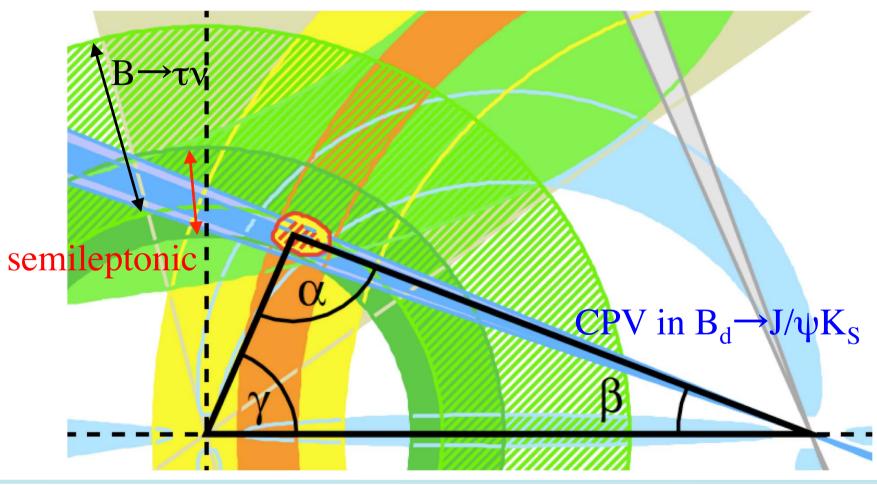
Flavour Physics (III) Sixth CERN-Fermilab Hadron Collider Physics Summer School 8 June - 17 June 2011, Geneva, Switzerland

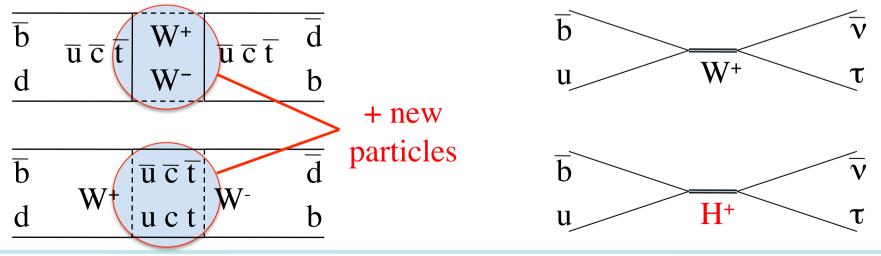
Tatsuya NAKADA Laboratory for High Energy Physics (LPHE) Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne, Switzerland



Plan of the lecture today

- Closer Look
- Flavour Physics at Hadron Machines

- If one looks closer, there exists some hint of discrepancies


 - "sin 2\beta" extracted from CPV in $B_d \rightarrow J/\psi K_S$ somewhat small $|V_{ub}|$ extracted from $B \rightarrow \tau \nu$ decays larger than $|V_{ub}|$ extracted from the semileptonic decays.

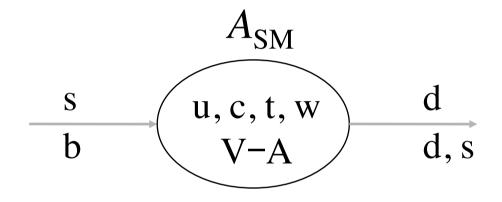
CERN-Fermilab HCP Summer School 8-17 June 2011, CERN Flavour Physics, T. Nakada

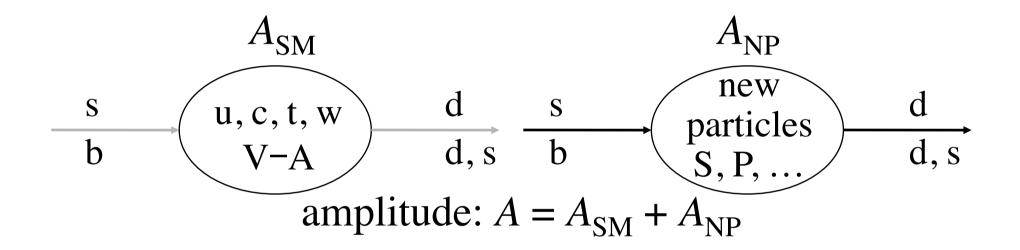
- If one looks closer, there exists hint of discrepancies...
 - "sin 2\beta" extracted from CPV in $B_d \rightarrow J/\psi K_s$ somewhat small
 - $|V_{ub}|$ extracted from $B \rightarrow \tau \nu$ decays larger than $|V_{ub}|$ extracted from the semileptonic decays.
- This could be due to
 - 1. Problem with extracting $|V_{ub}/V_{cb}|$ due to the hadronic uncertainties

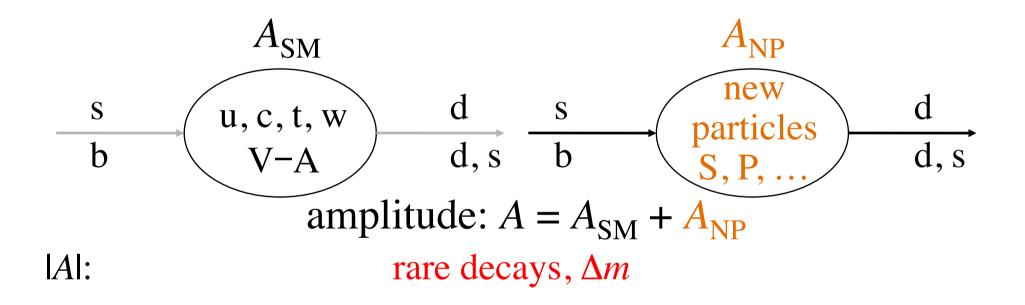
- If one looks closer, there exists hint of discrepancies...
 - "sin 2\beta" extracted from CPV in $B_d \rightarrow J/\psi K_S$ somewhat small $|V_{ub}|$ extracted from $B \rightarrow \tau v$ decays larger than $|V_{ub}|$ extracted from
 - the semileptonic decays.
- This could be due to
 - 1. Problem with extracting $|V_{ub}/V_{cb}|$ due to the hadronic uncertainties OR
 - 2. New Physics in B⁰-B⁰ oscillations and charged Higgs in $B \rightarrow \tau v$

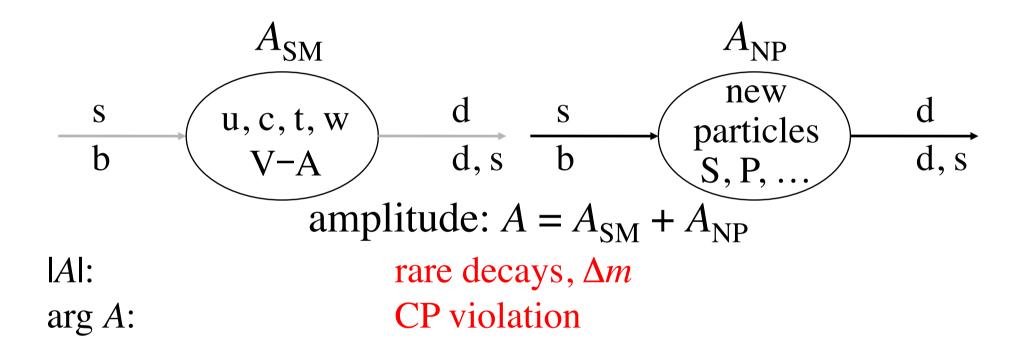
CERN-Fermilab HCP Summer School 8-17 June 2011, CERN Flavour Physics, T. Nakada

*IV*_{cb}I and *IV*_{ub}I
Errors are dominated by the theoretical uncertainties in the strong interaction for the semleptonic decays.
⇒ can be reduced by studying the decay kinematics, e.g. lepton momentum, hadronic-mass distribution, etc. with higher statistics in a clean environment

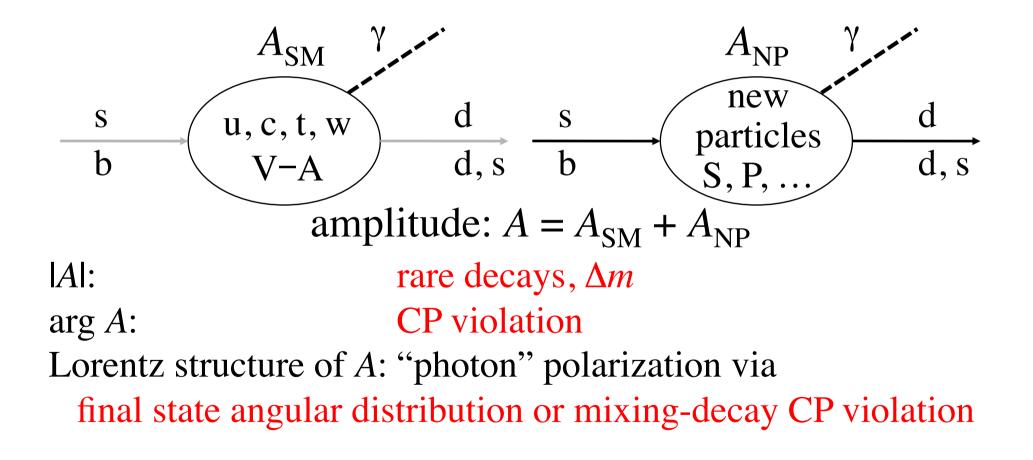

$|V_{cb}|$ and $|V_{ub}|$


Errors are dominated by the theoretical uncertainties in the strong interaction for the semleptonic decays. ⇒can be reduced by studying the decay kinematics, e.g. lepton momentum, hadronic-mass distribution, etc. with higher statistics in a clean environment


Case for Super B Factories: One B fully reconstructed, all remaining particles belong to other B!


