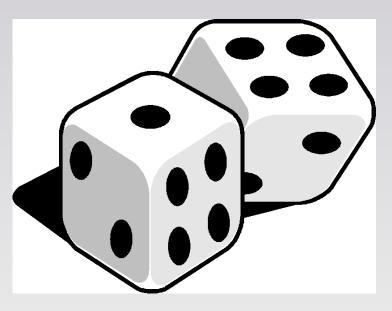


Statistics In HEP

How do we understand/interpret our measurements



- What is Probability : frequentist / Bayesian
 review PDFs and some of their properties
- Hypothesis testing
 - test statistic
 - power and size of a test
 - error types
 - Neyman-Pearson \rightarrow What is the best test statistic
 - concept of confidence level/p-value
- Maximum Likelihood fit
- strict frequentist Neyman confidence intervals
 - what "bothers" people with them
- Feldmans/Cousins confidence belts/intervals

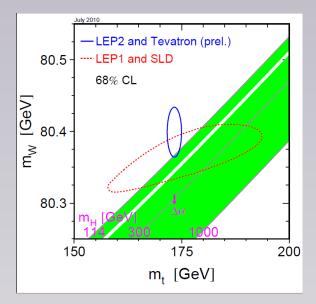
Yes, but what about systematic uncertainties?

• What do we REALLY mean by:

- m_w = 80.399+/- 0.023 ;
- M_{Higgs} < 114.4GeV/c² @95%CL

these things are results of:

- involved measurements
- many "assumptions"



correct statistical interpretation:

- most 'honest' presentation of the result
 - Junless: provide all details/assumptions that went into obtaining the results

needed to correctly "combine" with others (unless we do a fully combined analysis)

Axioms of probability: Kolmogorov (1933)

- $P(E) \geq 0$
- $\int_{U} P(E) dU = 1$
- if $A \cap B = 0$ (i.e disjoint/independent events) then $P(A \cup B) = P(A) + P(B)$

→ given those we can define e.g.: conditional probability:

$$P(A \cap B) = P(A|B)P(B) \rightarrow P(A|B) = \frac{P(A \cap B)}{P(B)}$$



What is **Probability**

- Axioms of probability: → pure "set-theory"
- a measure of how likely it is that some event will occur; a number expressing the ratio of favorable – to – all cases
 - Frequentist probability

$$P("\text{Event}") = \lim_{n \to \infty} \left(\frac{\text{#outcome is "Event}}{n - "trials"} \right)$$

2) the quality of being probable; a probable event or the most probable event (WordNet® Princeton)

- Bayesian probability:
 - P("Event"): degree of believe that "Event" is going to happen
 - fraction of possible worlds in which "Event" is going to happen....

E

Bayes' Theorem
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = P(B|A) \frac{P(B)}{P(A)}$$

This follows simply from the "conditional probabilities":

 $P(A|B)P(B) = P(A \cap B) = P(B \cap A) = P(B|A)P(A)$

P(A|B)P(B) = P(B|A)P(A)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes' Theorem $P(A|B) = \frac{P(B|A)P(A)}{P(B)} = P(B|A) \frac{P(B)}{P(A)}$

Some people like to spend hours talking about this...

B.t.w.: Nobody doubts Bayes' Theorem: discussion starts ONLY if it is used to turn

frequentist statements:

probability of the observed data given a certain model: P(Data|Model)

probability of a the model begin correct (given data): P(Model | Data)

- Certainly: both have their "right-to-exist"
 - Some "probably" reasonable and interesting questions cannot even be ASKED in a frequentist framework :
 - "How much do I trust the simulation"
 - "How likely is it that it is raining tomorrow?"
 - "How likely is it that the LHC/Tevatron will also be operated next year?"
 - after all.. the "Bayesian" answer sounds much more like what you really want to know: i.e.

"How likely is the "parameter value" to be correct/true ?"

• <u>BUT:</u>

- NO Bayesian interpretation w/o "prior probability" of the parameter
 - where do we get that from?
 - all the actual measurement can provide is "frequentist"!

