Flavour Physics (II) Sixth CERN-Fermilab Hadron Collider Physics Summer School 8 June - 17 June 2011, Geneva, Switzerland

Tatsuya NAKADA Laboratory for High Energy Physics (LPHE) Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne, Switzerland

Plan of the lecture today

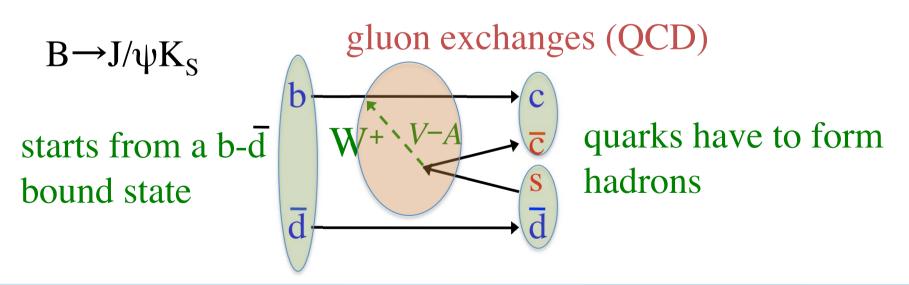
- More on Weak Decays
- Current Status of $V_{\rm CKM}$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) quark decay

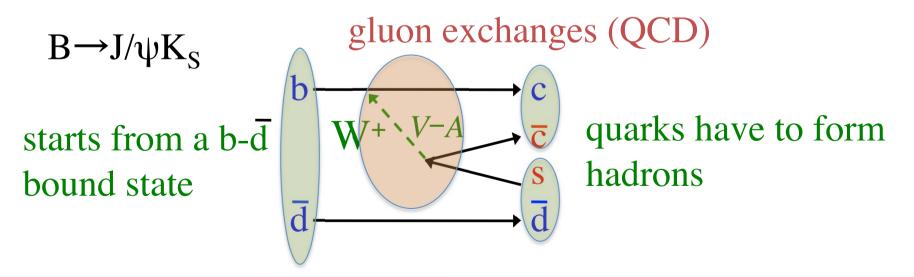
$$b \rightarrow c + W^{-}(\rightarrow \overline{c}s)$$
 $b \xrightarrow{\kappa} V^{-A} \xrightarrow{c}s$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$)

quark decay to hadron decay

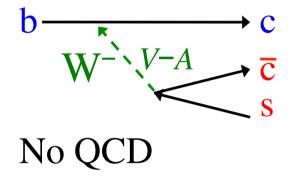


decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) Theoretical tool to describe the decay amplitude for $M \rightarrow F$ $A(M \rightarrow F) = \langle F | H_{\text{effective}}^{\text{weak decay}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i \xi_{\text{CKM}}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$ Q_i : quark operators



decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$)

lowest order weak interactions ($\Delta F = 1$)

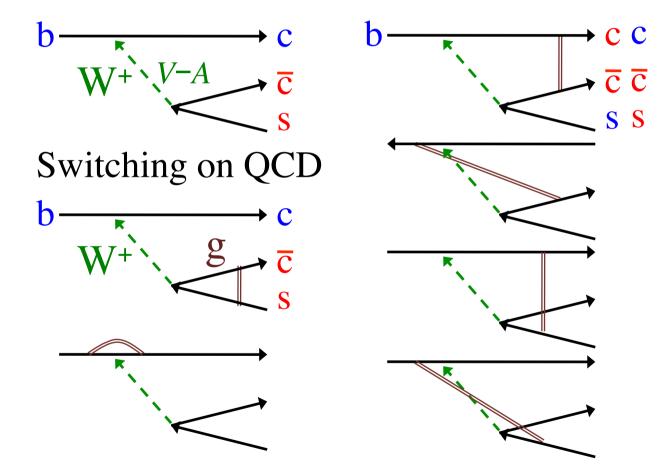


decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$)

lowest order weak interactions ($\Delta F = 1$)

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A}$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) lowest order weak interactions ($\Delta F = 1$)



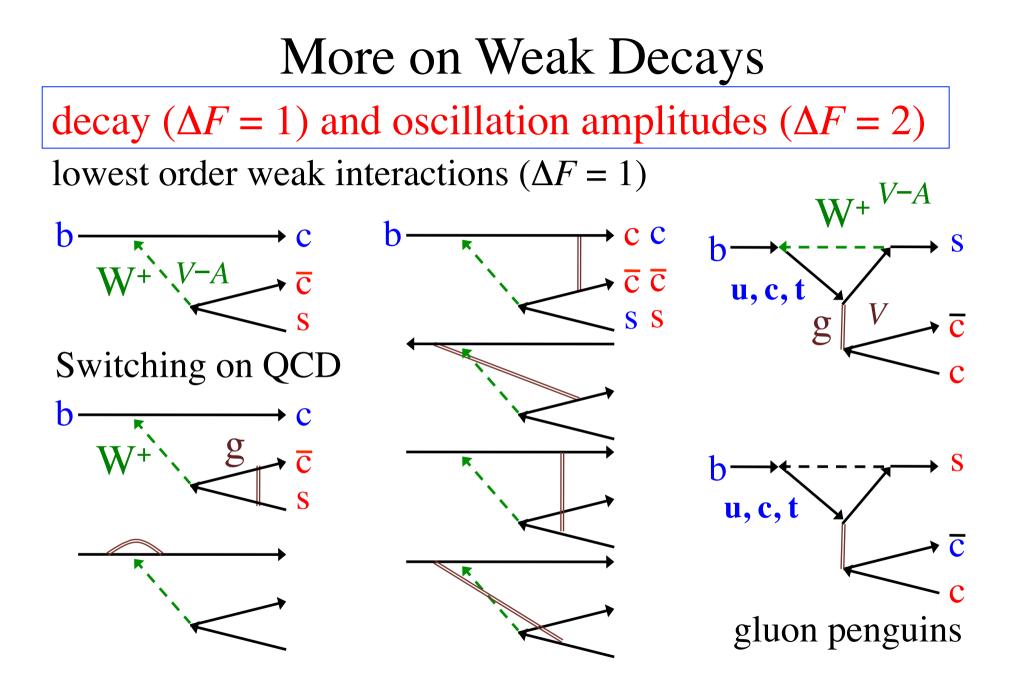
decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) lowest order weak interactions ($\Delta F = 1$)

$$(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A}$$

No-QCD tree diagram

+ one gluon tree diagrams with two different colour structures

$$(\overline{c}_{i} b_{i})_{V-A} (\overline{s}_{j} c_{j})_{V-A}$$
$$(\overline{c}_{j} b_{i})_{V-A} (\overline{s}_{i} c_{j})_{V-A}$$



decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) lowest order weak interactions ($\Delta F = 1$)

$$(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A}$$

No QCD tree diagram

+ one gluon tree diagrams with two different colour structures $(\overline{s_i} b_i)_{V-A} (\overline{c_i} c_j)_V$

 $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$ $(\overline{c}_i b_i)_{V-A} (\overline{s}_i c_j)_{V-A}$