 $|V_{ub}|$ from $B^{\pm} \rightarrow \tau^{\pm} \nu$ error still statistics limited. Another case Super B Factories

But there are more...



In general, new physics can enter in the loop diagrams as virtual states

12

- Current experimental limits on new physics are still very large, up to O(10) or more above the SM values:
 - $B_s \rightarrow \mu^+ \mu^-$
 - CPV in $B_s \rightarrow J/\psi \phi$
 - Lorentz structure in b→s radiative decays, $B^0 \rightarrow K^{*0}\mu^+\mu^-$, CPV in $B \rightarrow \phi\gamma$, etc.
 - CP violation in D system

- Current experimental limits on new physics are still very large, up to O(10) or more above the SM values:
 - $B_s \rightarrow \mu^+ \mu^-$
 - CPV in $B_s \rightarrow J/\psi \phi$
 - Lorentz structure in b→s radiative decays, $B^0 \rightarrow K^{*0}\mu^+\mu^-$, CPV in $B \rightarrow \phi\gamma$, etc.
 - CP violation in D system
- Comparison of (ρ, η) determined from the tree processes, i.e. $|V_{ub}|$ and γ (B \rightarrow DK), and (ρ, η) from the loop processes, i.e. $\varepsilon_{\rm K}$, β , and $|V_{td}|$.


Those measurements can be done at LHC, in particular with LHCb!

• fixed target contribution to B had been marginal: i.e. σ_{bb}

- fixed target contribution to B had been marginal: i.e. σ_{bb}
- Tevatron showed its potential already during Run I, thanks to large σ_{bb}

 $J/\psi K^{\pm}$

 $[GeV/c^2]$

- fixed target contribution to B had been marginal: i.e. σ_{bb}
- Tevatron showed its potential already during Run I, thanks to large $\sigma_{\rm bb}$ CDF, PRL 68 (1992) 3403 12 (2.6 pb^{-1})

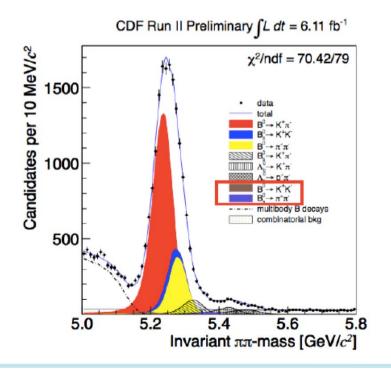
10 8 largest number of reconstructed $B^{\pm} \rightarrow J/\psi K^{\pm}$ at that time

2 5.3 5.4 5.5 $J/\psi K^{\pm}$ [GeV/c²] • But significant contributions are during Run II: due to improved L, good vertex detectors, and trigger (DCF): b-baryon spectroscopy, lifetimes, $B_s - \overline{B}_s$ oscillation (Δm_s), and \mathcal{P} in $B \rightarrow J/\psi \phi$, \mathcal{P} in $B_s - \overline{B}_s$ oscillations, $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, $B_s \rightarrow \mu^+ \mu^-$, and D physics...

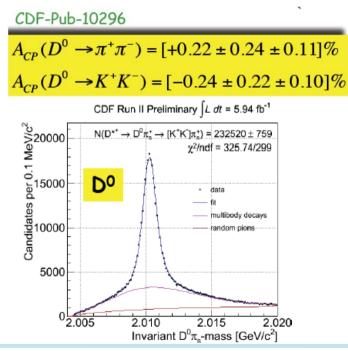
5.1

5.2

5.4 5.5


5.6

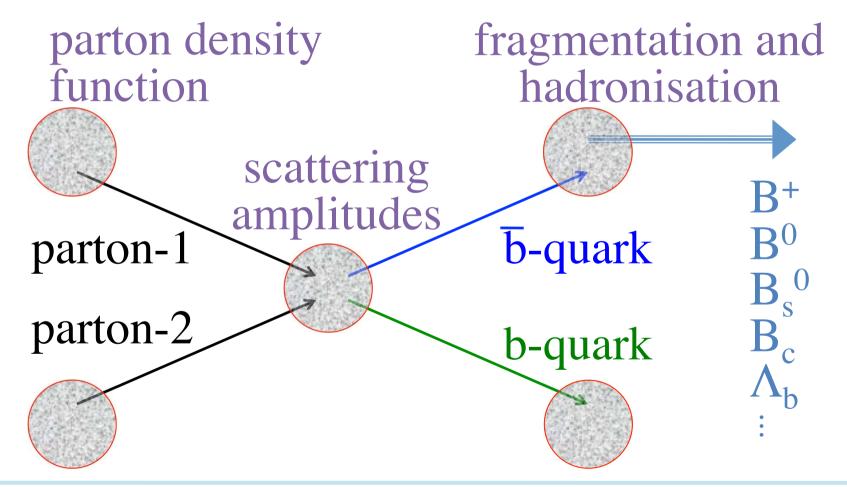
2


0

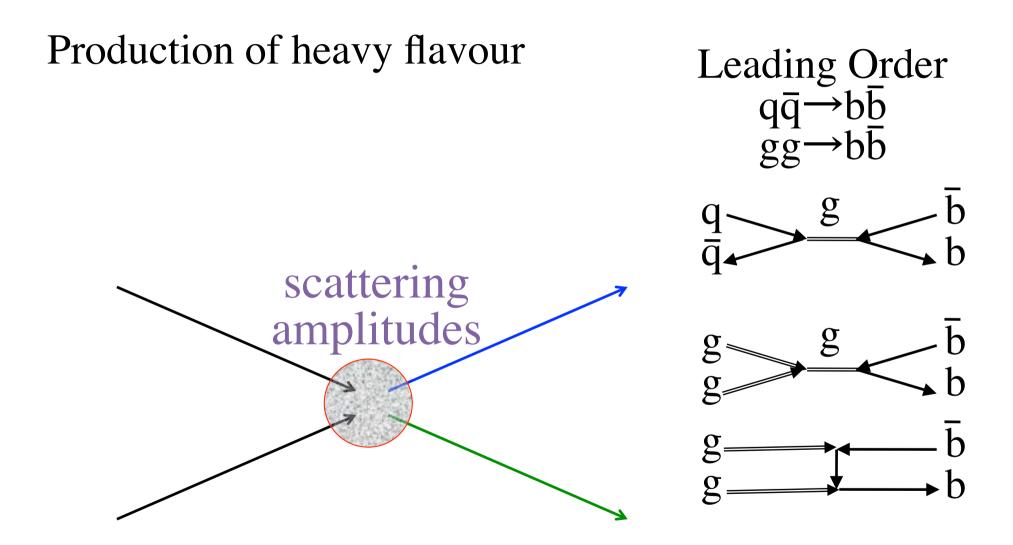
5

- CDF and D0 demonstrated that
 - Exclusive b-hadron decay modes (with charged particles, including semileptonic decays) can be well reconstructed
 b-baryon and B_s: very unique and B_s oscillation can be resolved
 B_d: for some decay modes as good as B factories or even better

