Compton Polarimetry for ILC and CLIC

K. Peter Schüler, DESY

Introduction & Overview

- requirements and goals
 - precision
 - spin precession and suitable locations
 - depolarisation issues
- Compton polarimetry basics
 - kinematics, spin-dependent cross sections, asymmetry
 - luminosity for pulsed lasers & laser parameters

specific polarimeter performance studies for

- TESLA (2001 ...)
- ILC (2005 ...)
- CLIC (2008 ...)

summary & conclusion

Tel Aviv, 3 -5 October 2010 High precision measurements ...

requirements and goals

(inspired by earlier work at SLAC and DESY)

- dP/P = 0.25% or better (systematics limited) from physics requirments (see e.g. Moortgat-Pick et al., arXiv:hep-ph/0507011)
- polarimetry should be robust and fast for instant tuneup of spin-dependent machine parameters

spin precession and directional alignment tolerance

$$\begin{split} \theta^{spin} &= \gamma \frac{g-2}{2} \, \theta^{orbit} = \frac{E_0}{0.44065 \, GeV} \, \theta^{orbit} & \Delta P/P \leq 0.1\% \longrightarrow \Delta \theta^{spin} \leq 45 \, mrad \\ \\ \hline \mathbf{LC} & \mathbf{CLIC} \\ \theta^{spin} &= 567 \, \theta^{orbit} \quad for \, E_0 = 250 \, GeV \\ \rightarrow \Delta \theta^{orbit} \leq 80 \, \mu \, rad & \partial^{orbit} \leq 80 \, \mu \, rad \end{split}$$

Tel Aviv, 3 -5 October 2010 High precision measurements ...

ILC (RDR 2007): Polarimeter Locations

FIGURE 2.7-2. BDS layout showing functional subsystems, starting from the linac exit; X - horizontal position of elements, Z - distance measured from the IP.

Tel Aviv, 3 -5 October 2010 High precision measurements ...

CLIC: Suitable locations

alignment exists at two locations: s = 742 m (s = 1555 m)but only the first one qualifies for polarimetry (upstream of energy collimation and sufficient free space for laser beam crossing)

> (s is here distance from end of linac)

- $605.132 \mu rad$ (s = 742 m) - $601.351 \mu rad$ (s = 2796 m)

aligned within 3.8 µrad

Tel Aviv, 3 -5 October 2010 High precision measurements ...

CLIC BDS: polarimeter location

Parameter	Units	Value
Length (linac exit to IP distance)/side	m	2750
Maximum Energy/beam	TeV	1.5
Distance from IP to first quad, L*	m	3.5-6
Crossing angle at the IP	mrad	20
Nominal core beam size at IP, σ^* , x/y	nm	45/1
Nominal beam divergence at IP, θ^* , x/y	μ rad	7.7/10.3
Nominal beta-function at IP, β^* , x/y	mm	10/0.07
Nominal bunch length, σ_z	$\mu \mathbf{m}$	44
Nominal disruption parameters, x/y		0.15/8.4
Nominal bunch population, N		3.7×10^9
Beam power in each beam	MW	14
Preferred entrance train to train jitter	σ	< 0.2
Preferred entrance bunch to bunch jitter	σ	</td
Typical nominal collimation aperture, x/y	σ_x/σ_y	10/55
Vacuum pressure level, near/far from IP	nTorr	100/10

(s is now distance from e+e- IP)

Tel Aviv, 3 -5 October 2010 High precision measurements ...

depolarization issues

	$\Delta heta_x^{orbit}(rms) \ (\mu rad)$	$\Delta heta_y^{orbit}(rms) \ (\mu rad)$	$\Delta heta^{spin}_{x}(rms) \ (mrad)$	$\Delta heta_y^{spin}(rms) \ (mrad)$
$250~{ m GeV}$	245	27	139	15
400 GeV	153	17	139	15

Table 2: Disrupted beam rms angular spreads of orbit and spin angles.

angular spread of disrupted beam leads to corresponding spread of spin vector distribution

depolarization estimate for TESLA: disrupted beam: ~ 1 % (extracted beam) beam at e+e- IP: ~ 0.25% (lumi-weighted)

ΔP (downstream)* ~ 4 x ΔP (lumi-weighted) upstream value is much closer to lumi-weighted

Bailey et al. (EPAC08)

* directly behind IP

(with suitable extraction line optics it is possible to reduce angular spread and depolarization at the location of the downstream polarimeter)

Tel Aviv, 3 -5 October 2010 High precision measurements ...

