

Polarized Positrons for Future Linear Colliders

Sabine Riemann, DESY Zeuthen
Thanks to the members of the ILC/CLIC Positron Source Group

High precision measurements of luminosity at future linear colliders and polarization of lepton beams

October 3-5, 2010

Outline

- Why polarized positrons?
- Generation of polarized positrons
- The ILC Positron Source
- Polarized positrons for CLIC
- Polarimetry at the positron source
- Summary

Why polarized positrons?

Goal of a Future Linear Collider

Observe, determine and precisely reveal the structure of the underlying physics model

Needed:

- High energy
- High luminosity
- Polarization ⇔ knowledge of initial state
- High precision
- → Experimental flexibility ⇔ be prepared for the unexpected

The electron beam of a future LC will be polarized.

Physics reasons to have a polarized positron beam are summarized in a review article; see Moortgat-Pick et al., Phys.Rept.**460**(2008)131

But positron polarization is not the Baseline Design of ILC or CLIC

Questions (1)

P(e+) is useful – but is it indispensable for a future linear collider?

- Up to now we have not yet obtained new signatures that cannot be studied without positron polarization
- Signals beyond the Standard Model found at the LHC can be interpreted with substantially higher precision if positron polarization is available
 - → distinction of new physics models
- Z factory: GigaZ ⇔10^9 Z bosons
 - extreme precision for weak mixing angle, $\delta \sin^2 \theta_W \approx 1E-5$
 - →information about nature of symmetry breaking

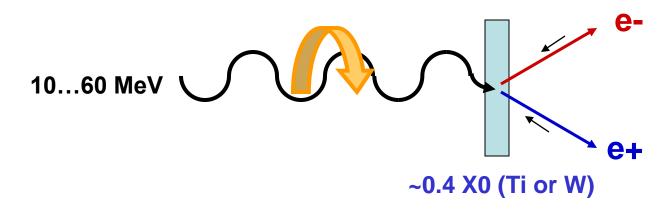
GigaZ is impossible without e+ polarization

Questions (2)

What is the minimum P(e+) needed for physics?

- Desired: ≥60%
- Should not be below ~30% (t.b.c.)
- Flexible choice of polarization (+-, -+, --, ++),
 - + transversly polarized beams

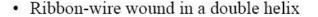
Polarized e+ as upgrade option??

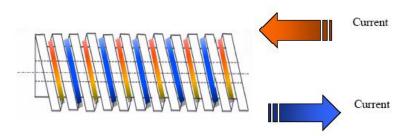

- The undulator based source provides polarized e+ from the beginning (~30% ±)
 - > should be used for physics, not destroyed
 - if necessary (LHC results!), e+ positron polarization should be available from the beginning