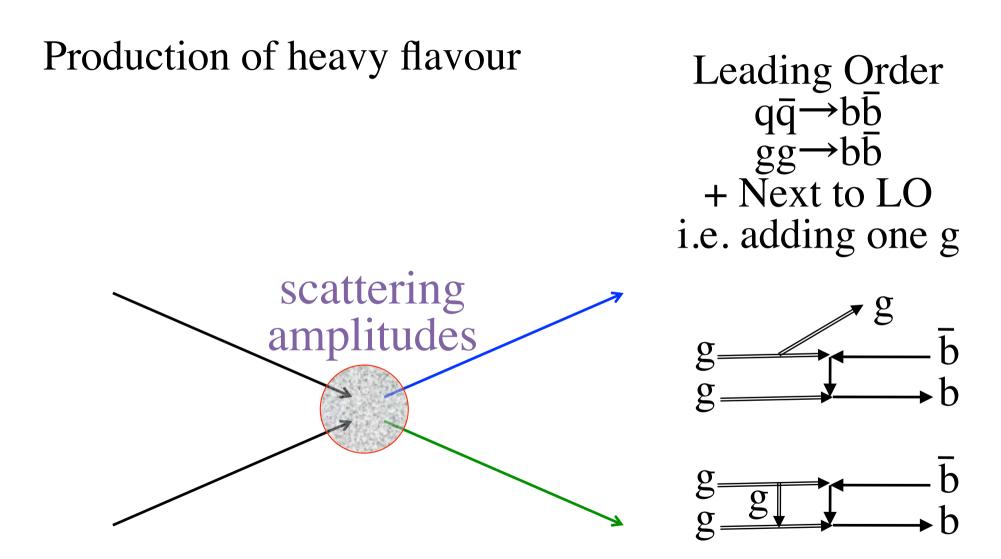
- CDF and D0 demonstrated that
 - Exclusive b-hadron decay modes (with charged particles, including semileptonic decays) can be well reconstructed
 b-baryon and B_s: very unique and B_s oscillation can be resolved
 B_d: for some decay modes as good as B factories or even better
 - Oscillations and CPV study in D system can be done even better than B factories

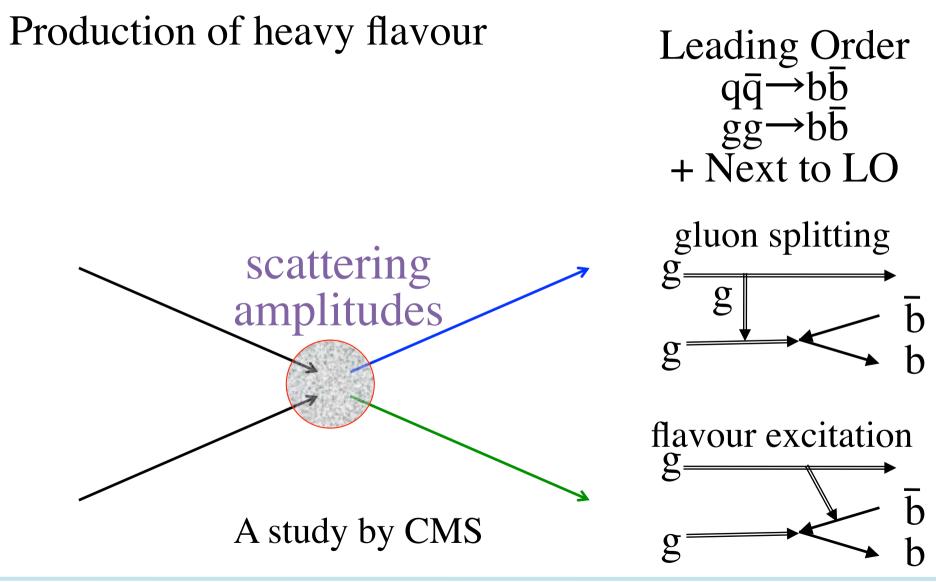


19

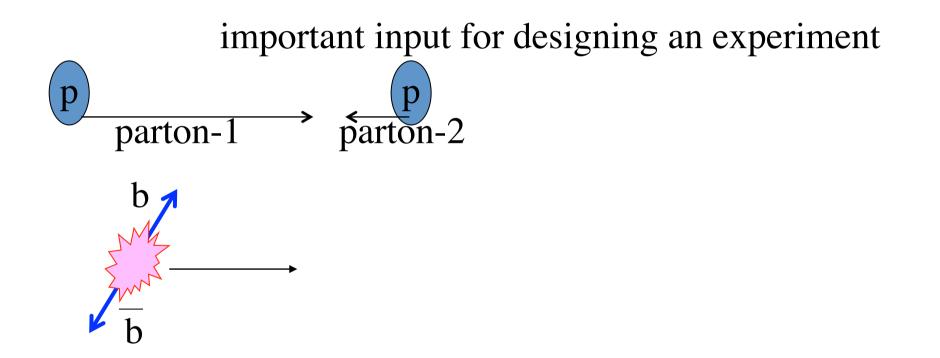

- CDF and D0 demonstrated that
 - Exclusive b-hadron decay modes (with charged particles, including semileptonic decays) can be well reconstructed
 b-baryon and B_s: very unique and B_s oscillation can be resolved
 B_d: for some decay modes as well as B factories or even better
 - Oscillation and CPV study in D system can be done even better than B factories
- CDF and D0 will stop data taking this year with ~10 fb⁻¹/experiment. More results will come with improved sensitivities, but most probably not enough to unambiguously establish new effect

- CDF and D0 demonstrated that
 - Exclusive b-hadron decay modes (with charged particles, including semileptonic decays) can be well reconstructed
 b-baryon and B_s: very unique and B_s oscillation can be resolved
 B_d: for some decay modes as well as B factories or even better
 - Oscillation and CPV study in D system can be done even better than B factories
- CDF and D0 will stop data taking this year with ~10 fb⁻¹/experiment. More results will come with improved sensitivities, but most probably not enough to unambiguously establish new effect
- But, LHC has started with an experiment dedicated for flavour physics, LHCb.