+ gluon penguins with two different colour structure gluon = V

$$(\overline{s}_{j}b_{i})_{V-A}(\overline{c}_{i}c_{j})_{V}$$

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) lowest order weak interactions ($\Delta F = 1$)

- $(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A}$ No QCD tree diagram
- + one gluon tree diagrams with two different colour structures

 $(\overline{c}_{i} b_{i})_{V-A} (\overline{s}_{j} c_{j})_{V-A}$ $(\overline{c}_{j} b_{i})_{V-A} (\overline{s}_{i} c_{j})_{V-A}$

es
$$(\overline{s_i} b_i)_{V-A} (\overline{c_j} c_j)_{V-A}$$

+ gluon penguins with two different colour structure gluon = V \rightarrow split to (V-A) + (V+A) $(\overline{s_i} b_i)_{V-A} (\overline{c_i} c_j)_{V-A}$ (needed for the Q² evolution) $(\overline{s_i} b_i)_{V-A} (\overline{c_i} c_j)_{V+A}$

CERN-Fermilab HCP Summer School 8-17 June 2011, CERN Flavour Physics, T. Nakada

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) lowest order weak interactions ($\Delta F = 1$)

operators

 Q_5

 Q_4

 Q_6

$(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A}$ No QCD tree diagram

+ one gluon tree diagrams with two different colour structures

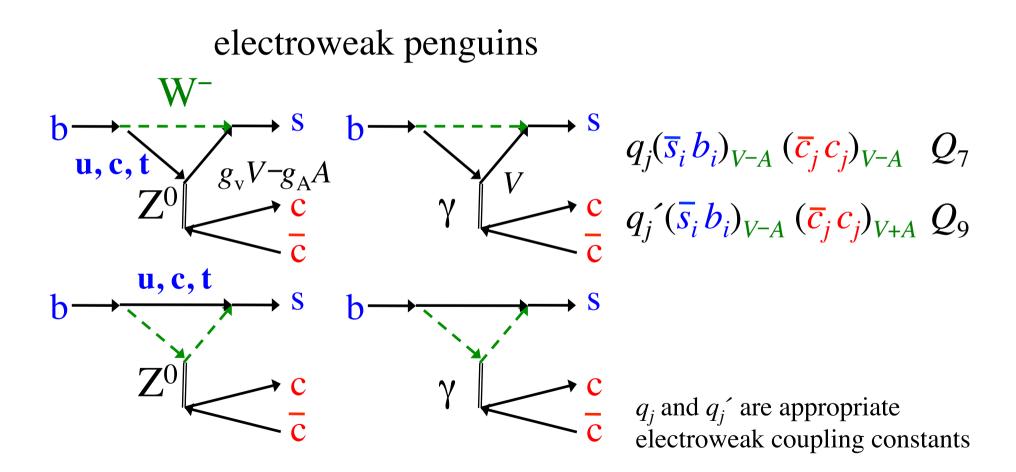
$$(\overline{c}_i b_i)_{V-A} (\overline{s}_j c_j)_{V-A} \qquad Q_2$$

$$(\overline{c}_{j} b_{i})_{V-A} (\overline{s}_{i} c_{j})_{V-A} \qquad Q_{1}$$

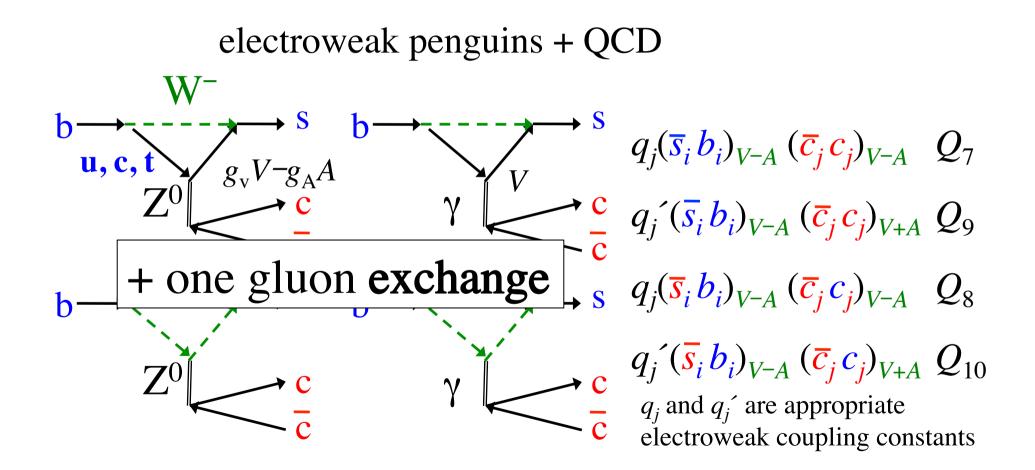
$$\lim_{i \text{ res }} (\overline{s_i} \, b_i)_{V-A} \, (\overline{c_j} \, c_j)_{V-A} \qquad Q_3$$

+ gluon penguins with two different colour structure gluon = V \rightarrow split to $(V-A) + (V+A) (\overline{s_j} b_i)_{V-A} (\overline{c_i} c_j)_{V-A}$ (needed for the Q² evolution) $(\overline{s_i} b_i)_{V-A} (\overline{c_i} c_j)_{V+A}$

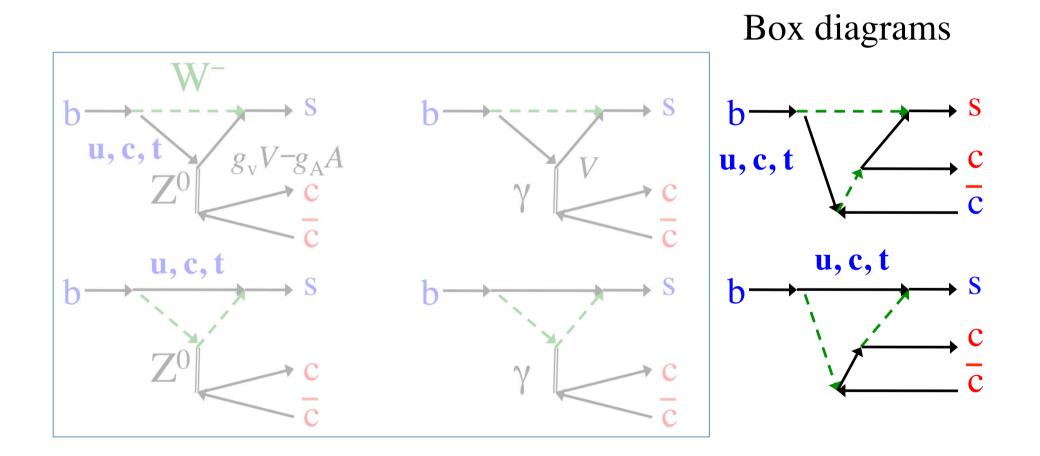
decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) the second order electroweak interactions ($\Delta F = 1$)



decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) the second order electroweak interactions ($\Delta F = 1$)



decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) also the second order electroweak interactions, $\Delta F = 2$



decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) Theoretical tool to describe the decay amplitude for M \rightarrow F $A(M \rightarrow F) = \langle F | H_{\text{effective}}^{\text{weak decay}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i \xi_{\text{CKM}}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$