Γ	Parameter set	Depolarization ΔP_{lw}					
		ILC 100/100	CLIC-G				
	T-BMT	0.17%	0.14%	0.10%			
	S-T	0.05%	0.03%	3.4%			
	incoherent	0.00%	0.00%	0.06%			
	coherent	0.00%	0.00%	1.3%			
	total	0.22%	0.17 %	4.8%			

Compton polarimetry basics I: kinematics

E ₀ (GeV)	λ (nm)	ω ₀ (eV)	X	ω _{max} (GeV)	E _{min} (GeV)	ω _c (GeV)	E _c (GeV)
100	532	2.33	3.569	78.114	21.886	64.088	35.912
250	532	2.33	8.923	224.806	25.194	204.225	45.775
500	532	2.33	17.846	473.469	26.531	449.612	50.388
1000	532	2.33	35.692	972.746	27.254	946.939	53.061
1500	532	2.33	53.538	1472.496	27.504	1445.983	54.017

$$x = \frac{4E_0\omega_0}{m^2}\cos^2(\theta_0/2) \simeq \frac{4E_0\omega_0}{m^2} \qquad \omega_{max} = E_0\frac{x}{1+x} \qquad \omega_c = E_0\frac{x}{2+x}$$
$$\omega_c = E_0\frac{x}{2+x}$$
$$\omega_c = E_0\frac{x}{1+x}$$

Tel Aviv, 3 -5 October 2010 High precision measurements ...

Compton polarimetry basics II :

cross sections, spin asymmetry, scattering angles - 1 < P < + 1 - $1 < \lambda < +1$ ϑ_{nax} $= 2 \omega_0 / m$ $A = \frac{d\sigma^- - d\sigma^+}{d\sigma^- + d\sigma^+}$

Tel Aviv, 3 -5 October 2010 High precision measurements ...

scattering angles, cross sections at 1.5 TeV

10 9

8

7 6 5

4 3

2

0 |

 $\Theta e and \Theta_{\gamma} (\mu rad)$

$$y = 1 - \frac{E}{E_0} = \frac{\omega}{E_0}$$
$$r = \frac{y}{x(1-y)}$$

$$\sigma_0 = \pi r_0^2 = 0.2495 \ barn$$

θ_e and θ_γ vs. Energy E₀ = 1.5 TeV, ∞₀ = 2.33 eV

 $E_0 = 1.5 \text{ TeV}, \omega_0 = 2.33 \text{ eV}$

$$\frac{d\sigma}{dy} = \frac{2\sigma_0}{x} \left[\frac{1}{1-y} + 1 - y - 4r(1-r) + P\lambda r x(1-2r)(2-y) \right]$$

Tel Aviv, 3 -5 October 2010 High precision measurements ...

K. Peter Schüler Compton Polarimetry for ILC and CLIC

1500

cross sections and spin asymmetry near the Compton edge

Tel Aviv, 3 -5 October 2010 High precision measurements ...

Compton polarimetry basics III: luminosity for pulsed lasers

$$\mathcal{L} = f_b N_e N_\gamma g$$

 $f_{b} = \text{bunch crossings per sec}$ $N_{e}, N_{\gamma} = \text{no. of } e, \gamma \text{ per bunch}$ g = geometry factor $\sigma_{x\gamma}, \sigma_{y\gamma} = \text{transverse laser beam size}$ $\sigma_{z\gamma} = c \sigma_{t\gamma} = \text{laser pulse length}$ $\theta_{o} = \text{laser crossing angle}$

$$\mathcal{L} = \frac{\mathcal{L}_{max}}{\sqrt{1 + (0.5 \ \theta_0 \ \sigma_{z\gamma} \ / \ \sigma_{y\gamma})^2}}$$

$$\mathcal{L}_{max} = \frac{f_b N_e N_{\gamma}}{2\pi \sigma_{x\gamma} \sigma_{y\gamma}}$$

$$g = \frac{1}{2\pi \; \sigma_{x\gamma} \; \sigma_{y\gamma} \; \sqrt{1 \; + \; (0.5 \; \theta_0 \; \sigma_{z\gamma} \; / \; \sigma_{y\gamma})^2}}$$

$\sigma_{t\gamma}$	$\sigma_{z\gamma}$		$\mathcal{L}/\mathcal{L}_{max}$	
(ps)	(mm)	3 mrad	10mrad	30mrad
0	0	1.000	1.000	1.000
5	1.5	0.999	0.989	0.912
10	3.0	0.996	0.958	0.743
15	4.5	0.991	0.912	0.505
20	6	0.984	0.857	0.486
30	9	0.965	0.743	0.347
40	12	0.941	0.640	0.268
50	15	0.912	0.555	0.217
100	30	0.743	0.316	0.110
1000	300	0.110	0.033	0.011
10000	3000	0.011	0.003	0.001

 \Rightarrow effectiveness of laser degrades with increasing pulse length & crossing angle

Tel Aviv, 3 -5 October 2010 High precision measurements ...

Laser for TTF injector gun

regen. multi-stage Nd:YLF ampl. (built by Max-Born-Inst.) operates at nominal pulse & bunch pattern of TESLA

S. Schreiber et al. NIM A 445 (2000) 427

Tel Aviv, 3 -5 October 2010 High precision measurements ...

Laser parameters

for TESLA TDR (2001), we assumed TTF-style laser of variable wavelength:

configuration	E_0	$\langle I_e \rangle$	λ	ϵ_{γ}	$< P_L >$	j_{γ}	L
	(GeV)	(μA)	(nm)	(eV)	(W)	(μJ)	$(10^{32} cm^{-2} s^{-1})$
TESLA-500	250	45	532	2.33	0.5	35	1.5
TESLA-800	400	45	1064	1.165	1.0	71	6.0
Giga-Z	45.6	45	266	4.66	0.2	14	0.2

green IR UV

Table 9: Reference parameters for statistical tables.