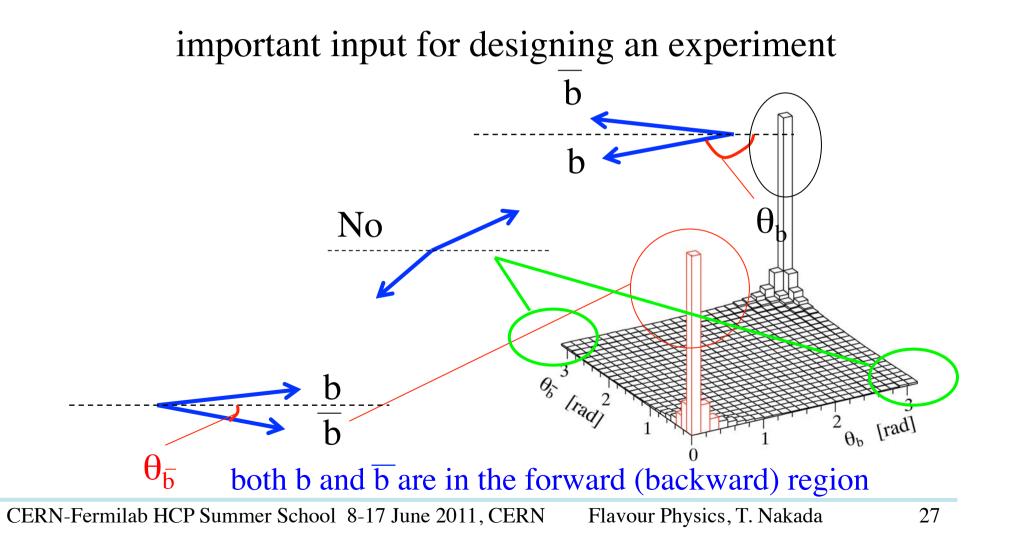

Production of heavy flavour


CERN-Fermilab HCP Summer School 8-17 June 2011, CERN Flavour Physics, T. Nakada

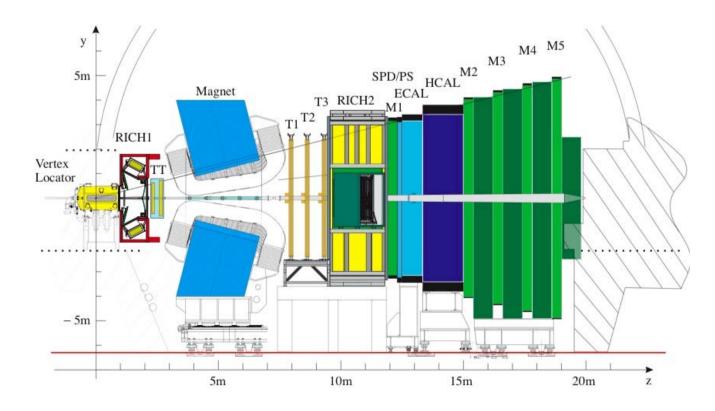
23



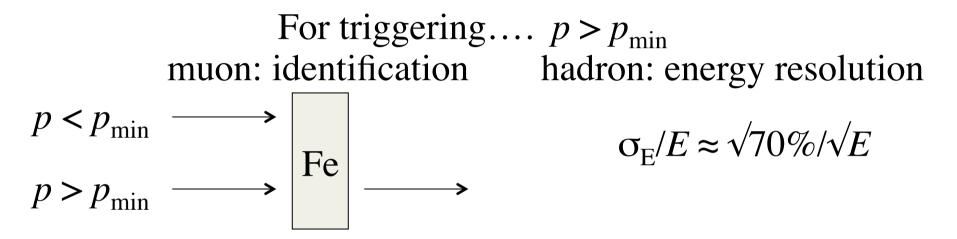
24

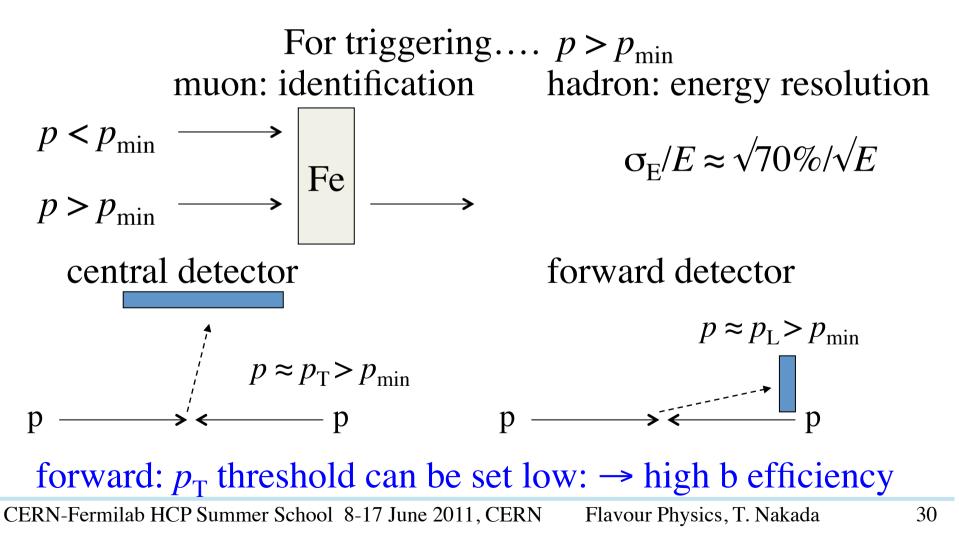

CERN-Fermilab HCP Summer School 8-17 June 2011, CERN Flavour Physics, T. Nakada

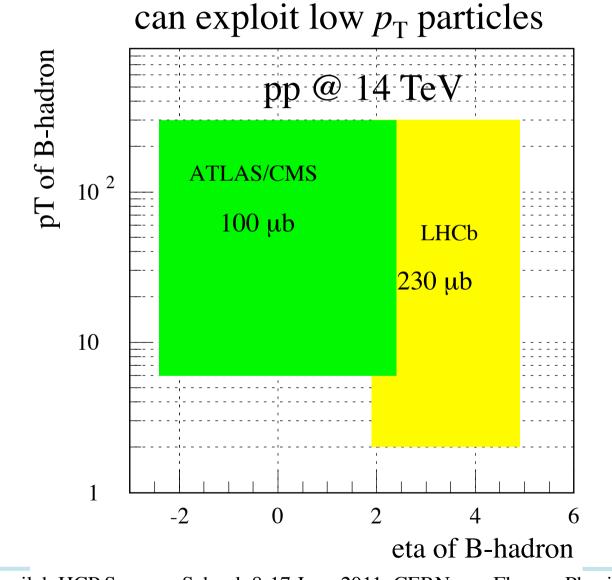
Production of heavy flavour



26


Production of heavy flavour


that is why LHCb is a forward spectrometer



and additional advantage is

and additional advantage is

CERN-Fermilab HCP Summer School 8-17 June 2011, CERN Flavour Physics, T. Nakada

Flavour Physics at Hadron Machines Reconstruction of B decay vertex with a good resolution

is essential to reduce combinatorial background:

decay vertex: >1 well reconstructed tracks
 well reconstructed track =

- charged particle seen by vertex detector
- reconstructed particle from tracks measured

by vertex detector

$$D^{0}(\check{K}^{-}\pi^{+}), D_{s}(K^{+}K^{-}\pi^{+}), etc., also K_{S}$$

examples are

$$B_{(s)}^{0} \rightarrow l^+ l^-, h^+ h^-, B_s^{0} \rightarrow D_s(K^+ K^- \pi^-) \pi^+, B^+ \rightarrow D(K_S \pi^+ \pi^-) K^+$$

Reconstruction of B decay vertex with a good resolution is essential to reduce combinatorial background:

decay vertex: >1 well reconstructed tracks
 well reconstructed track =

- charged particle seen by vertex detector
- reconstructed particle from tracks measured

by vertex detector

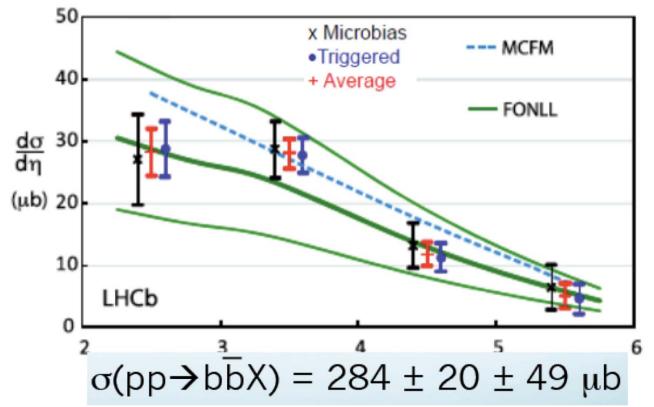
 $D^{0}(\check{K}^{-}\pi^{+}), D_{s}(K^{+}K^{-}\pi^{+}), etc., also K_{s}$

examples are

 $B_{(s)}^{0} \rightarrow l^+ l^-, h^+ h^-, B_s^{0} \rightarrow D_s(K^+ K^- \pi^-) \pi^+, B^+ \rightarrow D(K_S \pi^+ \pi^-) K^+$

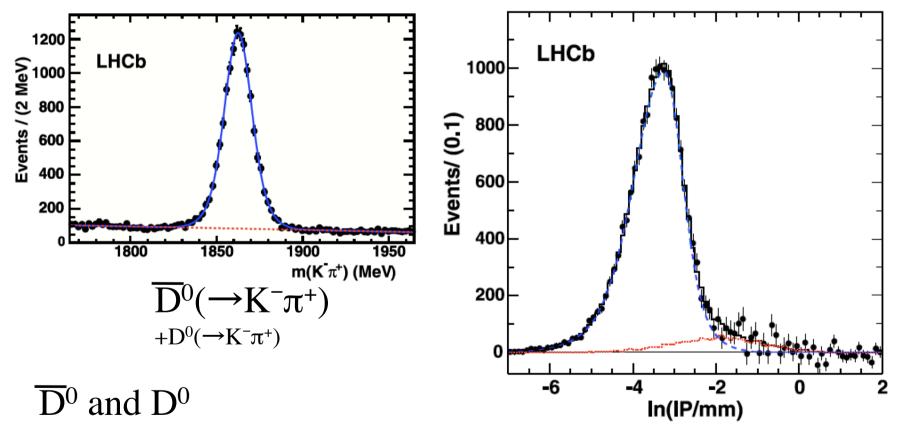
 K_S not seen by the vertex detector, π^0 and γ can be **associated** to a reconstructed vertex (if not too many)

B⁰→J/
$$\psi$$
 K_S, K^{*0}(K⁺ π^{-})γ, ρ⁰($\pi^{+}\pi^{-}$) π^{0} , etc. are possible but not


$$B^0 \rightarrow K_S \pi^0, \rho^+(\pi^+\pi^0)\pi^0, \pi^0\nu\nu, \text{etc.}$$

Flavour Physics at Hadron Machines Advantage of LHCb over CDF and D0 are: -larger cross section (measured also by ATLAS and CMS)