Probability Distribution/Density of a Random Variable

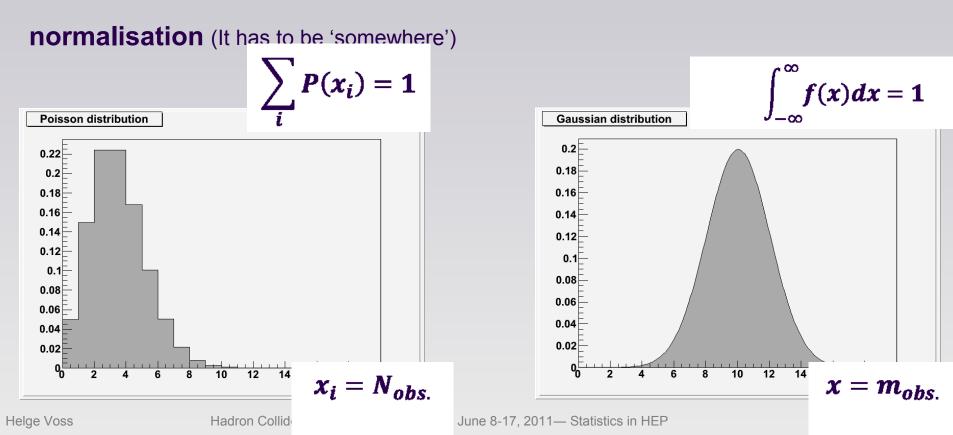
<u>random variable *x*</u> : characteristic quantity of point in sample space

discrete variables

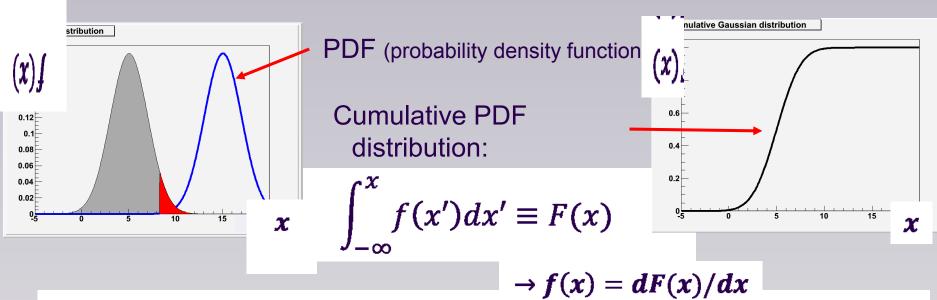
continuous variables

 $P(x \in [x, x + dx]) = f(x)dx$

$$P(x_i) = p_i$$



Cumulative Distribution



assume:

- f(x): probability distribution for some "measurement" x under the assumption of some model (parameter)
- f'(x): PDF of some alternative model (parameter)
- Imagine you measure x_{obs}
 - $1 \int_{-\infty}^{x_{obs}} f(x') dx' \equiv p value$ for observing something at least as
 - far away from what you expect
- red area: the data space where the p values are < 5%

Hadron Collider Physics Summer School June 8-17, 2011- Statistics in HEP

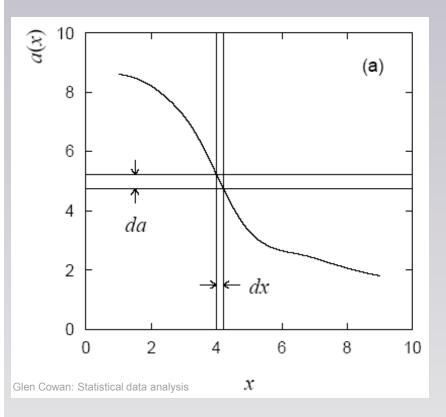
A function of a random variable is itself a random variable.

- x with PDF f(x)
- function a(x)
- PDF g(a)?

$$g(a)da = \int_{dS} f(x)dx$$

here: dS = region of x space for which
a is in [a, a+da].