 $G_{\rm F}$: Fermi constant,

- $Q_i(\mu)$: Local four-fermion operators evaluated at energy scale μ calculable in perturbation
- $C_i(\mu)$: Coupling constants for $Q_i(\mu)$ at energy scale μ i.e. Wilson coefficient, calculable in perturbation
- <*F*|*Q_i*(µ)|*M*>: Hadronic matrix element long distance effect
- ξ_i^{CKM} : Combination of the CKM elements the ultimate interest for Flavour Physics extraction of the CKM matrix, search for new physics

decay ($\Delta F = 1$) and oscillation amplitudes ($\Delta F = 2$) Theoretical tool to describe the decay amplitude for M \rightarrow F $A(M \rightarrow F) = \langle F | H_{\text{effective}}^{\text{weak decay}} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i \xi_{\text{CKM}}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$

- Comparing the full and effective theory at $\mu = m_W$ $\rightarrow C_i(\mu = m_W)$

- Scale C_i down to $\mu \approx 1$ GeV (K), m_c (D), m_b (B)

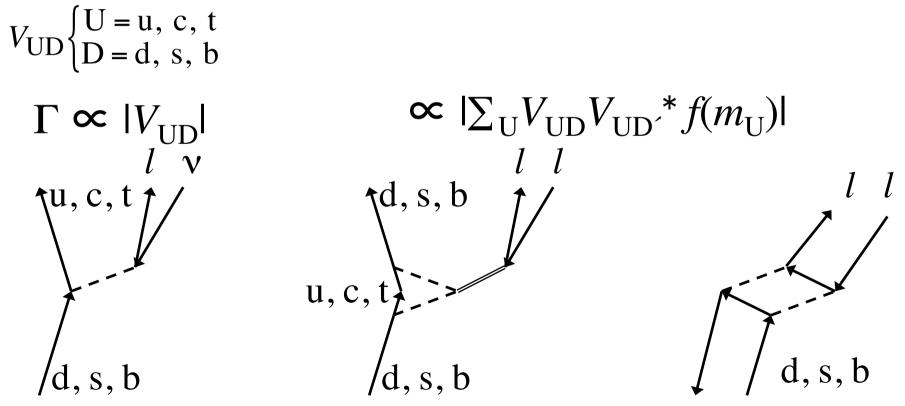
 $C_i(\mu) = U_{ij}(\mu, \mu = m_W)C_j(\mu = m_W)$ U_{ij} not diagonal \Rightarrow mixing of the operators in the evolution

 Evaluate <*F*|*Q_i*(μ)|*M*> (hadronic matrix element) with non perturbative methods at μ lattice, HQET, QCD sum rule, etc.
 major source of uncertainties

Current Status of $V_{\rm CKM}$

Can be extract from decay widths generated by the tree, penguin, and box processes

examples of semileptonic and leptonic decays



Current Status of
$$V_{\text{CKM}}$$

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

First 2×2 sub-matrix: four $|V_{ij}|$ are measured by nucleus, pion, kaon and charm hadron decays It is "almost" unitary with one single parameter $\lambda (\equiv \sin \theta_{\text{Cabibbo}}) = |V_{\text{us}}| = 0.2246 \pm 0.0012$ (PDG 2010)

$$V_{\rm CKM} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ \neg \lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

Current Status of
$$V_{\text{CKM}}$$

 $V_{\text{CKM}} \approx \begin{pmatrix} 1 & \lambda & V_{\text{ub}} \\ -\lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$

 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays

$$|V_{cb}| = \begin{cases} (41.5 \pm 0.7) \times 10^{-3} \text{ inclusive decays} \\ (38.7 \pm 1.1) \times 10^{-3} \text{ exclusive decays} \\ -\text{errors limited theoretically-} \end{cases}$$

$$2.1\sigma \text{ discrepancy}$$

$$(PDG 2010)$$

 $|V_{ub}| = \begin{cases} (4.27 \pm 0.38) \times 10^{-3} \text{ inclusive decays} \\ (3.38 \pm 0.36) \times 10^{-3} \text{ exclusive decays} \\ -\text{errors very limited theoretically-} \end{cases} 1.7\sigma \text{ discrepancy} \\ \text{(PDG 2010)} \end{cases}$

exclusives systematically smaller than exclusives...?

Current Status of
$$V_{\text{CKM}}$$

 $V_{\text{CKM}} \approx \begin{pmatrix} 1 & \lambda & V_{\text{ub}} \\ -\lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$

 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays

$$|V_{cb}| = \begin{cases} (41.5 \pm 0.7) \times 10^{-3} \text{ inclusive decays} \\ (38.7 \pm 1.1) \times 10^{-3} \text{ exclusive decays} \\ -\text{errors limited theoretically-} \end{cases}$$

$$2.1\sigma \text{ discrepancy} \\ (PDG 2010) \end{cases}$$

 $|V_{ub}| = \begin{cases} (4.27 \pm 0.38) \times 10^{-3} \text{ inclusive decays} \\ (3.38 \pm 0.36) \times 10^{-3} \text{ exclusive decays} \\ -\text{errors very limited theoretically-} \end{cases} 1.7\sigma \text{ discrepancy} \\ \text{(PDG 2010)} \end{cases}$

exclusives systematically smaller than exclusives...?

Current Status of
$$V_{\text{CKM}}$$

 $V_{\text{CKM}} \approx \begin{pmatrix} 1 & \lambda & V_{\text{ub}} \\ \neg \lambda & 1 & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$

 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention

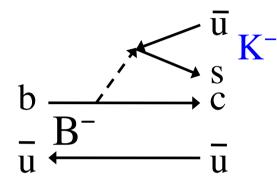
Current Status of
$$V_{\text{CKM}}$$

$$V_{\rm CKM} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in B \rightarrow DK

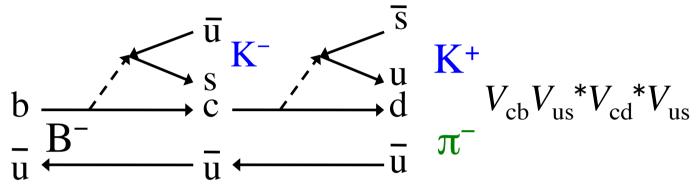
arg $V_{\rm ub}$ so called angle " γ "

two decay diagrams producing identical final states



$$V_{\rm cb}V_{\rm us}^{*}$$

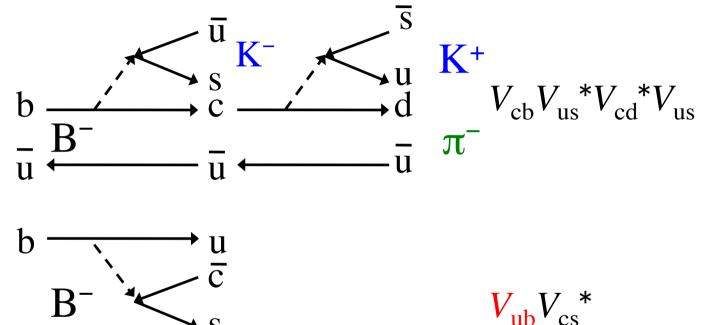
arg $V_{\rm ub}$ so called angle " γ "