34

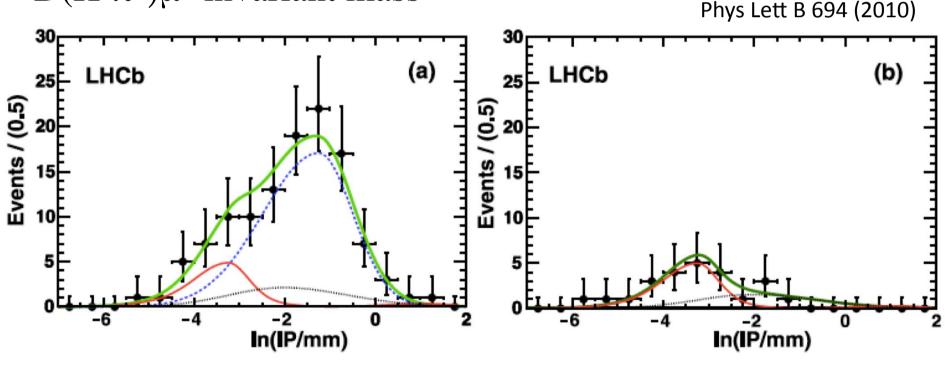

Flavour Physics at Hadron Machines Advantage of LHCb over CDF and D0 are: -larger cross section (measured also by ATLAS and CMS)

one of the very early measurements at LHCb

Phys Lett B 694 (2010)

Flavour Physics at Hadron Machines An interesting example of semi inclusive reconstruction $B^+ \rightarrow \overline{D}^0 (\rightarrow K^- \pi^+) X \mu^+ \nu$ Phys Lett B 694 (2010)

created at the primary vertex: pointing to PV, small IP decay from b: not pointing to PV, large IP


CERN-Fermilab HCP Summer School 8-17 June 2011, CERN Flavour Physics, T. Nakada

Flavour Physics at Hadron Machines An interesting example of semi inclusive reconstruction $B^+ \rightarrow \overline{D}^0 (\rightarrow K^- \pi^+) X \mu^+ \nu$

B component can be increased by combining with μ^+ with appropriate D(K⁻ π^+) μ^+ invariant mass

Non-B component form $D(K^-\pi^+)\mu^-$

37

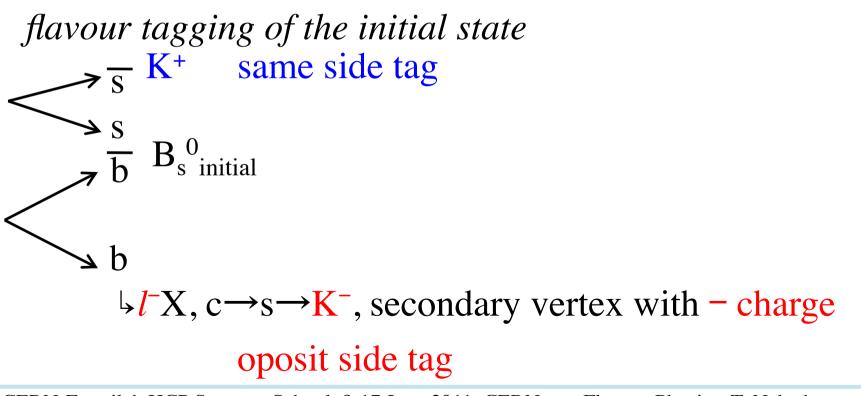
-larger cross section

-better invariant mass and proper time resolutions $B_s^{\ 0}-\overline{B}_s^{\ 0}$ oscillations: measure time dependent rates for

$$\mathbf{B}_{\mathrm{s \ initial}}^{0} \Rightarrow \overline{\mathbf{B}}_{\mathrm{s \ at} t}^{0}$$

38

-larger cross section

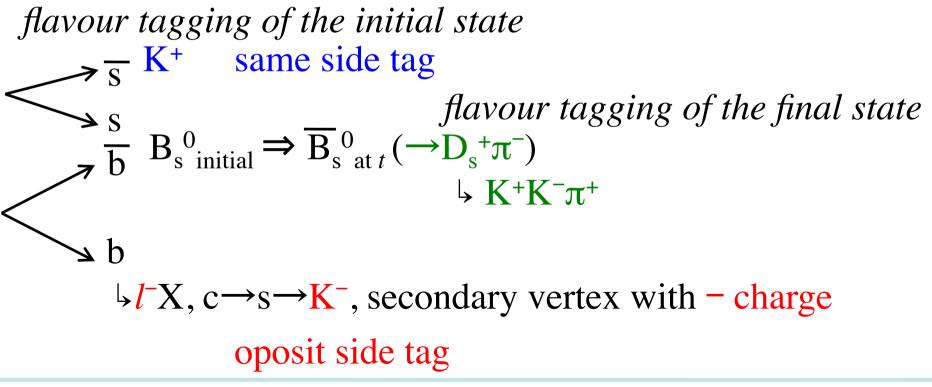

-better invariant mass and proper time resolutions $B_s^{\ 0}-\overline{B}_s^{\ 0}$ oscillations: measure time dependent rates for

flavour tagging of the initial state

 $B_s^{\ 0}_{\ initial}$

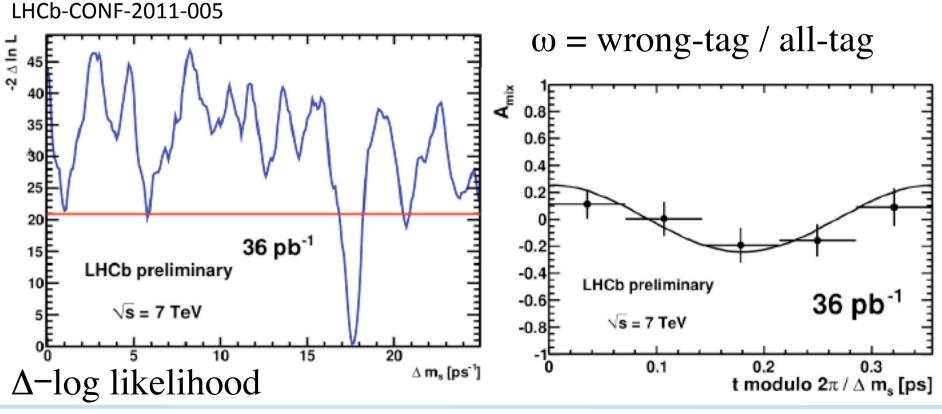
-larger cross section

-better invariant mass and proper time resolutions $B_s^{\ 0}-\overline{B}_s^{\ 0}$ oscillations: measure time dependent rates for

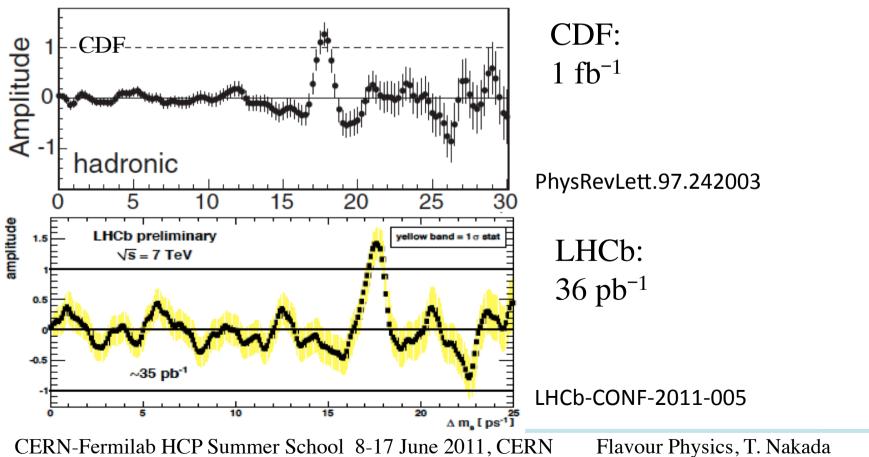

-larger cross section

-better invariant mass and proper time resolutions $B_s^{\ 0}-\overline{B}_s^{\ 0}$ oscillations: measure time dependent rates for

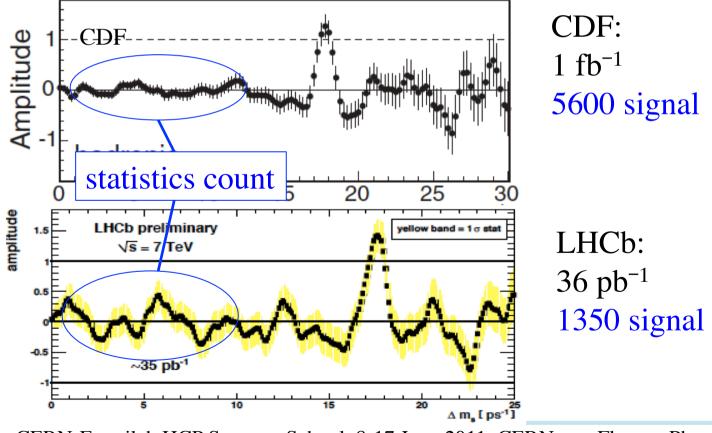
flavour tagging of the initial state $\overrightarrow{s} \overset{s}{K}^{+}$ same side tag flavour tagging of the final state flavour tagging of the final stateflavour tagging of the final state


