelled to NLL accuracy

Is this good enough?



Test case: W+jets −→ pT(W )

� Here Qcut ≡ Qsep

� The larger Q2
sep, the smaller the impact of high-multiplicity ME’s

� A 20% bias is acceptable, and can be used to tune to the data



Test case: W+jets −→ kT(n)

� kT (n) is the value of the resolution scale at which an n-jet

configuration becomes an (n − 1)-jet one

� The dependence on Q2
sep is of the same order as that for pT (W )

� Clear improvements wrt standard parton showers (black vs red lines)



CKKW is an interpolation procedure between a PS and the ME’s. It defines

a fremework, but there is a lot of freedom left, which can be used to reduce

unphysical biases on observables

I Clustering algorithm and momentum-recombination scheme

I Sudakov definitions

I Scale choices

I Corrections due to N < ∞ (highest-multiplicity ME)

Never forget that the Q2
sep dependence can be reduced but

not eliminated. So make sure, before embarking in
extensive physics studies, that Q2

sep is properly chosen, and
the biases are small



CKKW-like

SMPR (S. Mrenna & P. Richardson)

Apply CKKW to hadronic collisions with Pythia and Herwig

Tests several choices of scales and initial conditions

Use (among others) the same Sudakovs as in the MC

SHERPA (pre-2009)

CKKW except for use of virtuality-order shower

SHERPA (2009)

Use (CS) dipole-type shower, pT -ordered

Introduce a clustering algorithm that matches shower variables

Use the same Sudakovs as in MC

Add soft radiation where lacking



CKKW-L (Lönnblad)

Implemented in ARIADNE, thus uses dipole shower and pT ordering

Clustering is done by inverting shower evolution. This implies that

intermediate configurations are indistinguishable from shower-generated

final states (in CKKW, this is true only up to power-suppressed effects)

Use the same Sudakovs as in the MC

MLM (Mangano)

A cone algorithm is used for clustering

Shower the hard events without vetoeing. Matrix elements are not

reweighted

Reconstruct jets after shower. If the number of jet is not equal to the

number of original hard partons, throw the event away

(this corresponds to matrix element reweighting and vetoed showers)



Matching at work: before matching

MadEvent+Pythia

OK if you want to fit data, useless to have an idea of how data will look like

In other words, good at postdictions, but no predictive power



Matching at work: after matching

MadEvent+Pythia

A simple reason for this: the physics is right (no collinear approximation

used outside the collinear regions)

Is this prediction reliable?



Different matching schemes result in...
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(Alwall et al., 0706.2569)

...reasonably good agreement (10-50%). ARIADNE has the largest
differences, but this is more a consequence of lack of proper ISR description
than of matching



Comparisons to data
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Once the overall normalization is fixed (i.e., one parameter) one obtains a

very satisfactory description (which improves that of standard MCs by

orders of magnitude)

Several other successful comparisons exist (typically, for Z/W+jets) using
different codes (SHERPA, MadEvent+MCs,...)



MEC: what to take home

Substantial progress made in the past few years. Main consequence:

multi-jet backgrounds not a matter of science fiction any longer

I Never forget to check the merging systematics

I Tuning to data is strongly recommended, and anyhow necessary to

figure out the correct normalization: these are LO QCD computation!

I These procedures have been thoroughly tested for W/Z+jets. For other

processes, or peculiar observables, systematics can be (much?) larger.

Compare predictions from different codes

The use of standalone PYTHIA/HERWIG for multi-jet physics cannot be
excused any longer. That’s the stone age



Interlude: matrix elements

In order to achieve Matrix Element Corrections, one needs the

Matrix Elements...

This is not a problem: a variety of solutions exist, that cover pretty much

all needs of (a reasonable...) LHC phenomenology

−→



Matrix element generators for specific processes

Feature a pre-defined list of partonic processes, for which phase-space

sampling is optimized

Here’s a non-exahustive list of codes

� AcerMC

� ALPGEN

� GR@PPA

� VECBOS

There are substantial differences in the number of processes simulated, and

in the techniques used to compute the matrix elements!

Phase-space sampling typically optimized process-by-process, to improve
unweighting efficiency



Matrix element generators for arbitrary processes

Compute the matrix elements for any process given in input by the user

(sort of automated matrix element generator authors...)

� AMEGIC++

� CompHEP

� Grace

� HELAC-PHEGAS

� MadEvent/MadGraph

On average, the largest number of external legs is smaller than that

obtained with MEGs for specific processes. Beyond-SM capabilities are

constantly being added to these codes

Phase-space sampling (where present) cannot be optimized
process-by-process. Adaptive importance sampling techniques
are used instead



Good agreement

among codes

Capabilities will

increase with com-

puter power



How to go beyond LO?

The key issue is to go beyond the collinear approximation

=⇒ use exact matrix elements of order higher than leading

Which ones?