- For one-variable case with unique
- inverse this is simply:

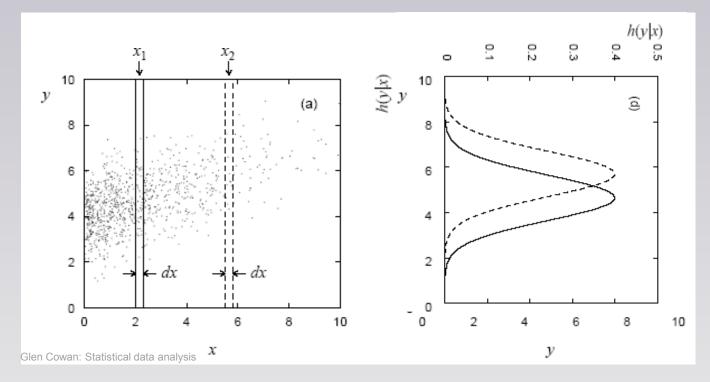


$$g(a)da = f(x)dx \rightarrow g(a) = f(x(a)) \left| \frac{dx}{da} \right|$$

Conditioning and Marginalisation

• <u>conditional probability</u>: $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{f(x, y)dxdy}{f_x(x)dx}$

↔ consider some variable in the joint PDF(x,y) as constant (given):



<u>marginalisation</u>: If you are not interested in the dependence on "x" → project onto "y" (integrate "x out")

Hypothesis Testing

a hypothesis *H* specifies some process/condition/model which might lie at the origin of the data *x*

• e.g. *H* a particular event type

- signal or background
- some NEW PHYSICS or Standard Model
- \bullet e.g. *H* a particular parameter in a diff. cross section
 - some mass / coupling strength / OP parameter

Simple (point) hypothesis

completely specified, no free parameter

→PDF: $f(x) \equiv f(x; H)$

Composite hypothesis

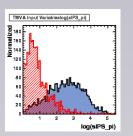
- H contains unspecified parameters (mass, systematic uncertainties, ...)
 - \rightarrow a whole band of $f(x; H(\theta))$
 - → for given x the $f(x; H(\theta))$ can be interpreted as a function of θ → Likelihood
 - $\rightarrow L(x|H(\theta))$ the probability to observe x in this model H with parameter θ

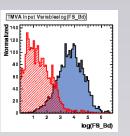
Statistical tests are most often formulated using a

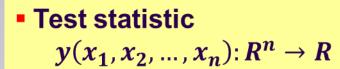
- "null"-hypothesis and its
- "alternative"-hypotheisis
- Why?
 - it is much easier to "exclude" something rather than to prove that something is true.
 - → excluding: I need only ONE detail that clearly contradicts
 - → assume you search for the "unknown" new physics.

"null"-hypothesis :Standard Model (background) only"alternative":everything else

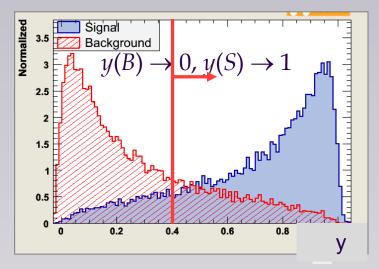
Example: event classification Signal(H_1) or Background(H_0)







- PDF(y|Signal) and PDF(y|Bkg)
- choose cut value: i.e. a region where you "reject" the null-(background-) hypothesis ("size" of the region based on signal purity or efficiency needs)

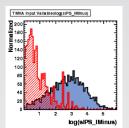


y(x):

> cut: signal

= cut: decision boundary

< cut: background</pre>



You are bound to making the wrong decision, too...

Hadron Collider Physics Summer School June 8-17, 2011- Statistics in HEP

Hypothesis Testing

Type-1 error: (false positive)

 \rightarrow accept as signal although it is background

Type-2 error: (false negative)

 \rightarrow reject as background although it is signal

Trying to select signal events:

(i.e. try to disprove the null-hypothesis stating it were "only" a background event)

accept as:	Signal	Back- ground
Signal	\odot	Type-2 error
Back- ground	Type-1 error	Ċ

Hypothesis Testing

Type-1 error: (false positive)

reject the null-hypothesis although it would have been the correct one

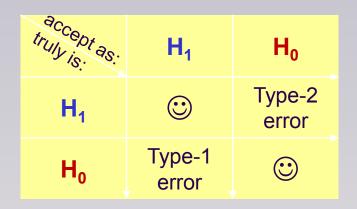
 \rightarrow accept alternative hypothesis although it is false

Type-2 error: (false negative)

fail to reject the null-hypothesis/accept null hypothesis although it is false

 \rightarrow reject alternative hypothesis although it would have been the correct/true one