LC Design may not prevent a polarized positron beam

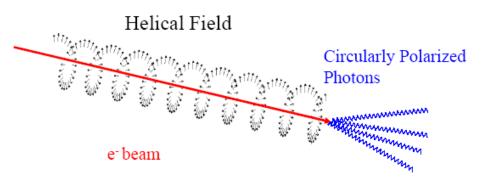
Generation of polarized positrons

Generation of polarized positrons

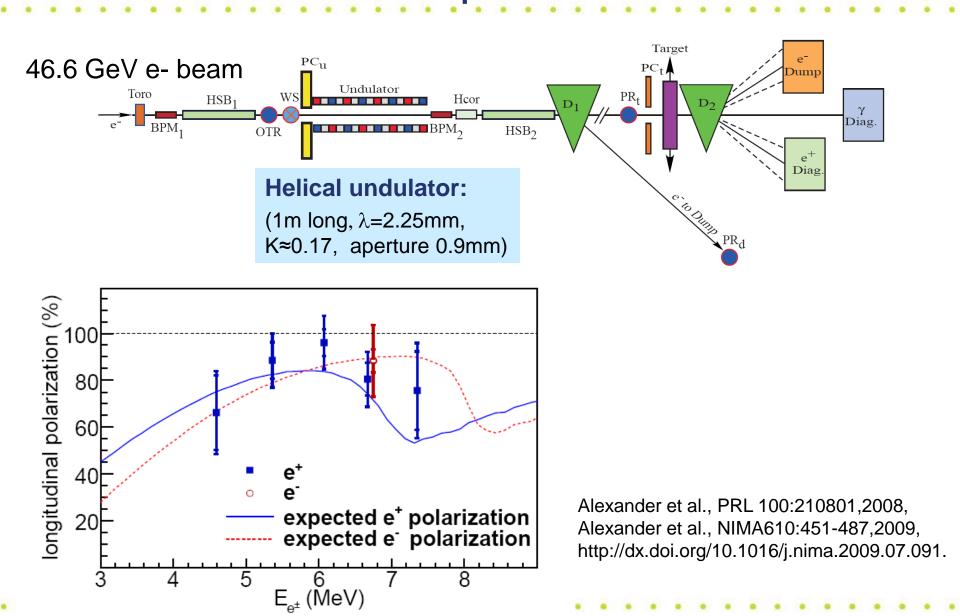

 Circularly polarized photons produce longitudinally polarized positrons and electrons

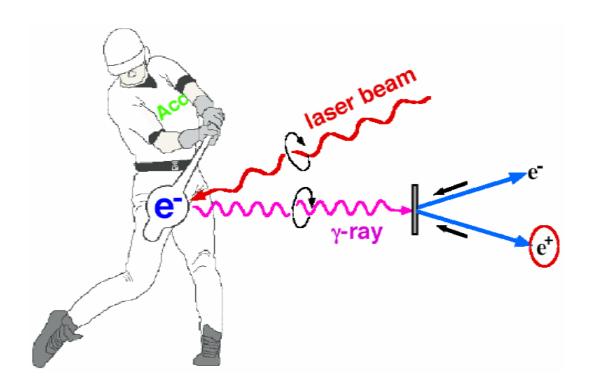


- Methods to produce polarized photons
 - Radiation from helical undulator (Balakhin, Mikhailichenko, BINP 79-85 (1979))
 - Compton backscattering of laser light off an electron beam


Polarized Positrons from Helical Undulator

Rotating dipole field in the transverse planes

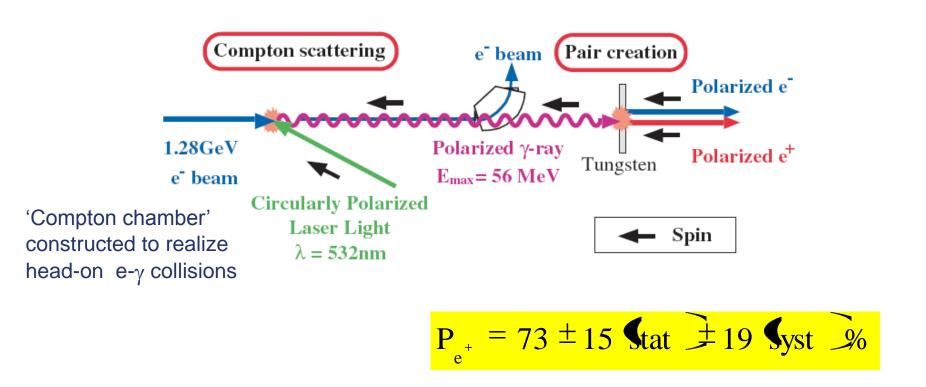

- Electrons follow a helical path
- Emission of circularly polarized radiation


Opening angle of photon beam $\sim 1/\gamma$ (first harmonic)

- Polarization sign is determined by undulator (direction of the helical field)
- # photons ~ undulator length
- Photon yield in a helical undulator is about 1.5...2 higher than that in a planar undulator (for the parameters of interest)
 See also Mikhailichenko, CLNS 04/1894

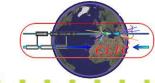
Proof-of-Principle: E166 @ SLAC

The Compton scheme



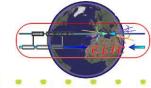
Compton backscattering of laser light off an electron beam

Test experiment at KEK


Omori et al., Phys.Rev.Lett. 96, 114801 (2006)

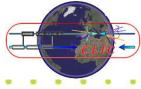
 KEK-ATF: 1.28 GeV electron beam from ATF and 2nd harmonic of TAG laser used to produce photons with maximum energy of 56 MeV