There are two possible choices, that lead to two vastly

different strategies:

I Matrix Element Corrections −→ tree level

I NLOwPS −→ tree level and loop

I now address the case of NLOwPS



NLOwPS

Compute all the NLO diagrams (and only those) before starting the shower.
Example: W production

. . . . . .

Problems

• Double counting (the shower can generate some of the same

diagrams)

• The diagrams are divergent

Solution

−→



Proposals for NLOwPS’s

I First working hadronic code (Z): Φ-veto (Dobbs, 2001)

I First correct general solution: MC@NLO (Frixione, Webber, 2002)

I Automated computations of ME’s: grcNLO (GRACE group, 2003)

I Absence of negative weights (Nason, 2004; Frixione, Nason, Oleari, 2007) – POWHEG

I Showers with high log accuracy in φ3
6 (Collins, Zu, 2002–2004)

I Within Soft Collinear Effective Theory (Bauer, Schwartz, 2006)

I Showers with quantum interference, colours (Nagy, Soper, 2007–2008)

I Shower and matching with QCD antennae (Giele, Kosower, Skands 2007) – VINCIA

I With analytic showers – GenEvA (Bauer, Tackmann, Thaler, 2008)

I Together with MEC in e+e− (Lavesson, Lönnblad, 2008)

Some of these ideas have passed the crucial test of implementation.
However, only two codes (MC@NLO and POWHEG) can be used to fully
simulate a variety of hadronic processes



NLOwPS vs Matrix Element Corrections

NLOwPS are vastly different from MEC. MEC lack virtual corrections

This forces the use of an unphysical cutoff δsep in MEC, upon which
physical observables depend −→ matching systematics

NLOwPS are better than MEC since:

+ There is no Q2
sep dependence (i.e., no matching systematics)

+ The computation of total rates is meaningful and reliable

NLOwPS are worse than MEC since:

− The number of hard legs is smaller

The days of the universal tools are over. Choose the one that best suits your

analysis. Typically: small/large number of extra legs =⇒ NLOwPS/MEC



Why NLO corrections

I NLOwPS’s are the only way in which K-factors can be

embedded into MC’s (rescaling is WRONG!)
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Why NLO corrections

I NLOwPS’s are the only way in which K-factors can be

embedded into MC’s (rescaling is WRONG!)

I The scale dependence of observables is meaningful

I Realistic hadronization for NLO-accurate predictions

I Allow a fully-consistent determination of PDF uncertainties

(PDF with errors are NLO fits), and of PDFs themselves

I Non-trivial dynamics beyond LO (t − t̄ asymmetry, FCR vs

FEX vs GSP in bb̄, qg → Wq, Wt ↔ tt̄ interference,

jet algorithms, ...)



MC@NLO

Compute what the MC does at the first non trivial order, and subtract

it from the matrix elements. The resulting short-distance cross sections

can be unweighted, and the hard events thus obtained are used as initial

conditions for parton showers

I One set of analytical computations per MC (presently, HW and HW++)

I Negative weights

I Strictly identical to MC in soft/collinear regions

I Strictly identical to NLO in hard emission regions;

all O(α2+b
S

) terms not logarithmically enhanced are set equal to zero



NLO and MC computations

NLO cross section (based on subtraction)
(

dσ

dO

)

subt

=

∫

dφn+1

[

δ(O − O(2 → n + 1))M(r)(φn+1)

+ δ(O − O(2 → n))
(

M(b+v+rem)(φn) −M(c.t.)(φn+1)
)

]

MC

F = F (2→n)M(b)(φn)

� Matrix elements −→ normalization, hard kinematic configurations

� δ-functions, F (2→n) ≡ showers −→ kinematic “evolution”

=⇒ How about the replacements
(

δ(O−O(2 → n)), δ(O−O(2 → n+1))
)

−→

(

F (2→n),F (2→n+1)
)

?



Construction of MC@NLO

The naive prescription doesn’t work: MC evolution results in spurious NLO terms

−→ Eliminate the spurious NLO terms “by hand”

FMC@NLO = F (2→n+1) dσ
(H)
MC@NLO + F (2→n) dσ

(S)
MC@NLO

with the two finite short-distance cross sections

dσ
(H)
MC@NLO = dφn+1

(

M(r)(φn+1) −M(MC)(φn+1)
)

dσ
(S)
MC@NLO =

∫

+1

dφn+1

(

M(b+v+rem)(φn) −M(c.t.)(φn+1) + M(MC)(φn+1)
)

that feature the MC subtraction terms

M(MC) = F (2→n)M(b) + O(α2
S
αb

S
)



POWHEG

Replace the first MC emission with one generated with a pT -ordered

Sudakov, constructed by exponentiating the full real matrix element.