Try to exclude the nullhypothesis (as being unlikely to be at the basis of the observation):



"C": "critical" region: if data fall in there \rightarrow REJECT the null-hypothesis

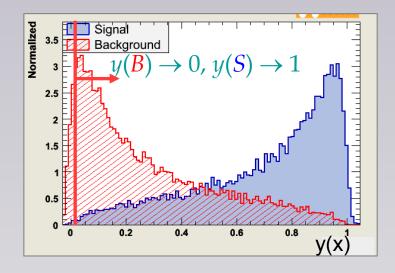
Significance α : Type-1 error rate:

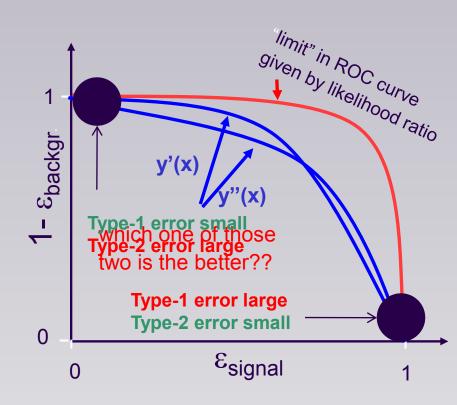
Size β : Type-2 error rate: Power: $1-\beta$

$$\alpha = \int_{C} P(x|H_0) dx$$
should be
small
$$\beta = \int_{C} P(x|H_1) dx$$
should be
small

Type 1 versus Type 2 Errors

Signal(H₁) /Background(H₀) discrimination:





Signal(H₁) /Background(H₀) :

• Type 1 error: reject H_0 although true \rightarrow background contamination

• Significance α : background sel. efficiency $1 - \alpha$: background rejection

Type 2 error: accept H₀ although false → loss of efficiency Power: 1- β signal selection efficiency

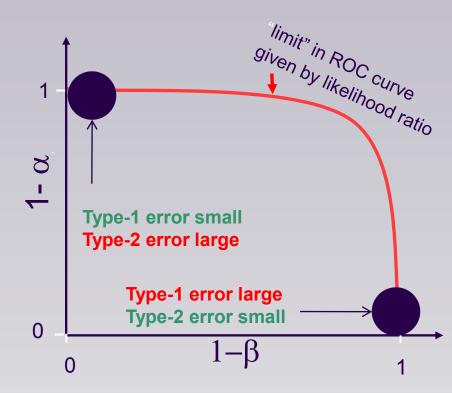
Helge Voss

Hadron Collider Physics Summer School June 8-17, 2011- Statistics in HEP

Neyman-Peason:

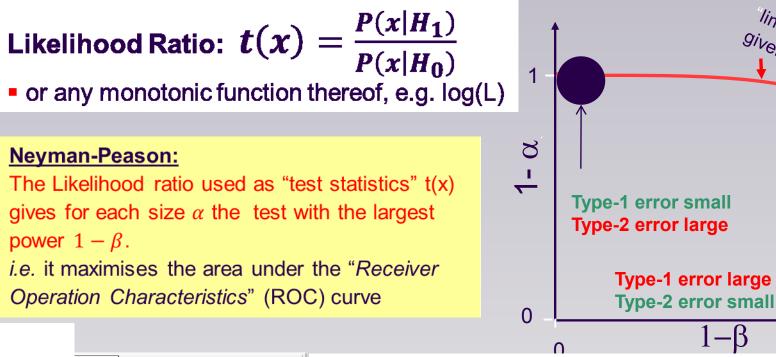
The Likelihood ratio used as "selection criterium" y(x) gives for each selection efficiency the best possible background rejection.