Reversing the polarization of laser light \Leftrightarrow reversal of positron helicity



Polarized e+ for Future LC

Positron flux at FLC


	SLC	CLIC	ILC (RDR)
e/bunch	3.5x10 ¹⁰	0.64x10 ¹⁰	2x10 ¹⁰
Bunches/pulse	1	312	2685
Pulse rep rate	120	50	5
e+/s	0.042x10 ¹⁴	1x10 ¹⁴	2.7x10 ¹⁴

yield: ~0.02 polarized e+ / photon

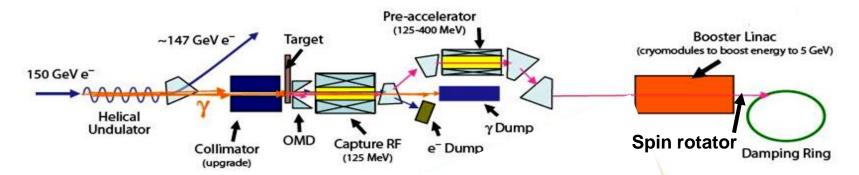
- → need high power photon beam
- → huge heat load on target
- → Rotating positron production target or alternatively liquid metal target

Polarized e+ for Future LC

ILC:

- Electron beam is used to produce positrons before brought to IP (yield 1.5e+/e-)
- e+ polarization is upgrade option although ~22% 35% polarization from beginning
- Undulator + photon collimator → P(e+) = 60%
- Compton backscattering is considered as alternative option to produce polarized e+

· CLIC:


- Baseline design with unpolarized e+ source
- e+ polarization is upgrade option, preferred design is Laser-Compton
- Positron target, collection optics are 'similar' for ILC and CLIC
- → Very close collaboration of ILC and CLIC positron source groups

Polarized Positrons for the ILC

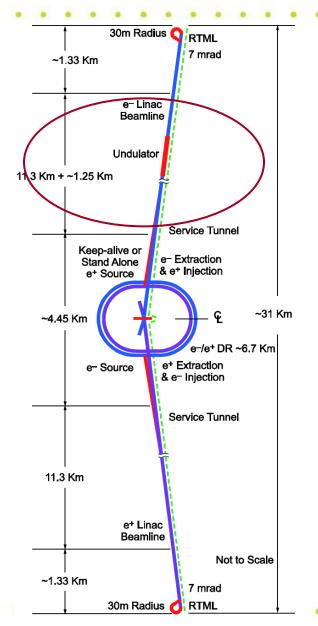
ILC Positron Source Layout

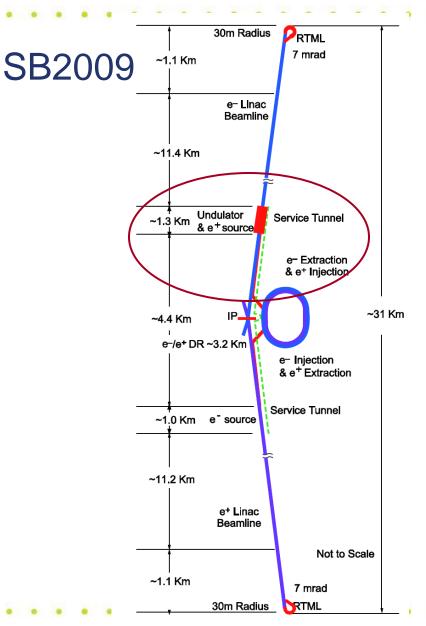
RDR (2007)

- Sc. Helical Undulator
 - Located at the 150GeV point in electron linac
 - $\lambda = 1.15$ cm, B=0.86T (K=0.92)
 - 147m, aperture 5.85mm
- Target
 - Ti Alloy wheel
 - radius 1m, thickness 1.4cm
 - Rotating speed 100m/s (2000rpm)
- Capture
 - Flux concentrator
- Keep Alive Source (KAS)
 - Independent, conventional
 - 10% intensity

Under condsideration:

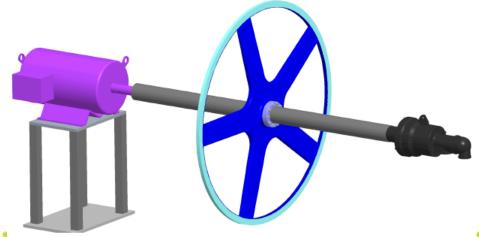
Strawman Baseline design 2009 (SB2009)


- Sc. Helical Undulator
 - Located at end of electron linac (125...250 GeV)
 - 231 m long, aperture 5.85mm

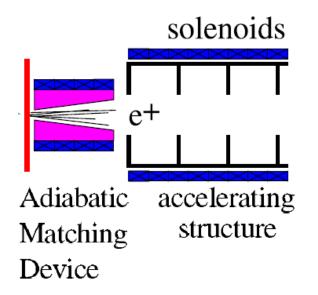

- Capture
 - Quarter wave transformer
- **Auxiliary Source**
 - 3 GeV e- beam to positron target

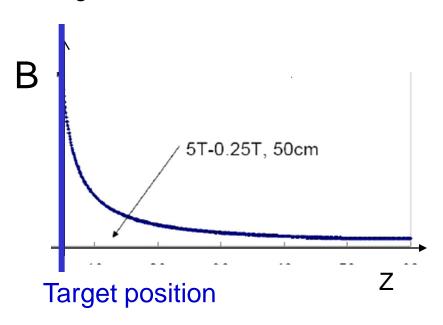
Location of sources at the ILC

RDR:



Positron Target

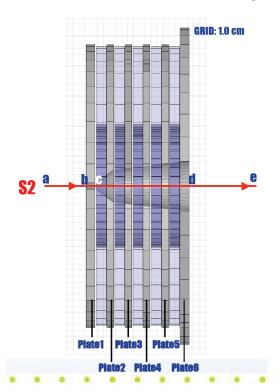

- Material: Titanium alloy
 Thickness: 0.4 X₀ (1.4 cm)
- Incident photon spot size on target: σ ~ 1.7 mm (rms) (RDR)
 ~ 1.2 mm (SB2009)
- Power deposition in target: 8% → 10.4 kW (RDR); <8 kW (SB2009)
 But peak energy deposition density is higher for SB2009 design
- Rotate target to reduce local thermal effects and radiation damage
 → 2m diameter target wheel, 2000 rpm
- Issues to be resolved and the solutions validated:
 - Stress in target material, pressure shock wave impact on target lifetime
 - rotating vacuum seals to be confirmed suitable

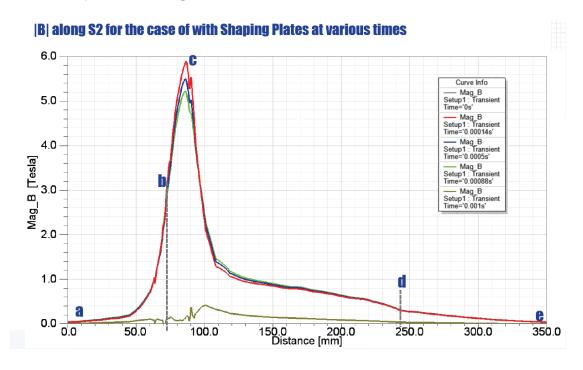


Positron yield \Leftrightarrow Optical matching device

OMD: Increases capture efficiency from 10% to as high as 40%

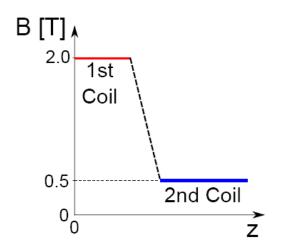
- Adiabatic Matching Device (AMD):
 - Tapered B field from ~5 T at the target to 0.5 T in 50 cm

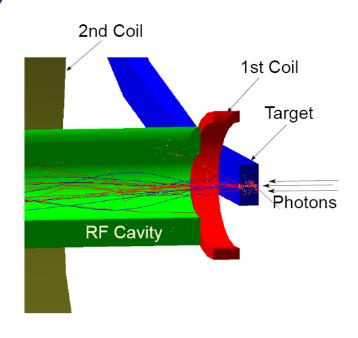



- Capture efficiency >30%
- Rotating target immersed in B field ⇔ eddy currents
- Eddy current experiment @ Cockroft Institute
 - → expect 8 kW at 2000 rpm
 - → heat load on target substantially increased