Requires a truncated shower to restore the correct pattern of soft

emissions for angular-ordered showers

I Short-distance computations independent of MCs

I No negative weights

I Differs from MC in soft/collinear regions if MC is not pT -ordered. For

angular-ordered showers, agreement with MC is restored by truncated

showers (up to subleading terms)

I Differs from NLO in hard emission regions by O(α2+b
S

) terms;

no piece of information on NNLO is used



Construction of POWHEG

Start with an exact phase-space factorization dφn+1 = dφndφr, and construct

M
(b)

(φn) = M(b+v+rem)(φn) +

∫

dφr

[

M(r)(φn+1) −M(c.t.)(φn+1)
]

For a given pT , define the vetoed process-dependent Sudakov

∆R(tI , t0; pT ) = exp

[

−

∫ tI

t0

dφ′

r

M(r)

M(b)
Θ(kT (φ′

r) − pT )

]

Obtain hard configurations (to be given to shower as initial conditions) from the

short-distance cross section

dσPOWHEG = dφnM
(b)

(φn)

[

∆R(tI , t0; 0) + ∆R(tI , t0; kT (φr))
M(r)(φn+1)

M(b)(φn)
dφr

]

which includes Sudakov suppression at pT → 0

I kT (φr) will play the role of hardest emission

I The full real matrix element is exponentiated



Attaching (angular-ordered) showers

I One wants the matrix-element-generated pT to be the hardest

=⇒ veto emissions harder than pT during shower

I But this screws up colour coherence

Colour coherence can be restored at the price of a more involved structure

FPOWHEG[tI ; pT ] = ∆(tI , t0) +

∫ tI

t0

dt

t

∫

dz∆R(tI , t; pT )
αS

2π
P (z)

×FV((1 − z)2t; pT ) FV(z
2t; pT ) FVT(tI , t; pT )

I FV(t; pT ) are vetoed showers. Evolve down to t0, with all emissions

constrained to have a transverse momentum smaller than pT

I FVT(tI, t; pT ) are vetoed-truncated showers. Evolve from tI down to t

(i.e., not t0) along the hardest line. On top of that, they are vetoed



MC@NLO vs POWHEG

Shown here for lepton observables arising from top decays at the LHC

In the vast majority of cases, extremely good agreement is found

There are a few interesting cases where large differences are found



MC@NLO vs POWHEG: discrepancies

Hamilton, Richardson, Tully

HW/HW++ have dips at ∆y = 0. Likely an artifact of dead zones

MC@NLO fills that dip, via hard radiation

POWHEG fills it much more, owing to extra (spurious) O(α4
S
) terms



MC@NLO vs POWHEG: discrepancies

Alioli, Nason, Oleari, Re

POWHEG a factor ∼ 3 larger than MC@NLO≡ NLO in the tail

POWHEG result can be decreased by removing part of the real

contribution from the exponent −→

Note: MC@NLO and POWHEG use the same matrix elements



dσ(DAMP)

POWHEG
= dσPOWHEG

(

M(r) −→ M(r)
s

)

+ M
(r)
f dφndφr

with

M(r)
s = M(r)F , M

(r)
f = M(r)(1 − F )

0 ≤ F = F (φn+1) ≤ 1

F −→ 1 soft, collinear

The full real matrix element does not exponentiate in QCD. Hence, remove

the hardest part of it from the exponent, and bring it downstairs where it

belongs. Note that:

dσ(DAMP)

POWHEG
= dσPOWHEG + O(α2+b

S
)



Oleari, Reina; hardest light jet in pp → Wbb̄

I K factors: 1.9 (Tevatron), 2.74 (LHC)

I The function F is arbitrary. Here, it was specifically chosen to damp

hard radiation collinear to the b or b̄

I My opinion: F should be considered as theoretical systematics. In cases

such as Higgs or Wbb̄, it entails a reduced predictive power



MC@NLO vs POWHEG

The two approaches differ by terms of order higher than (N)LL+NLO
(ie beyond nominal accuracy). These may not be small numerically
(although they generally are)

I In MC@NLO, all O(α2+b
S

) terms and beyond not logarithmically

enhanced (ie, non-MC) are set to zero. In POWHEG, one gets terms

of this order, but not from an actual NNLO QCD calculation

Neither code contains any information on non-logarithmic terms

of O(α2+b
S

) (“NNLO”) and beyond

I In MC@NLO the MC generates all non-hard emissions. This is not the

case in POWHEG. Technically, this implies an ordering in pT ; thus,

double-log accuracy is spoiled if an MC is used that is not ordered in pT

(such as HERWIG). It can be restored by adding a “soft” shower

Soft showers are only available in HW++, but not in HW6

Small effects on inclusive variables
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Conclusions

Near-future achievements:

� Full automation of NLO computations and their matching to showers

� MEC + fully-exclusive NLO corrections in MCs

� First fully-exclusive NNLO parton-level results

Every theoretical calculation has its limitations.

It is important to understand them, in order to make an educated decision

on whether the results can be sensibly used in the context of a given

analysis, or need to be improved