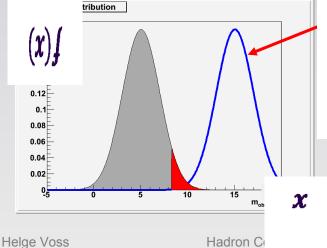
i.e. it maximises the area under the "*Receiver Operation Characteristics*" (ROC) curve



limit" in ROC curve

given by likelihood ratio





measure x

- want to discriminate model H_1 from H_0
- H_1 predicts x to be distributed acc. to $P(x|H_1)$
- H_0 predicts x to be distributed acc. to $P(x|H_1)$

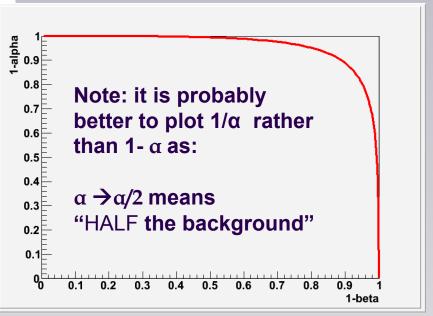
Likelihood Ratio: $t(x) = \frac{P(x|H_1)}{P(x|H_0)}$

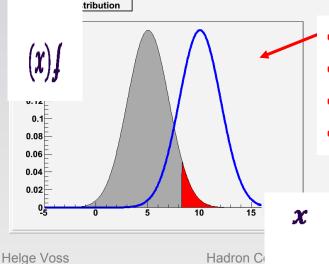
or any monotonic function thereof, e.g. log(L)

<u>Neyman-Peason:</u>

The Likelihood ratio used as "test statistics" t(x) gives for each size α the test with the largest power $1 - \beta$.

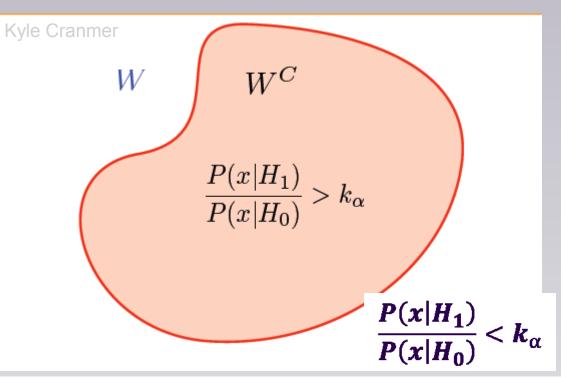
i.e. it maximises the area under the "*Receiver Operation Characteristics*" (ROC) curve





measure x

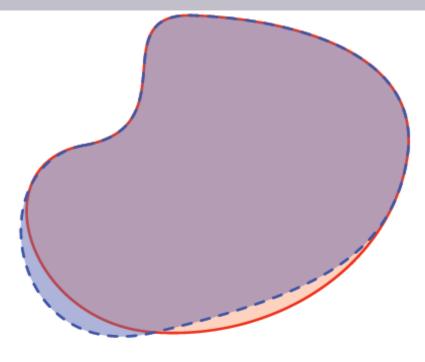
- want to discriminate model H_1 from H_0
- H_1 predicts x to be distributed acc. to $P(x|H_1)$
- H_0 predicts x to be distributed acc. to $P(x|H_1)$



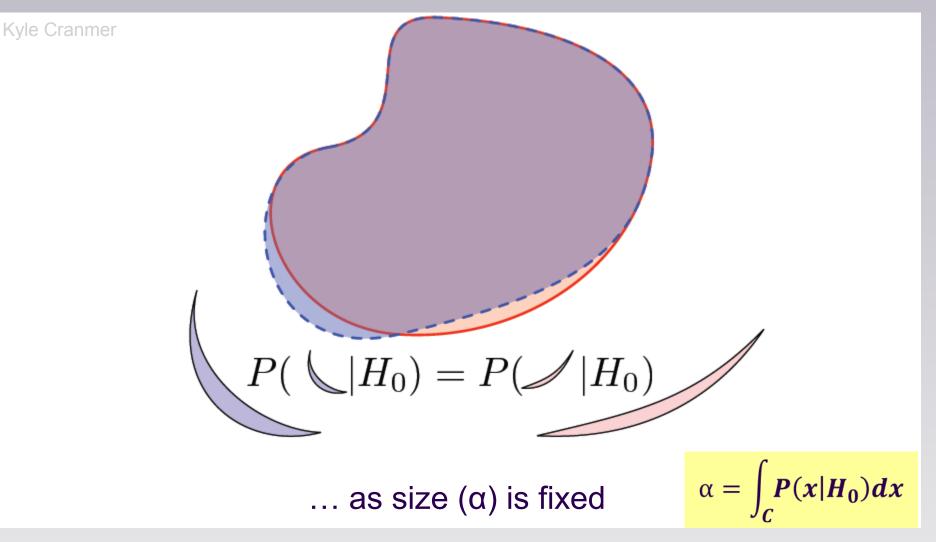
graphical proof of Neyman Pearson's Lemma: (graphics/idea taken from Kyle Cranmer)