Optical Matching Device (2)

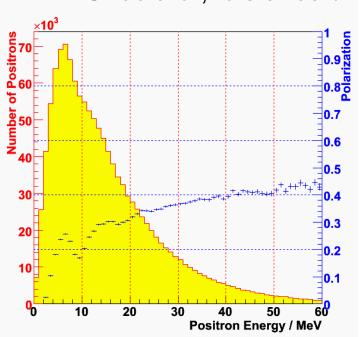
- Flux Concentrator (FC)
 - Flux concentrator reduces magnetic field on target but lower capture efficiency ~22%
 - RDR design with FC
 - pulsed flux concentrator (used at SLD):
 - ILC needs ~ 1ms pulse width flat-top
 - LLNL: Design and prototype (budget):

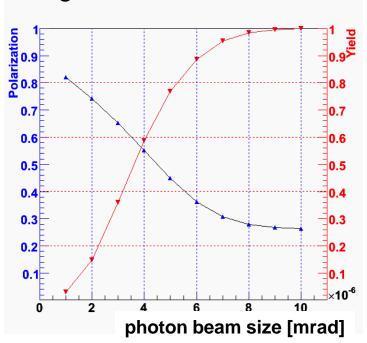




Optical Matching Device (3)

- Quarter Wave Transformer (QWT)
 - QWT is a save solution

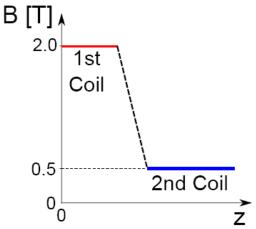

- but capture efficiency is ~15 %
- SB2009 design with QWT
- → Length of helical undulator 231m



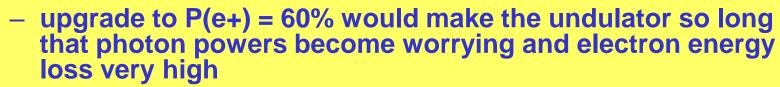
Positron polarization

Positron spectra

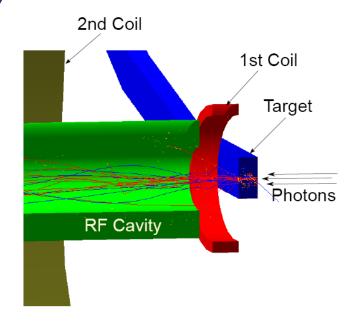
RDR Undulator, distance undulator – target ~500m



- → Average positron polarization (>30 % RDR design)
- With photon collimator upstream the target:
 - → increase of polarization
 - → decrease of positron yield → longer undulator



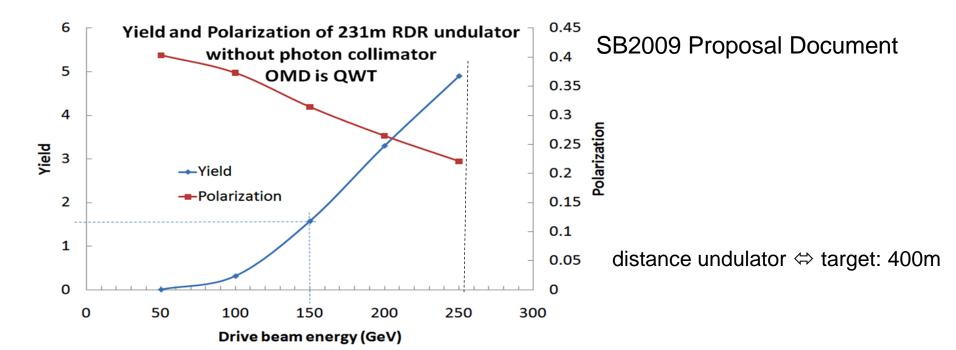
Optical Matching Device (3)

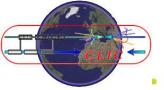

- Quarter Wave Transformer (QWT)
 - QWT is a save solution

- but capture efficiency is ~15 %
- SB2009 design with QWT
- → Length of helical undulator 231m