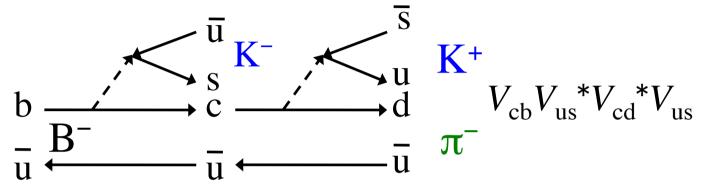
arg $V_{\rm ub}$ so called angle " γ "

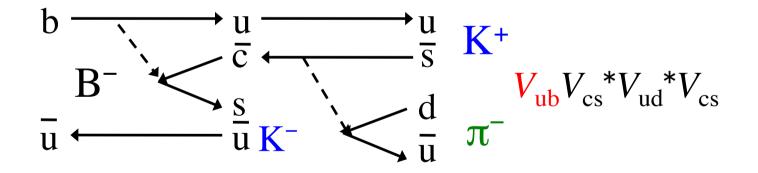
K⁻

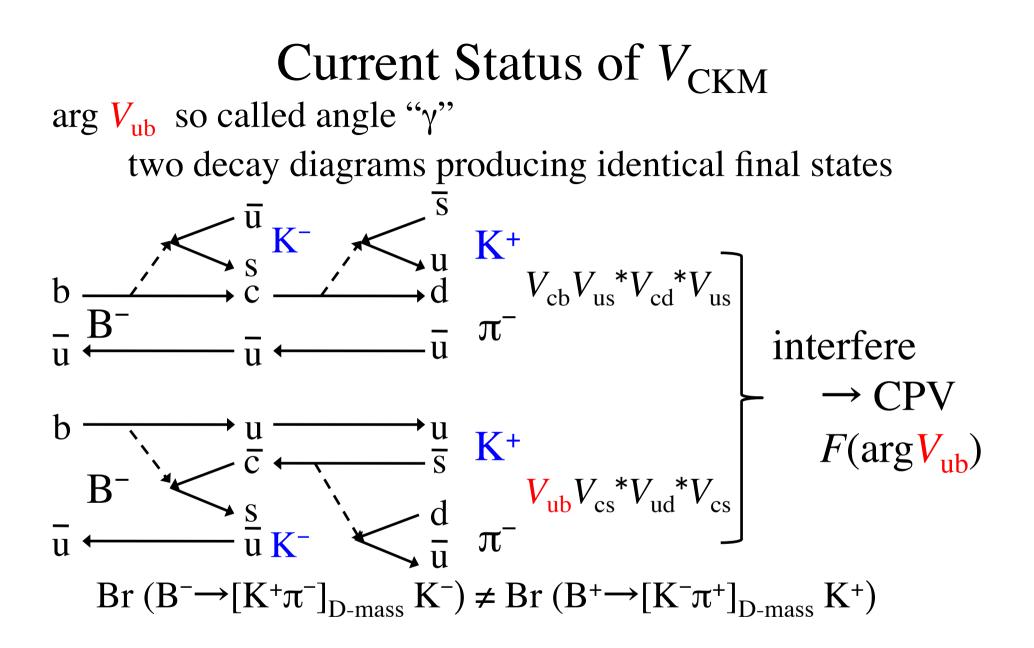
u



arg $V_{\rm ub}$ so called angle " γ "