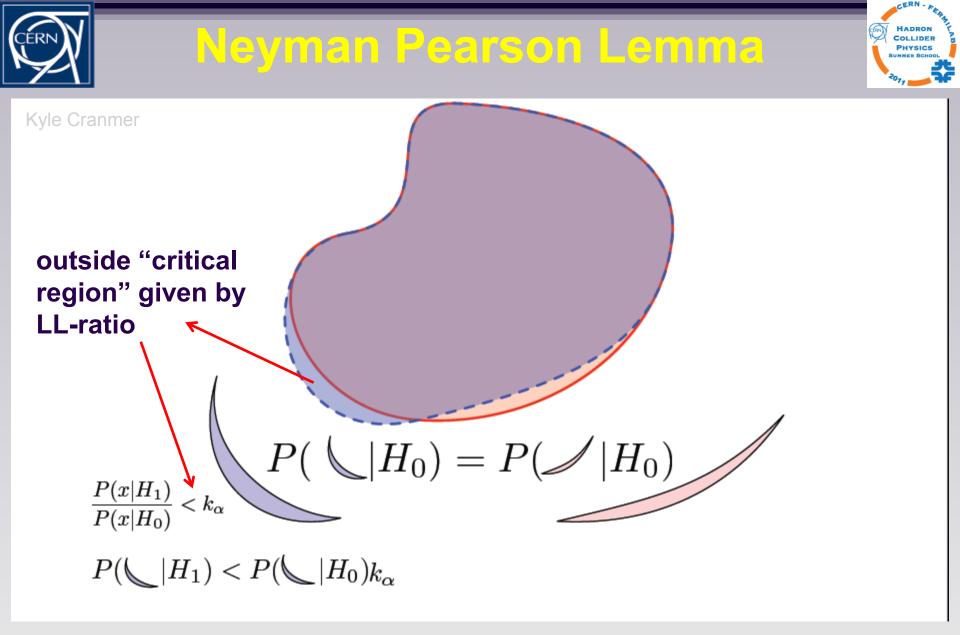
- the critical region W^C given by the likelihood ratio $\frac{P(x|H_1)}{P(x|H_0)}$
- \rightarrow for each given size α (risk of e.g. actually making a false discovery)
- = the statistical test with the largest power 1 β (chances of actually discovering something given it's there)

