

CLIC forward region layout and the use of BeamCal for a fast beam-tuning feedback

Konrad Elsener CERN

Outline:

- CLIC forward region layout
 - Status FCal meeting Cracow
 - recent changes
- BeamCal for beam tuning at CLIC?

a possible CLIC MDI region

recent changes to detector layout:

- 1) Insist on good overlap between LumiCal and ECal end-cap
- 2) HCAL: decision on depth in barrel and end-cap

LumiCal overlap with ECal

HCal now 7.5 lambda

-> detector shorter by 355 mm (x2)

DRAFT:
CLIC_SiD_CDR
L* 3.5 m

-> changes to forward region

DRAFT: CLIC_SiD_CDR

LumiCal and BeamCal for CLIC CDR

	CLIC_ILD		CLIC_SiD	
	LumiCal	BeamCal	LumiCal	BeamCal
Z (from IP)	2.65 m (2.27 m)*	2.88 m	1.81 m	2.83 m
min. acc. angle	38 mrad (44 mrad)*	11 mrad	35 mrad	11 mrad
max. acc. Angle	≈120 mrad	38 mrad	≈ 130 mrad	35 mrad
(given by ECal)	(153 mrad)*			

^{*} I. Sadeh et al, "A Luminosity Calorimeter for CLIC", Nov. 2009

BeamCal for beam tuning

BeamCal for beam tuning

Proposals made for the ILC:

use BeamCal (spatial energy distribution of incoherent pairs) + GamCal (Total E of beamstrahlung photons)

- C. Grah & A, Sapronov, JINST 2008
- -> single parameter determination works (not done for imperfections)
- -> multi-parameter determination mostly fails

use Pair Monitor (counts) + BeamCal (total depos. energy):

K. Ito et al., LCWS/ILC 2008

determine beam sizes (but not done for general imperfections)

beam-beam at CLIC

Incoherent effects:

beamstrahlung photons + single electrons -> incoherent pairs

Coherent effects:

beamstr. photons + coh. field of oncoming bunch -> coherent pairs electron / virtual photon + coh. field of oncoming bunch -> trident pairs

Semi-coherent effects? (>> more soon, from J. Esberg)

beam-beam at CLIC

The sequential trident process (coherent pairs)

Production of a real (beamstrahlung) photon in an electric – or magnetic - field

Subsequent conversion to an electron/positron pair in a constant field

J. Esberg Aarhus

&

CERN

beam-beam at CLIC

The cascade trident process

The trident process is mediated by a *virtual* photon No accurate single cross section available in litterature Depends strongly on Y

J. Esberg Aarhus & CERN

BeamCal for beam tuning at CLIC ?

VERY PRELIMINARY – Barbara Dalena (CERN), 22 Sept. 2010 Sensitivity of observables vs. vertical beam-beam offset

BeamCal for beam tuning at CLIC ?

Since there is a large angular and energy overlap between incoherent pairs and trident pairs in a detector...

... it is very probable that BeamCal is not useful for beam tuning at CLIC

NB.

CLIC beam experts have assumed this for a long time

- push for alternative methods

Luminosity Monitoring at CLIC (under study)

V.Ziemann – Eurotev-2008-016

μ + μ - pair production from beamstrahlung photons

Converter is the main dump \rightarrow muons \rightarrow install detector behind dump

With a Cherenkov detector: 2x10⁵ Cherenkov photons / bunch crossing

Luminosity Monitoring at CLIC (under study)

Muon distribution with E> 212MeV behind the beam dump and shielding

Thank you!