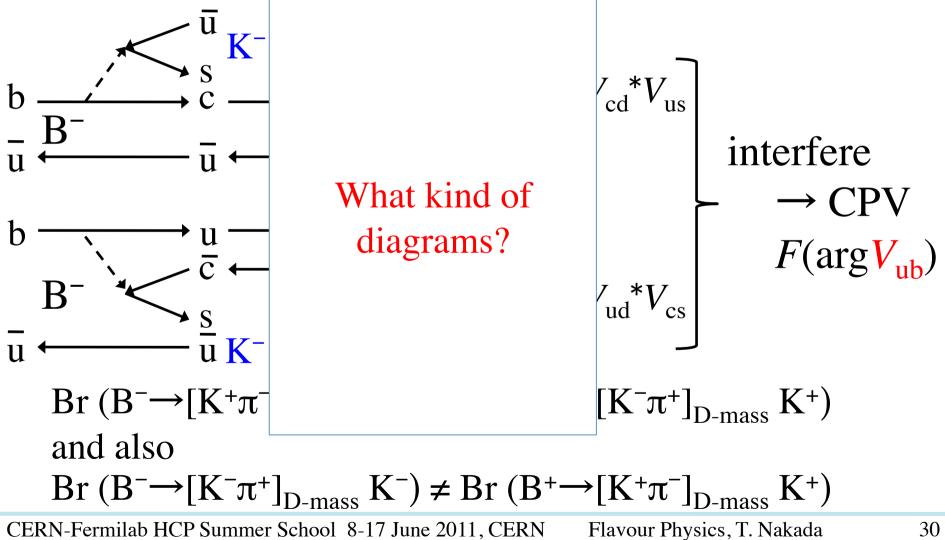


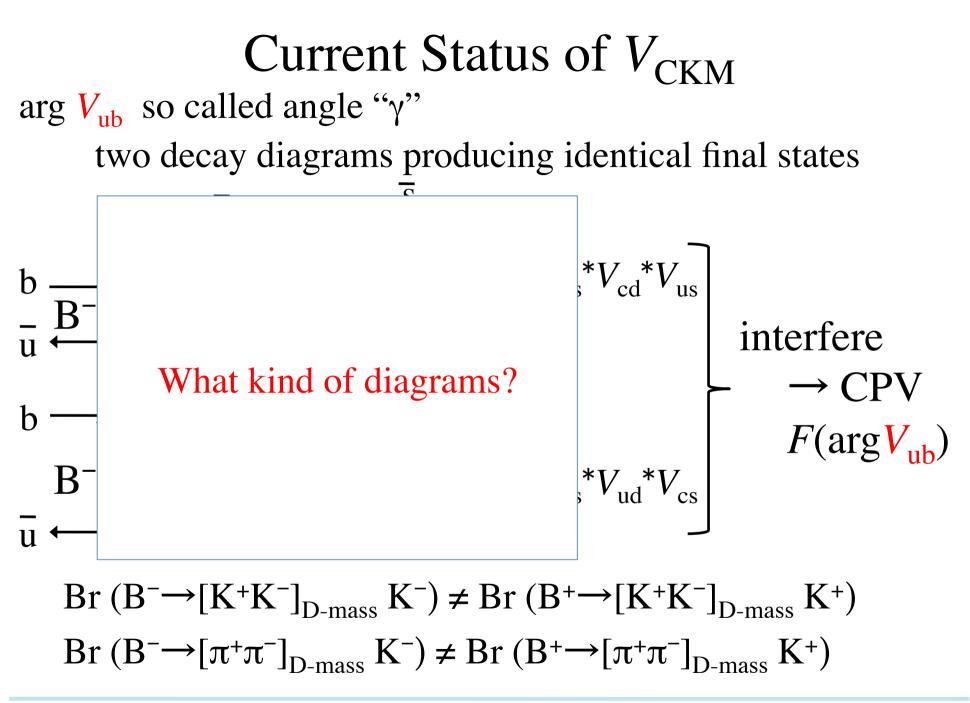


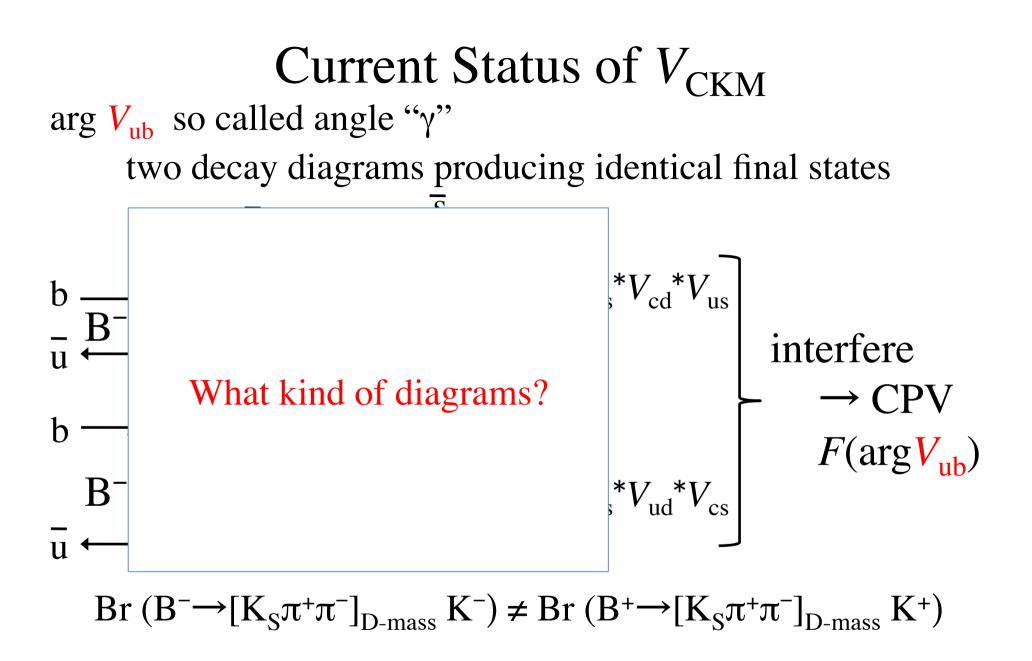


Current Status of V_{CKM}

arg $V_{\rm ub}$ so called angle " γ "







arg $V_{\rm ub}$ so called angle " γ "

two decay diagrams producing identical final states

Current average = $(73 + 22)^{-25}$)° (PDG 2010)

arg $V_{\rm ub}$ so called angle " γ "

two decay diagrams producing identical final states

Current average =
$$(73 + 22)^{\circ}$$
 (PDG 2010)

-Determined by the "tree" level amplitude interference between V_{cb} and V_{ub} no "New Physics" effect

-So far measured only by the e⁺e⁻ B factory experiments: BABAR and BELLE

-In future, hadron machine will over take this...

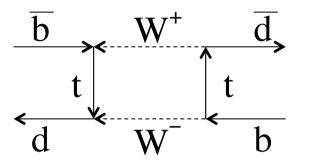
$$V_{\rm CKM} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in B \rightarrow DK $V_{tb} \approx 1$ if we assume V_{CKM} to be unitary

$$V_{\rm CKM} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

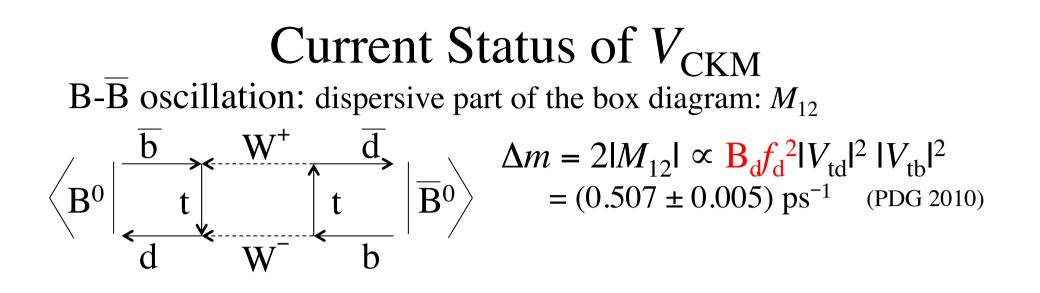
 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in $B \rightarrow DK$ $V_{tb} \approx 1$ if we assume V_{CKM} to be unitary $|V_{td}| \times |V_{tb}|$ by $B^0 - B^0$ oscillation frequency (Δm_d) $|V_{ts}| \times |V_{tb}|$ by $B_s^0 - B_s^0$ oscillation frequency (Δm_s)

B- \overline{B} oscillation: dispersive part of the box diagram: M_{12}

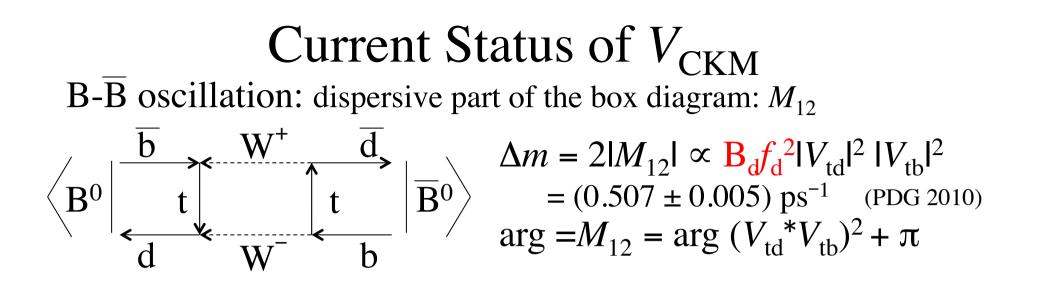


 $\begin{array}{c} \underline{d} \\ \underline{t} \\ \underline{t} \end{array} \qquad \Delta m = 2|M_{12}| \propto |V_{td}|^2 |V_{tb}|^2 \\ = (0.507 \pm 0.005) \text{ ps}^{-1} \quad (\text{PDG 2010}) \end{array}$