-larger cross section

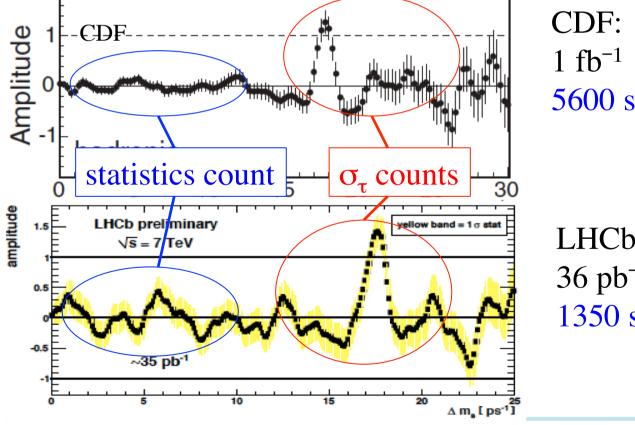
-better invariant mass and proper time resolutions $B_s^{\ 0}-\overline{B}_s^{\ 0}$ oscillations: measure time dependent rates for


-larger cross section

-better invariant mass and proper time resolutions $B_s^0 - \overline{B}_s^0$ oscillations: $\frac{1-2\omega}{2} \cos \Delta m_s \times t \otimes \sigma_t$ -effect


-larger cross section

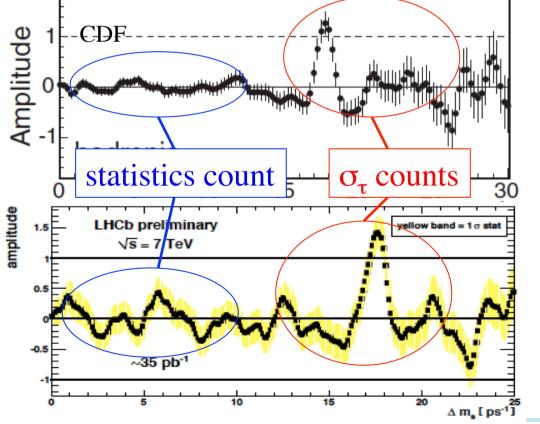
-better invariant mass and proper time resolutions $B_s^{0}-\overline{B}_s^{0}$ oscillations: $A \times \cos \Delta m_s \times t \otimes \sigma_t$ -effect


-larger cross section

-better invariant mass and proper time resolutions $B_s^0 - \overline{B}_s^0$ oscillations: $A \times \cos \Delta m_s \times t \otimes \sigma_t$ -effect

-larger cross section

-better invariant mass and proper time resolutions $B_s^0 - \overline{B}_s^0$ oscillations: $A \times \cos \Delta m_s \times t \otimes \sigma_t$ -effect

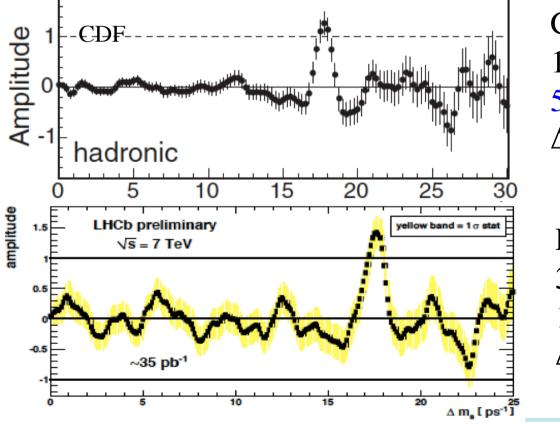


CDF: 1 fb⁻¹ 5600 signal, σ_{τ} =87 fs

LHCb: 36 pb⁻¹ 1350 signal, σ_r =36 or 44 fs

-larger cross section

-better invariant mass and proper time resolutions $B_s^0 - \overline{B}_s^0$ oscillations: $A \times \cos \Delta m_s \times t \otimes \sigma_t$ -effect

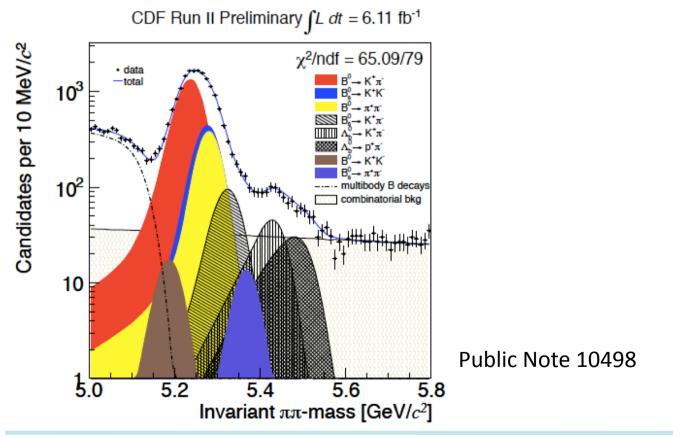


CDF: 1 fb⁻¹ 5600 signal, σ_{τ} =87 fs $\Delta m_{\rm s}$ = 17.77 ± 0.10 ± 0.07 ps⁻¹

LHCb: 36 pb⁻¹ 1350 signal, σ_{τ} =36 or 44 fs Δm_{s} = 17.63 ± 0.11 ± 0.04 ps⁻¹

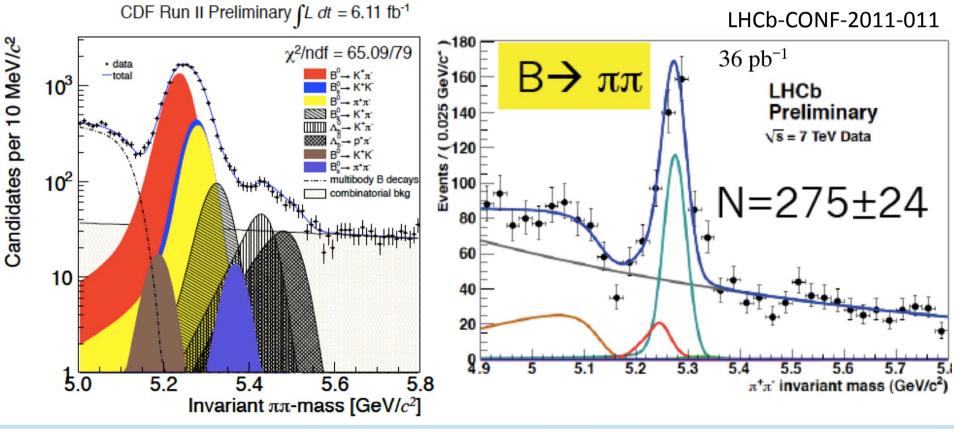
-larger cross section

-better invariant mass and proper time resolutions $B_s^0 - \overline{B}_s^0$ oscillations: $A \times \cos \Delta m_s \times t \otimes \sigma_t$ -effect



CDF: 1 fb⁻¹ **5600 signal**, σ_{τ} =87 fs $\Delta m_{\rm s}$ = 17.77 ± 0.10 ± 0.07 ps⁻¹

LHCb: 36 pb⁻¹ 1350 signal, σ_{τ} =36 or 44 fs $\Delta m_{s} = 17.63 \pm 0.11 \pm 0.04 \text{ ps}^{-1}$ $\beta \gamma c \tau_{B} \approx 1 \text{ cm}$


-larger cross section-better invariant mass and proper time resolutions

-hadron PID

- -larger cross section
- -better invariant mass and proper time resolutions

-hadron PID

-larger cross section
-better invariant mass and proper time resolutions
-hadron PID

Reflects on the systematic errors

$$\begin{array}{lll} A_{\rm CP}({\rm B_d}{\to}{\rm K^+\pi^-}) \\ {\rm CDF} & -0.086\pm0.023\pm0.009 & 1~{\rm fb^{-1}} \\ {\rm LHCb} & -0.074\pm0.033\pm0.008 & 36~{\rm pb^{-1}} \\ {\sigma_{\rm stat}} \mbox{ for BABAR: \pm0.016 } & {\rm BELLE: \pm0.018} \end{array}$$