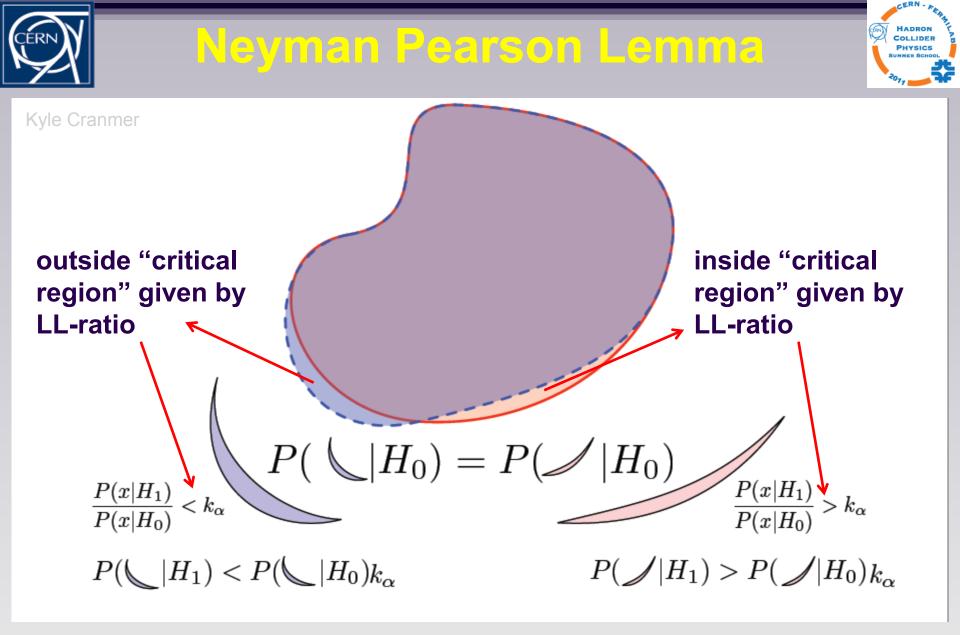
Kyle Cranmer

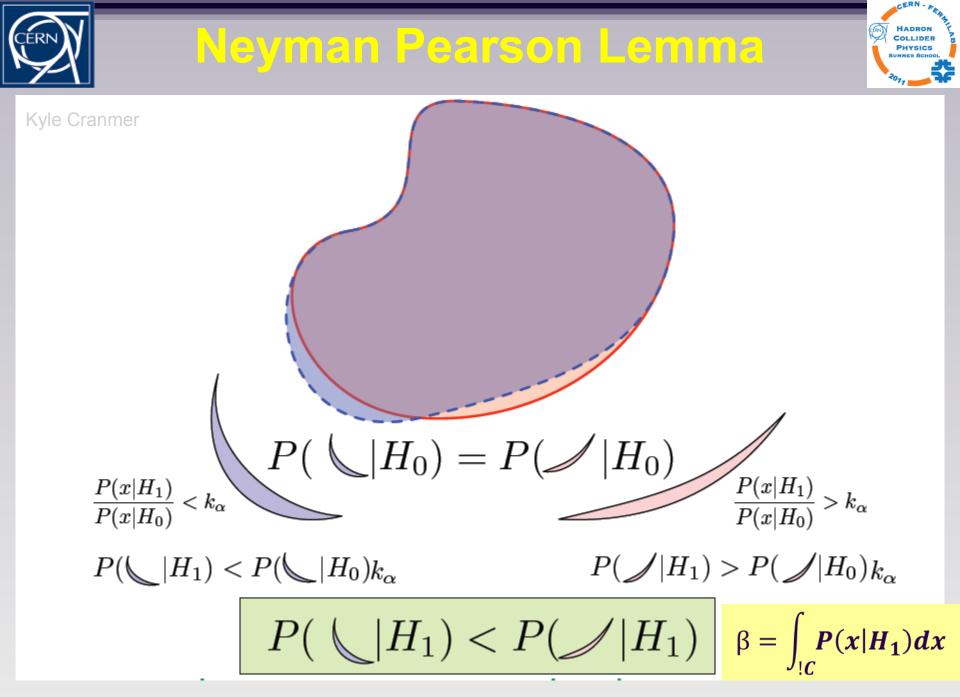


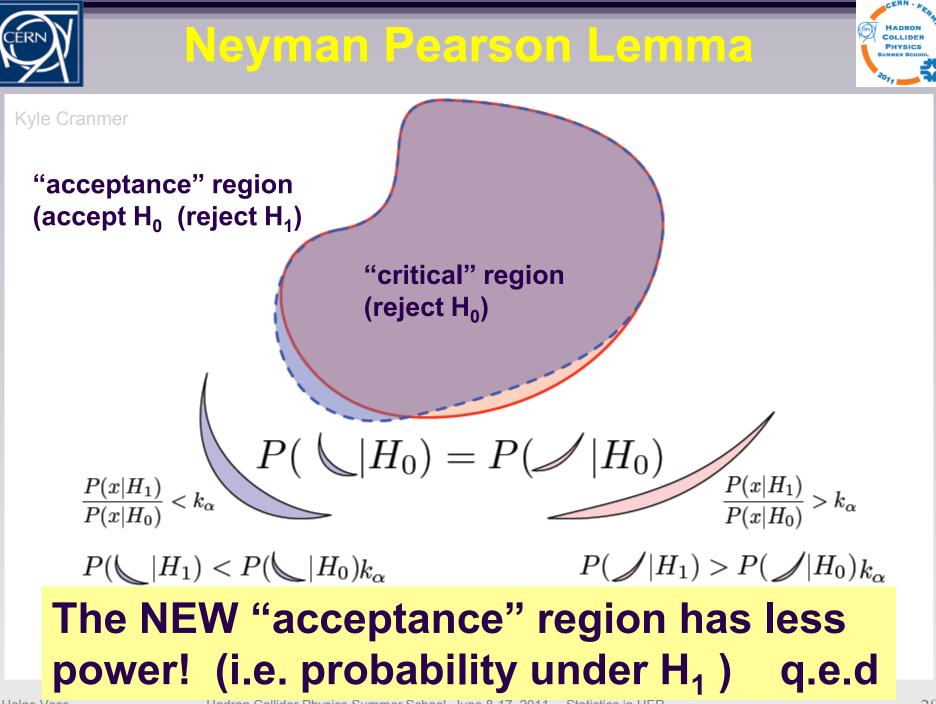
assume we want to modify/find another "critical" region with same size (α) i.e. same probability under H₀