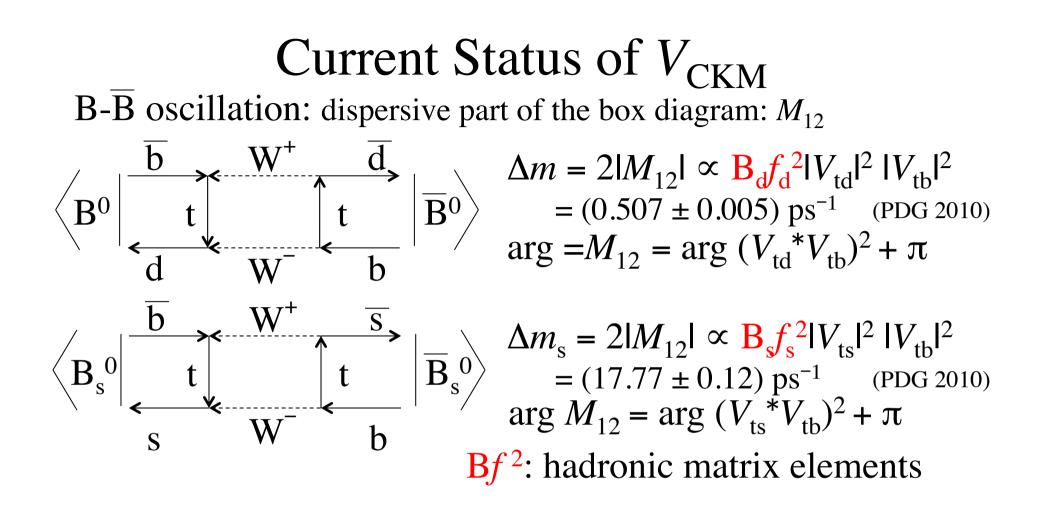
37

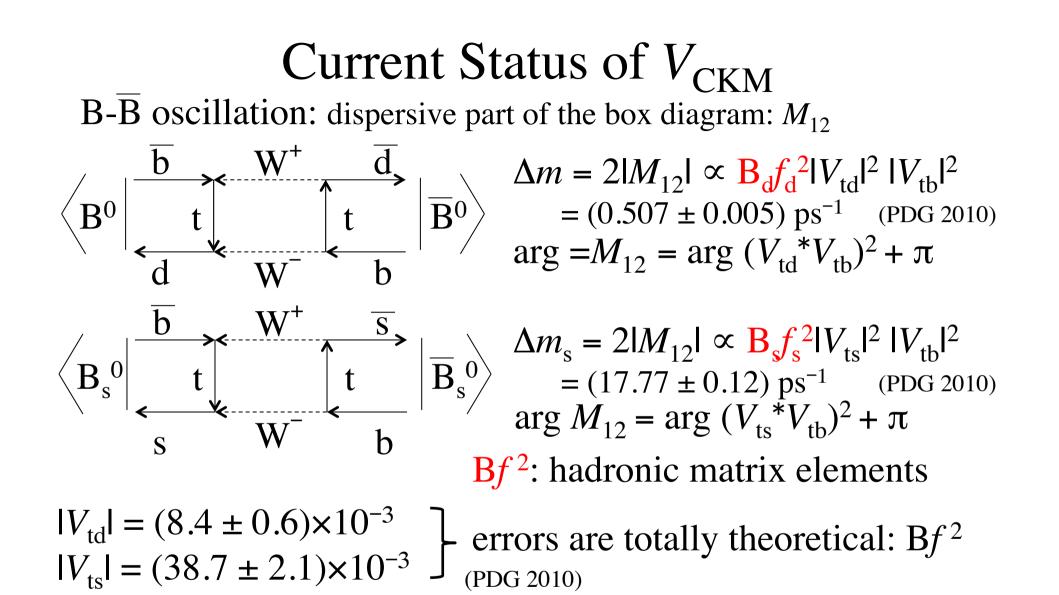


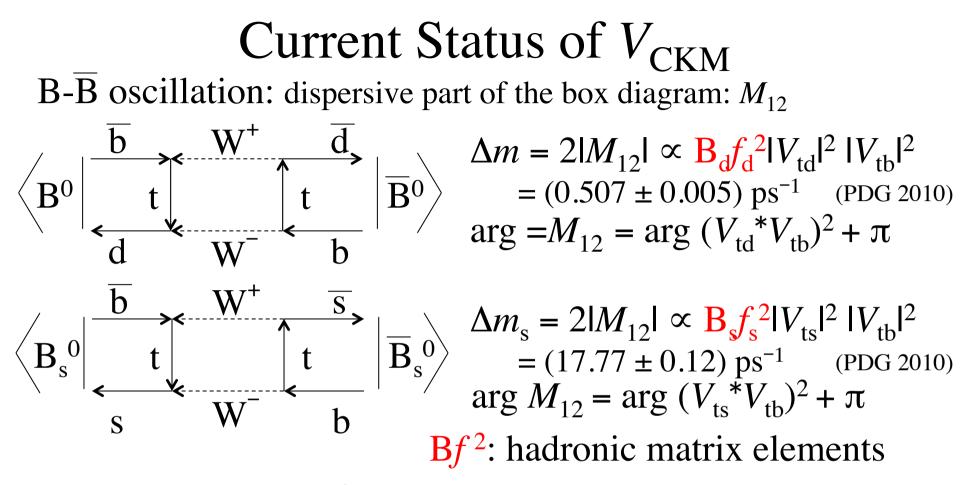
$\mathbf{B}f^2$: hadronic matrix elements



 $\mathbf{B}f^2$: hadronic matrix elements







 $\frac{|V_{td}| = (8.4 \pm 0.6) \times 10^{-3}}{|V_{ts}| = (38.7 \pm 2.1) \times 10^{-3}} = \text{errors are totally theoretical: } Bf^{2}_{(PDG\ 2010)}$ $\frac{|V_{td}|}{|V_{ts}| = 0.211 \pm 0.001 \pm 0.005} = (B_{d}f_{d}^{-2})/(B_{s}f_{s}^{-2}): \text{ smaller error}$

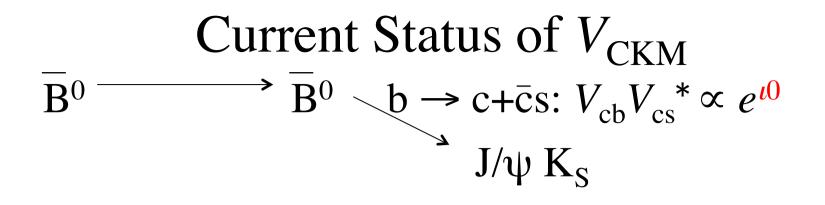
 $^{(\text{PDG 2010})}\Delta m_{\text{s}}$ measured only at the hadron machines

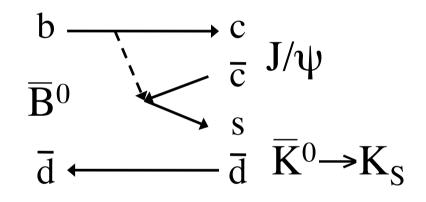
$$V_{\rm CKM} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