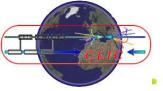
→ better to use a flux concentrator

Yield of Polarized Positrons at ILC


Helical undulator, no photon collimator

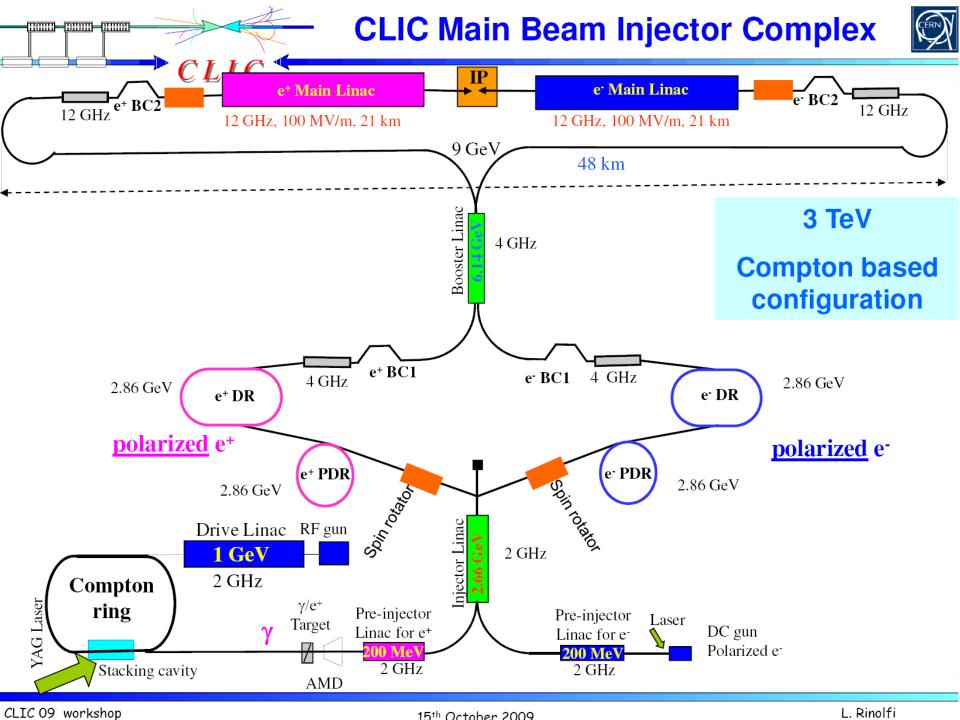

RDR design → e+ polarization ~30%

SB2009


→ e+ polarization ~22%

- Use this polarization can be used for physics → facility for fast helicity reversal has to be included in the design
- Otherwise one has to destroy the polarization to P≡0

Polarized Positrons for CLIC

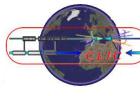


CLIC Polarized Positron Source

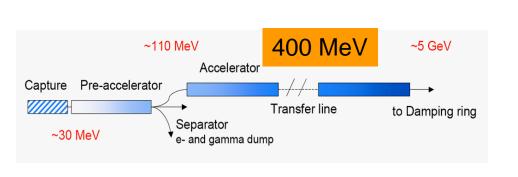
- CLIC baseline design has an unpolarized e+ source, e+ polarization is upgrade option (3 TeV)
- Preferred: Compton scheme
 - e+ beam independent of the main beam linac
 - Polarized e+ source can be implemented at any time without modifications of the CLIC complex
 - But: Need high intensities for electron and laser beam; at present not available
 - Requested: 6.7 x 10^9 e+/bunch at PreDampingRing
 → stacking of e+ is necessary

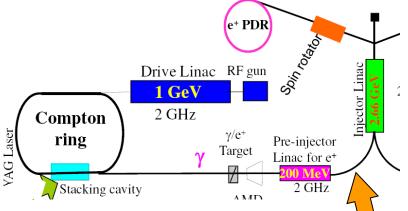
See also Rinolfi et al., PAC09, Vancouver, WE6RFP065