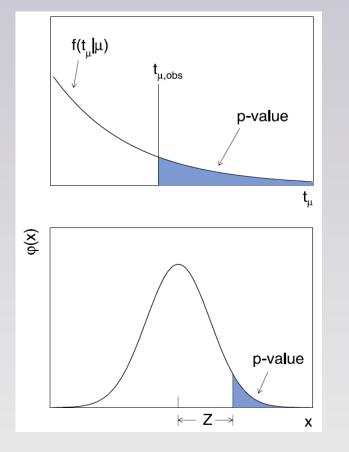
Hadron Collider Physics Summer School June 8-17, 2011- Statistics in HEP

• Unfortunatly:

- Neyman Pearsons lemma only holds for SIMPLE hypothesis (i.e. w/o free parameters)
- If H₁=H₁(θ) i.e. a "composite hypothesis" it is not even sure that there is a so called "Uniformly Most Powerful" test i.e. one that for each given size α is the most powerful (largest 1-β)
- Note: even with systematic uncertainties (as free parameters) it is not certain anymore that the Likelihood ratio is optimal

P-Value

- typical test setup: specify size α (i.e. the rate at which you tolerate "false discoveries")
- do the measurement an observe t_{obs} in your test statistic
- p-value: Probability to find data (a result) at least as much in disagreement with the hypothesis as the observed one



Note:

- p-value is property of the actual measurement
- p-value is NOT a measure of how probably the hypothesis is

translate to the common "sigma"
→ how many standard deviations "Z" for same p-value on one sided Gaussian

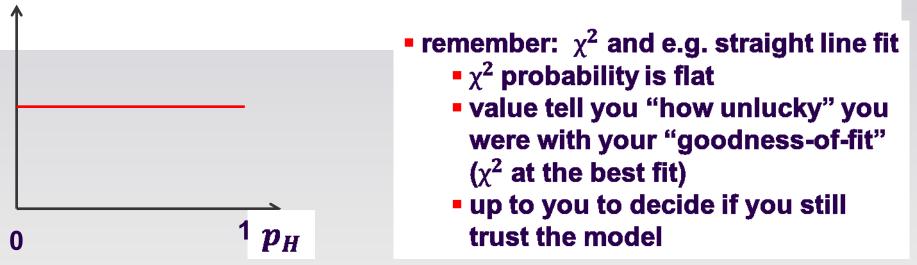
$$\rightarrow$$
 5 σ = p-value of 2.87.10⁻⁷

assume:

- t: some test statistic (the thing you measure, i.e. $t = t(x) = t(m, p_t, ...)$ or n_{events})
- f(t|H) : distribution of t (expected distribution of results that would be obtaind if we were to make many independent measuremnts/experiments)

• **p-value** : $p_H = \int_t^{\infty} f(t'|H) dt'$ (for each by pathetical measurement) • Type equation here.

\rightarrow p-values are "random variables" \rightarrow distribution



Helge Voss

Hadron Collider Physics Summer School June 8-17, 2011- Statistics in HEP

Summary

Hypothesis testing

for simple hypothesis:

- Likleihood Ration as teststatistic gives the most powerful test
 - for each given size = α (probability of "false discoveries", accidnetally rejecting H_0 (*background only*) hypothesis
 - the largest power power = 1β (chance to actually SEE the effect given it's there)

concept of confidence level / p-value

- specify you test to "reject" if outcome falls in "rejection/critical" region (typically some 95% CL or higher for discoveries)
- p-value (probability to observes s.th. even less in agreement with the (null) hypothesis as my measurement