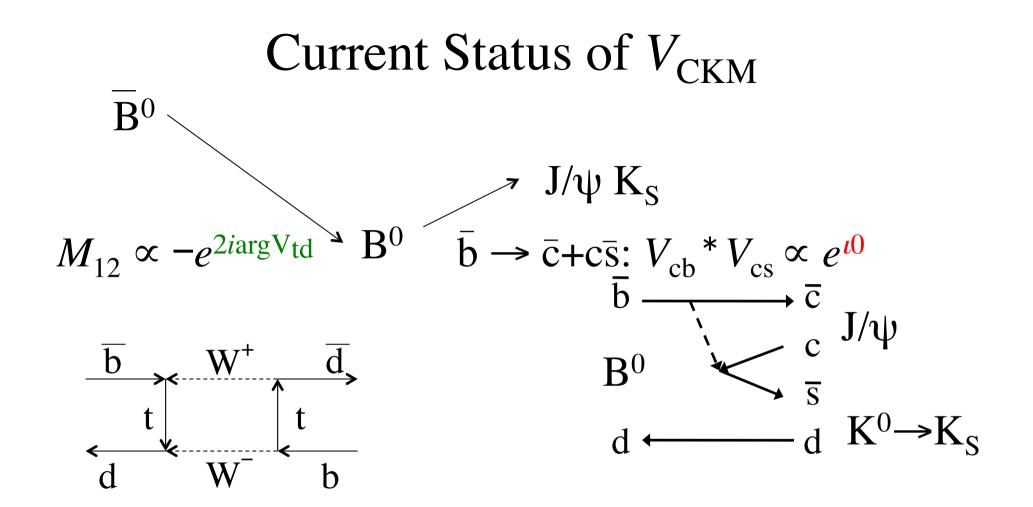
 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in $B \rightarrow DK$ $V_{tb} \approx 1$ if we assume V_{CKM} to be unitary $|V_{td}| \times |V_{tb}|$ by $B^0 - B^0$ oscillation frequency (Δm_d) $|V_{ts}| \times |V_{tb}|$ by $B_s^0 - B_s^0$ oscillation frequency (Δm_s)

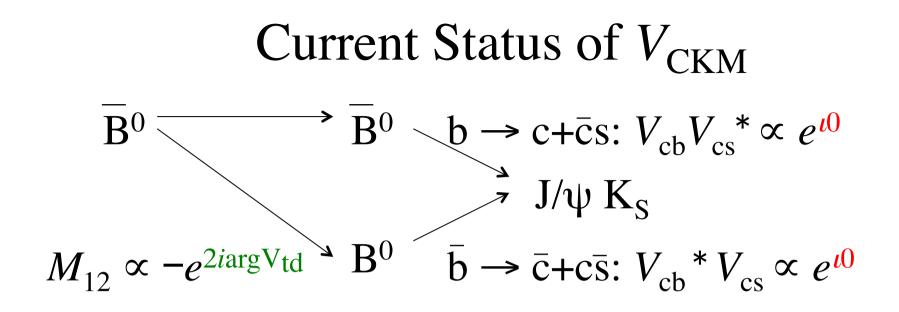
$$V_{\rm CKM} \approx \begin{pmatrix} 1 & \lambda & V_{\rm ub} \\ -\lambda & 1 & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix}$$

 $|V_{cb}|$ and $|V_{ub}|$ measured by semileptonic B_u and B_d decays arg $V_{cb} = 0$ by a phase convention arg V_{ub} by CP violation in $B \rightarrow DK$ $V_{tb} \approx 1$ if we assume V_{CKM} to be unitary $|V_{td}| \times |V_{tb}|$ by $B^0 - B^0$ oscillation frequency (Δm_d) $|V_{ts}| \times |V_{tb}|$ by $B_s^0 - B_s^0$ oscillation frequency (Δm_s) arg V_{td} by CP violation in $B_d \rightarrow J/\psi K_s$ arg V_{ts} by CP violation in $B_s \rightarrow J/\psi \phi$