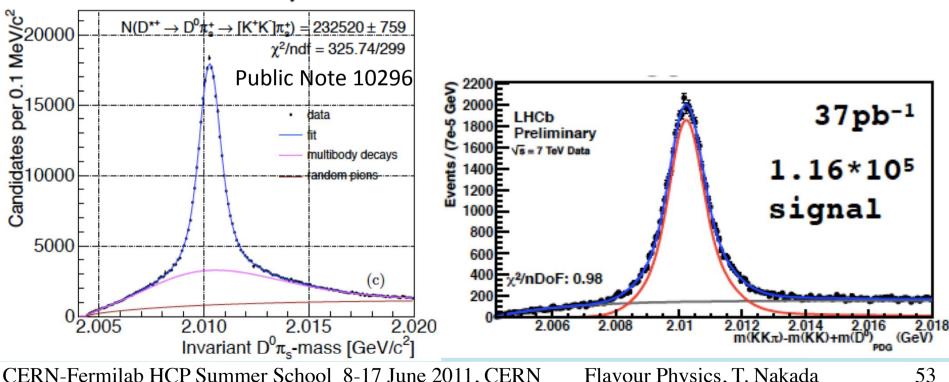
-larger cross section

-better invariant mass and proper time resolutions

-hadron PID

-more efficient trigger, particularly for hadronic final states

CP violation in D decays is getting attention and trigger efficiency is an issue!


52

-larger cross section

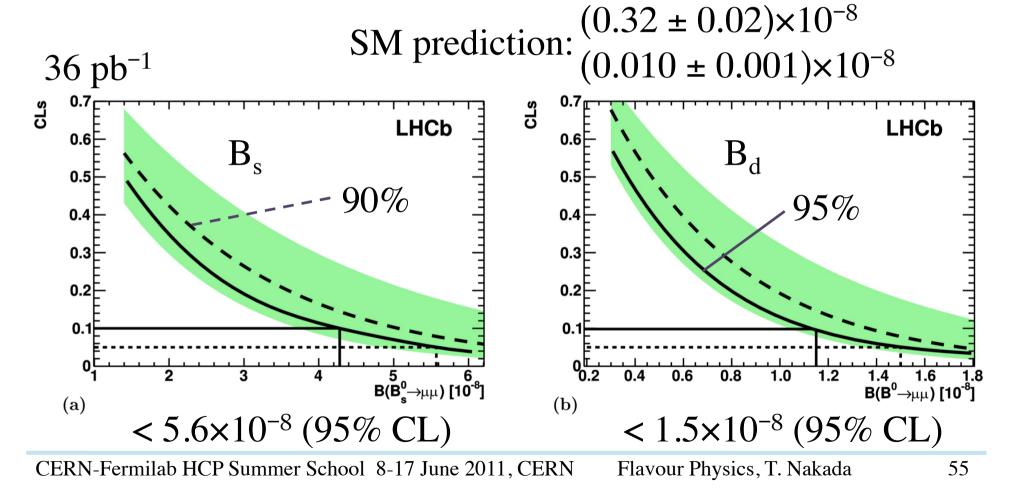
CDF Run II Preliminary $\int L dt = 5.94 \text{ fb}^{-1}$

-better invariant mass and proper time resolutions -hadron PID

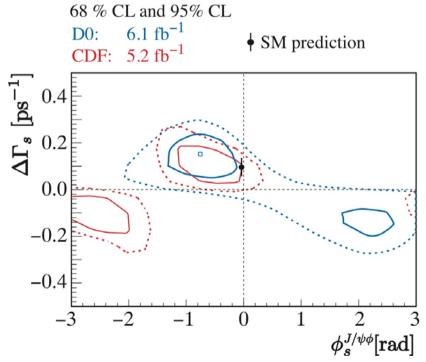
-more efficient trigger, particularly for hadronic final states

-larger cross section

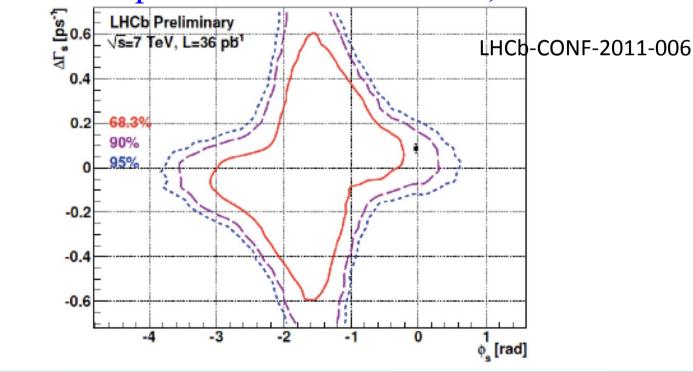
- -better invariant mass and proper time resolutions -hadron PID
- -more efficient trigger, particularly for hadronic final states


CP violation in D decays is getting attention and trigger efficiency is an issue!

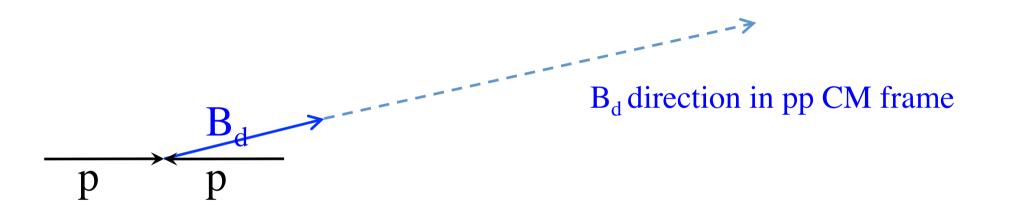
Flavour tagged D^0 and $\overline{D}^0 \rightarrow K^+K^-$


- CDF 0.48×10^6 6 fb⁻¹
- LHCb 0.12×10^6 36 pb⁻¹

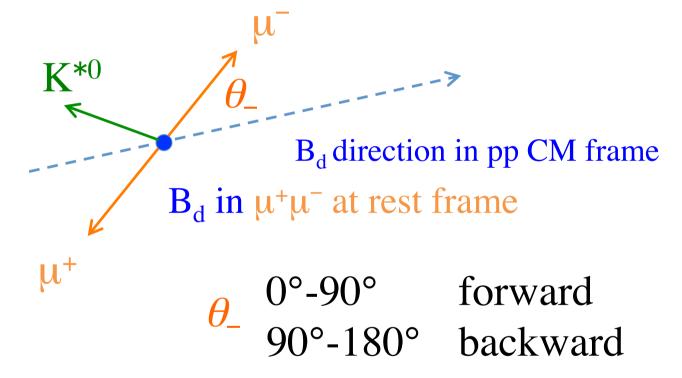
LHCb get 40 times more events for the same $\int L dt$


- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of SM (currently up to ~10 times SM) or find one (current best limit: 4.3×10^{-8} by CDF 3.7 fb⁻¹)

- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of SM (currently up to ~10 times SM) or find one
 - CPV in B_s→J/ψφ to be measured with $\sigma(\phi_s) \approx 0.1$ (current most probable value ~-0.6 but less than 2σ effect and SM expectation -0.036±0.002)

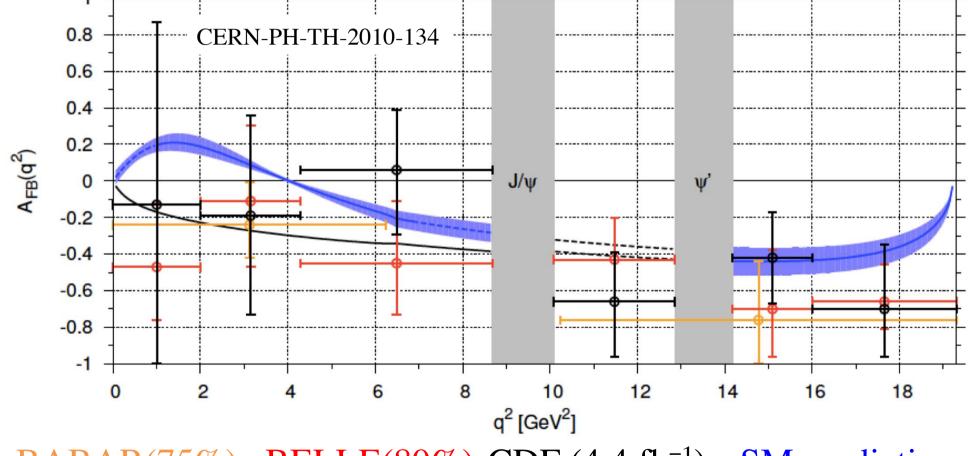


- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of SM (currently up to ~10 times SM) or find one
 - CPV in B_s→J/ψφ to be measured with $\sigma(\phi_s) \approx 0.1$ (current most probable value ~-0.6 but less than 2σ effect and SM expectation -0.036±0.002)



- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of SM (currently up to ~10 times SM) or find one
 - CPV in B_s→J/ $\psi\phi$ to be measured with $\sigma(\phi_s) \approx 0.1$ (current most probable value ~-0.6 but less than 2 σ effect and SM expectation -0.036±0.002)
 - $-A_{FB} \text{ for } B^0 \rightarrow K^{*0} \mu^+ \mu^- \text{ with ~} 2k \text{ events.} \\ \text{(currently ~} 400 \text{ events with all experiments. With the current value >5σ deviation from SM expected where } q^2 \\ \text{between 1 to 6 GeV}^2\text{)}$

- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of SM (currently up to ~10 times SM) or find one



- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of SM (currently up to ~10 times SM) or find one

• By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data

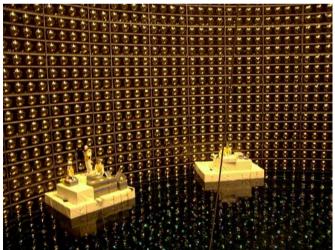
BABAR(75%) BELLE(80%) CDF (4.4 fb⁻¹) SM prediction

- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of SM (currently up to ~10 times SM) or find one
 - CPV in B_s→J/ $\psi\phi$ to be measured with $\sigma(\phi_s) \approx 0.1$ (current most probable value ~-0.6 but less than 2 σ effect and SM expectation -0.036±0.002)
 - $-A_{FB} \text{ for } B^0 \rightarrow K^{*0} \mu^+ \mu^- \text{ with ~} 2k \text{ events.} \\ \text{(currently ~} 400 \text{ events with all experiments. With the current value >5σ deviation from SM expected where } q^2 \\ \text{between 1 to 6 GeV}^2\text{)}$

- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of SM (currently up to ~10 times SM) or find one
 - CPV in B_s→J/ $\psi\phi$ to be measured with $\sigma(\phi_s) \approx 0.1$ (current most probable value ~-0.6 but less than 2 σ effect and SM expectation -0.036±0.002)
 - A_{FB} for B⁰→K^{*0}μ⁺μ⁻ with ~2k events. (currently ~400 events with all experiments. With the current value >5σ deviation from SM expected where q^2 between 1 to 6 GeV²)
 - CP asymmetry in D—hh decays to a level of 10^{-3}

- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of SM (currently up to ~10 times SM) or find one
 - CPV in B_s→J/ $\psi\phi$ to be measured with $\sigma(\phi_s) \approx 0.1$ (current most probable value ~-0.6 but less than 2 σ effect and SM expectation -0.036±0.002)
 - $A_{\rm FB}$ for B⁰→K^{*0}μ⁺μ⁻ with ~2k events. (currently ~400 events with all experiments. With the current value >5σ deviation from SM expected where q^2 between 1 to 6 GeV²)
 - CP asymmetry in D—hh decays to a level of 10^{-3}
 - − CP asymmetry $\sigma(B\rightarrow K\pi)=4\times 10^{-3}$ (current world average 0.01), $\sigma(B_s\rightarrow\pi K)=0.025$ (CDF will be ~0.047)

- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of SM (currently up to ~10 times SM) or find one
 - CPV in B_s→J/ $\psi\phi$ to be measured with $\sigma(\phi_s) \approx 0.1$ (current most probable value ~-0.6 but less than 2 σ effect and SM expectation -0.036±0.002)
 - $-A_{FB}$ for B⁰→K^{*0}μ⁺μ⁻ with ~2k events. (currently ~400 events with all experiments. With the current value >5σ deviation from SM expected where q^2 between 1 to 6 GeV²)
 - CP asymmetry in D—hh decays to a level of 10^{-3}
 - CP asymmetry $\sigma(B \rightarrow K\pi)=4\times 10^{-3}$ (current world average 0.01), $\sigma(B_s \rightarrow \pi K)=0.025$ (CDF will be ~0.047)
 - $-\gamma$ measurement better than the current world average

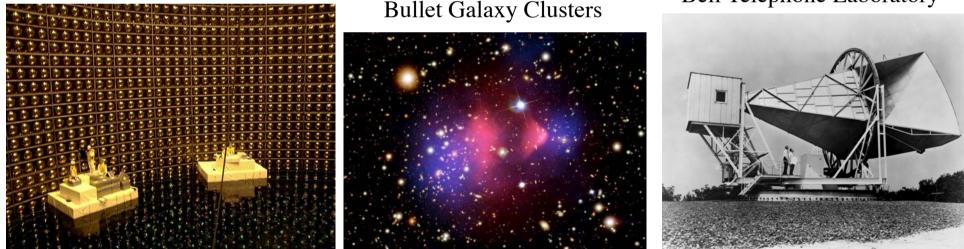

- By the end of 2012, LHCb will correct $\geq 2 \text{ fb}^{-1}$ of data
 - Exclude NP physics contribution to $B_s \rightarrow \mu^+ \mu^-$ up to a level of 8M (currently up to ~10 times SM) or find one
 - CPV in $B_s \neq 2/4\phi$ to be measured with $\sigma(\phi_s) \approx 0.1$ (current most probable value ~-0.6 but less than 2σ effect and SM expectation -0.036±0.002)
 - $-A_{FB}$ for B⁰→K^{*0}μ⁺μ⁻ with ~7k events. (currently ~400 events with all experiments. With the current value >5σ deviation from SM expected where q^2 between 1 to 6 GeV²)
 - CP asymmetry in D—hh decays to a level of 10^{-3}
 - CP asymmetry $\sigma(B \rightarrow K\pi)=4\times 10^{-3}$ (current world average 0.01), $\sigma(B_s \rightarrow \pi K)=0.025$ (CDF will be ~0.047)
 - $-\gamma$ measurement better than the current world average

• And more than 5 fb⁻¹ by the end of 2017!

• There exists solid observations for physics beyond the Standard Model

• There exists solid observations for physics beyond the Standard Model Neutrino oscillations

 There exists solid observations for physics beyond the Standard Model Neutrino oscillations Dark matter


S-KAMIOKANDE

Bullet Galaxy Clusters

• There exists solid observations for physics beyond the Standard Model Neutrino oscillations Dark matter $N_{\rm B} / N_{\gamma} = 10^{-10}$

S-KAMIOKANDE

The Horn Antenna Bell Telephone Laboratory

• There exists a strong anticipation that new physics is just around the corner...

By the middle of 2012...

ATLAS CMS high $p_{\rm T}$ physics

LHCb

flavour physics

Particle Physics

By the middle of 2012...

$\begin{array}{c} \text{ATLAS} \\ \text{CMS} \\ \text{high } p_{\text{T}} \text{ physics} \end{array}$	BSM
LHCb flavour physics	Only SM
Particle Physics	\odot

By the middle of 2012...

		1
$\begin{array}{c} \text{ATLAS} \\ \text{CMS} \\ \text{high } p_{\text{T}} \text{ physics} \end{array}$	BSM	Only SM
LHCb flavour physics	Only SM	BSM
Particle Physics		\odot

By the middle of 2012...

$\begin{array}{c} \text{ATLAS} \\ \text{CMS} \\ \text{high } p_{\text{T}} \text{ physics} \end{array}$	BSM	Only SM	BSM
LHCb flavour physics	Only SM	BSM	BSM
Particle Physics		\odot	\odot

By the middle of 2012...

$\begin{array}{c} \text{ATLAS} \\ \text{CMS} \\ \text{high } p_{\text{T}} \text{ physics} \end{array}$	BSM	Only SM	BSM	
LHCb flavour physics	Only SM	BSM	BSM	
Particle Physics		\odot	\odot	

Oh, no more space left...

In any case,

Exciting time is ahead of us all.

T2K preprint,

(Dated: June 13, 2011)

the expected number of such events is 1.5 ± 0.3 (syst.). Under this hypothesis, the probability to observe six or more candidate events is 7×10^{-3} , equivalent to 2.5σ significance. At 90% C.L., the data are consistent with $0.03(0.04) < \sin^2 2\theta_{13} < 0.28(0.34)$ for $\delta_{\rm CP} = 0$ and normal (inverted) hierarchy.

Exciting time is ahead of us all.