- Proposed designs for electron-photon collisions:
 - Electron ring and optical laser cavity
 - ERL (Energy recovering linac) + laser cavities
 - Electron linac and CO₂ laser cavities ⇔ no stacking
- Undulator: possible, but integration into main linac is more complicated



Positron Polarization Measurement


- at the source
- at the IP (see next Talk by Peter Schuler)



Polarimetry at the e+ source

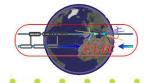
- Polarisation measurement downstream the capture section; E > 125 MeV
 - Large size of positron beam ($\sigma \sim 0.5...1$ cm)
 - High intensity of positron beam
 - Do not need very precise measurement



Proposal (see LEPOL Group, Alexander et al., EUROTeV-Report-2008-91): use a **Bhabha polarimeter** operated at

- 400 MeV (ILC)
- ~200 MeV (CLIC)
- Downstream the damping rings: Compton polarimeter, but spin orientation is transverse (details: Alexander, Starovoitov, LC-M-2007-014, 2007)

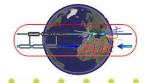
Polarization and Physics Precision



- Precision physics measurements \rightarrow Luminosity-weighted polarization to be determined with high precision ($\Delta P_{lw} \sim 0.25\%$)
- Compton Polarimeters up/downstream the IP
 - Upstream polarimeter:
 fast, high precision, clean environment
 - Downstream polarimeter
 Slow, high background, access to depolarization at IP
- Beamstrahlung ⇔ depolarization during bunch crossing
 - CLIC beam sizes @ IP (hor./vert. in nm)
 - 500 GeV: 248 / 5.7 conservative (202 / 2.3 nominal)
 - 3 TeV: 83 / 2.0 conservative (40 / 1.0 nominal (σ_z =45nm))
 - ILC beam sizes @ IP (hor./vert. in nm)
 - $640 / 5.7 (\sigma_z = 300 \text{ nm})$
- $ightharpoonup \Delta P_{lw}^{beamstr} pprox 0.2\%$ (ILC 500), ~5% (CLIC) Bailey et al., EPAC08-MOPP024 Depolarization depends strongly on horizontal beam size variations

Further work on depolarization in strong fields is necessary. What are the precision requirements for physics at CLIC?

Summary


- Positron polarization is important and will be available from the beginning if the helical undulator is baseline design
- Milestones:
 - ILC: Technical Design Report end 2012
 - CLIC: CDR in 2011
- Still to do
 - Demonstrate target reliability
 - Demonstrate that the flux concentrator will work
 - Realistic spin tracking from start to end
 - Depolarization effects at IP
- BMBF Joint Research Project 'Spin Management'

Joint Research Project: Spin Management

- Funded by BMBF (Federal Ministry of Education and Research in Germany)
- Participants:
 - Uni HH (Prof. G. Moortgat-Pick)
 - Uni Bonn (Prof. W. Hillert)
 - Uni Mainz (Prof. K. Aulenbacher)
 - Collaborating groups at DESY (J. List (HH), S. Riemann (Zeuthen))
- Spin management (FLC related):
 - Precision polarization measurement at the IP
 - Depolarization effects in strong fields
 - e+ source modeling, spin rotation + fast helicity reversal
 - Spin tracking ⇔ Physics potential of the LC
 - Collaboration Uni HH, DESY ⇔ Bonn
 - simulations and measurements of spin rotation and spin transport through damping ring
- Positron Production Target
 - Simulation of radiation and thermal load
 - Consequences for material aging
 - shock waves: modeling (simulations)
 - experimental tests currently under discussion

Summary

- Positron polarization is important and will be available from the beginning if the helical undulator is baseline design
- Milestones:
 - ILC: Technical Design Report end 2012
 - CLIC: CDR in 2011
- Still to do
 - Demonstrate target reliability
 - Demonstrate that the flux concentrator will work
 - Realistic spin tracking from start to end
 - Depolarization effects at IP
- BMBF Joint Research Project 'Spin Management'
- Still missing for ILC and CLIC:
 - Realistic scenarios with polarization and consequences for physics precision
 - ⇔ important for physics potential of the LC
 - ⇔ machine/detector design
 - LHC signals beyond the SM

Positron polarization needs more attention from machine and physics groups

→ to be prepared for the unexpected