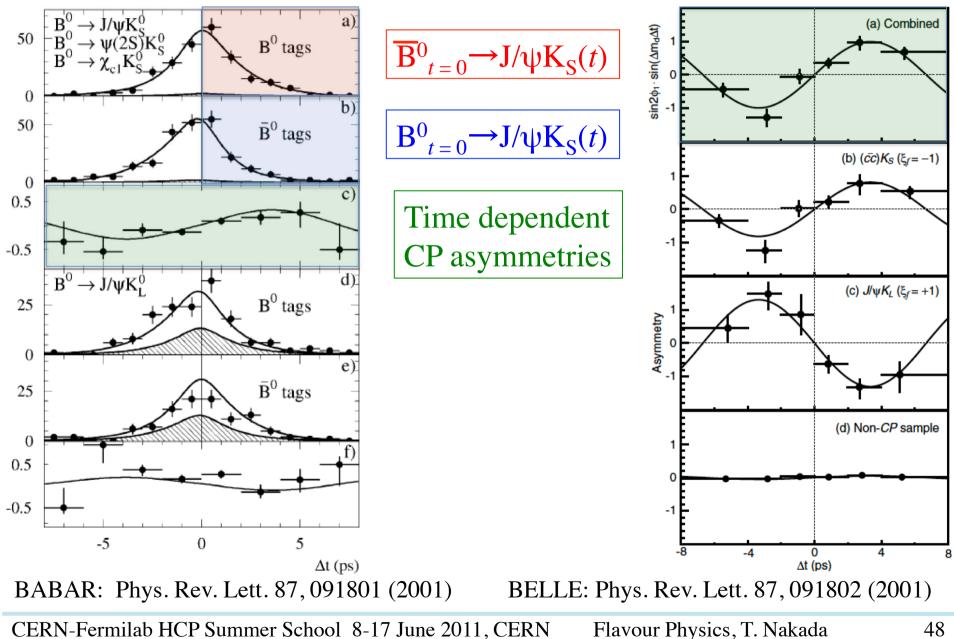


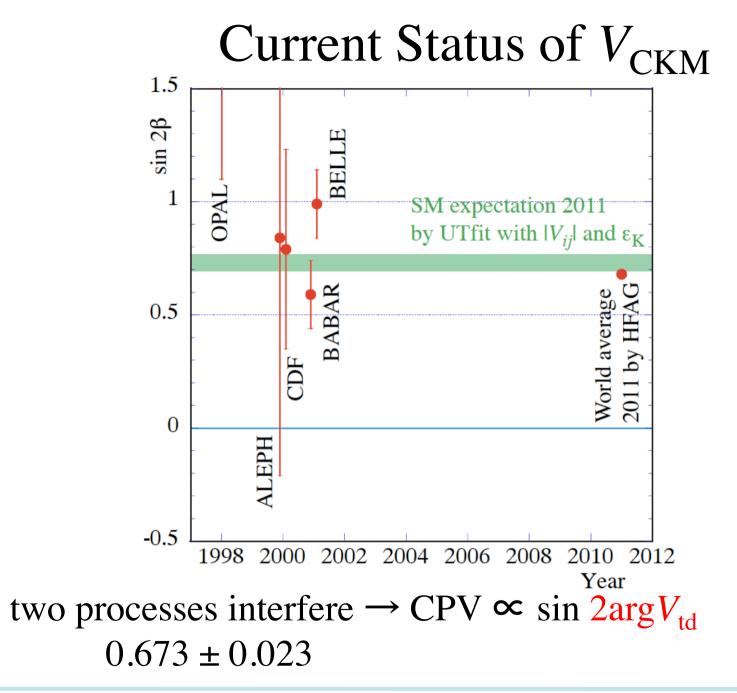


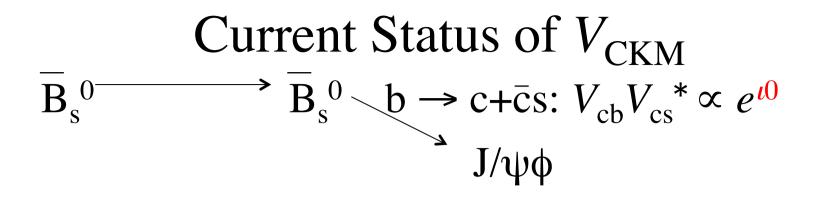


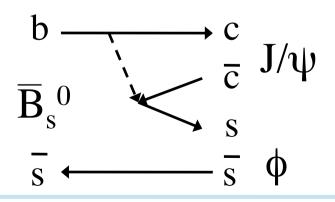


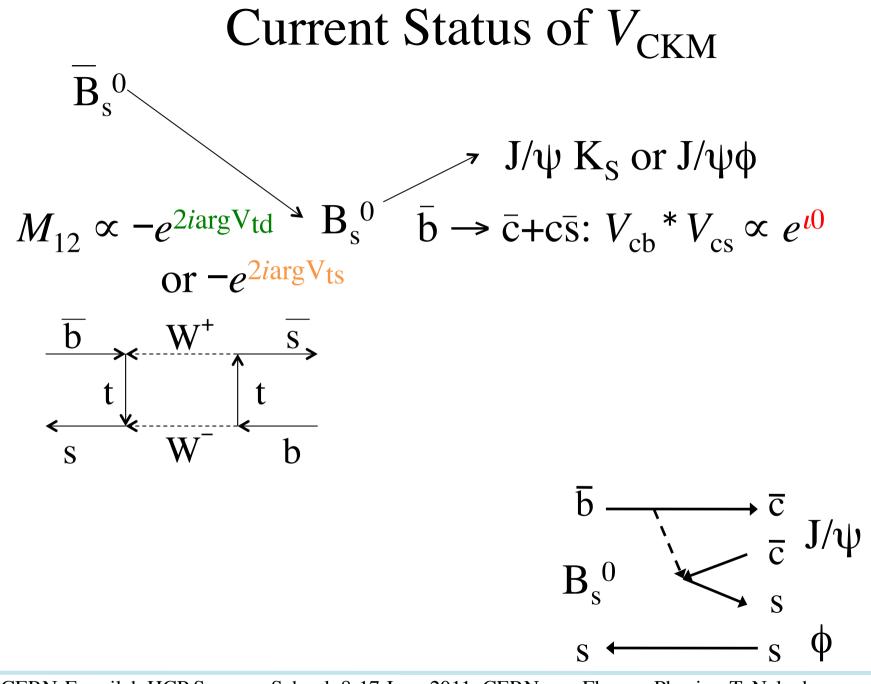
two processes interfere $\rightarrow CPV \propto \sin 2 \arg V_{td}$

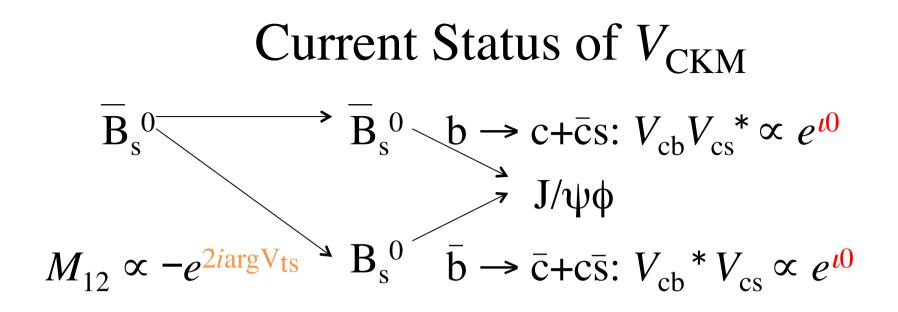




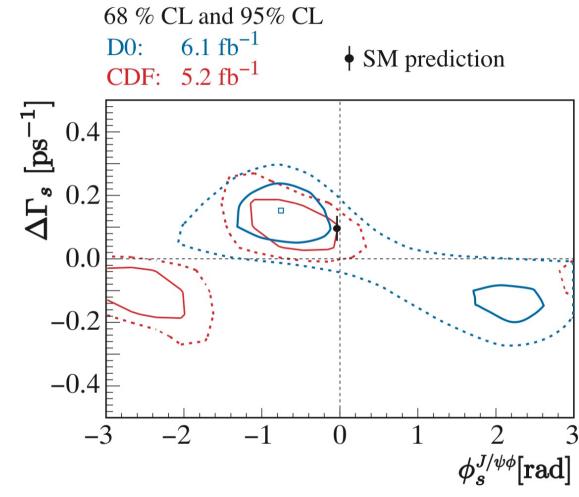




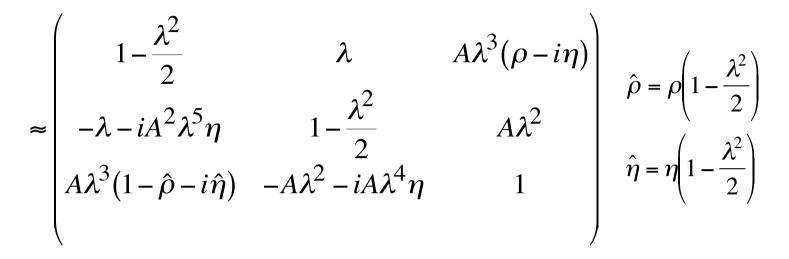




two processes interfere \rightarrow CPV $\propto \sin 2 \arg V_{ts}$ not yet well measured



two processes interfere $\rightarrow \text{CPV} \propto \sin 2 \arg V_{\text{ts}}$ not yet well measured



A from
$$|V_{cb}|$$
, ρ and η from
$$\begin{bmatrix} |V_{ub}| \text{ and arg } V_{ub} \\ |V_{tb}| \text{ and arg } V_{tb} \\ |V_{ub}| \text{ and } |V_{tb}| \\ |V_{ub}| \text{ and } |V_{tb}| \\ |V_{td}| \text{ and arg } V_{ub} \end{bmatrix}$$
many solutions i.e. consistency can be checked

• All input from B factories, except $\varepsilon_{\rm K}$ and $\Delta m_{\rm s}$



 BABAR and PEP-II completed in 2008 Belle and KEKB completed in 2010 with a total of ~1.2 ab⁻¹ data, i.e. ~1.3×10⁹ BB!
 →Looking forward to seeing many key results with full statistics data in the coming conferences.