ILC: employ similar laser for upstream chicane polarimeter, (operate only with green line at all ILC beam energies)

CLIC: assume standard Q-switched YAG laser for feasibility study

Tel Aviv, 3 -5 October 2010 High precision measurements ...

laser for CLIC study

- will consider here only standard Q-switched YAG lasers with the following parameters:
 - 100 mJ pulse energy at 532 nm (2.33 eV)
 - 50 Hz operation (one laser pulse per CLIC bunch train)
 - ~3 ns pulse width (σ_t ~ 1 ns), will cover ~5 adjacent CLIC bunches
 - laser spot size $\sigma_x = \sigma_y = 50 \ \mu m$
 - crossing angle of $\theta_0 = 10$ mrad
 - overlap efficiency with the ultra-short CLIC bunches will be poor, but sufficient for decent polarimetry
- other lasers

with pulse length and repetition rate better matched to the peculiar bunch and pulse structure of the CLIC machine

- can and should of course be considered
- this will require in-depth examination with consultation of laser experts

Tel Aviv, 3 -5 October 2010 High precision measurements ...

CLIC study: luminosity for Q-switched YAG laser:

$$\mathcal{L} = f_b N_e N_\gamma g$$

For small crossing angle θ_0

$$g = \frac{1}{2\pi \sqrt{\sigma_{xe}^{2} + \sigma_{xy}^{2}} \sqrt{\sigma_{ye}^{2} + \sigma_{yy}^{2}} \sqrt{1 + \frac{\sigma_{ze}^{2} + \sigma_{zy}^{2}}{\sigma_{ye}^{2} + \sigma_{yy}^{2}}} (\theta_{0}/2)^{2}}$$

 f_b = number of bunches per second hit by laser N_e = number of particles per bunch N_g = number of photons in laser puls g = geometry factor

$$g = g_{max} \varepsilon$$

$$g_{max} = \frac{1}{2\pi \sqrt{\sigma_{xe}^{2} + \sigma_{xy}^{2}} \sqrt{\sigma_{ye}^{2} + \sigma_{yy}^{2}}}$$

$$f_{b} = 5 \cdot 50 = 250 \, Hz$$

$$N_{e} = 3.72 \cdot 10^{9}$$

$$N_{\gamma} = 0.100 \, J \, (2.33 \, eV \cdot 1.602 \cdot 10^{-19} \, J \, / eV) = 2.68 \cdot 10^{17}$$

$$CLIC:$$

$$\sigma_{xe} = 300 \, \mu m = 0.03 \, cm$$

$$\sigma_{ye} = 27 \, \mu m = 0.0027 \, cm$$

$$\sigma_{z\gamma} = 30 \, cm \, (1 \, ns)$$

$$\theta_{0} = 10 \, mrad = 0.010 \, rad$$

$$g_{max} = 921.2 \, cm^{-2}$$

$$\mathcal{E} = 0.333$$

$$L = 7.645 \cdot 10^{30} \, cm^{-2} \, s^{-1}$$

Tel Aviv, 3 -5 October 2010 High precision measurements ...

CLIC study: pulsed laser efficiency

Tel Aviv, 3 -5 October 2010 High precision measurements ...

Tesla studyV. Gharibyan, N. Meyners, K.P. Schüler,
www.desy.de/~lcnotes/notes.html, LC-DET-2001-047

	e+/e- beam	laser beam	
energy	250 GeV	$2.3 \ \mathrm{eV}$	
charge or energy/bunch	$2 \cdot 10^{10}$	$35 \ \mu J$	
bunches/sec	14100	14100	
bunch length σ_i	1.3 ps	10 ps	
average current(power)	$45 \ \mu A$	0.5 W	
$\sigma_x \cdot \sigma_y (\mu m)$	10-1	$50 \cdot 50$	
beam crossing angle	10 mrad		
luminosity	$1.5 \cdot 10^{32}$	$m^{-2}s^{-1}$	
cross section	0.136 - 10	$)^{-24}cm^2$	
detected events/sec	1.0 -	10^7	
detected events/bunch	0.7 -	10 ³	
$\Delta P/P$ stat. error/sec	neglig	gible	
$\Delta P/P$ syst. error	~ 0.	5%	

- minimal space & no special magnets
- need to change laser wavelength to UV for z-pole running

Tel Aviv, 3 -5 October 2010 High precision measurements ...

Chicane Design

- essential for downstream polarimetry (separates Compton electrons from low-energy disrupted beam background), but adventageous also for upstream polarimetry
- requires ~ 60 meters length
- constant field settings $\int B \, dl$ over wide range of energies
- good acceptance of Compton spectrum at all energies without changing laser wavelength
- laser crossing (Compton IP) at mid-chicane

Tel Aviv, 3 -5 October 2010 High precision measurements ...

4-Magnet Chicane: general layout

Tel Aviv, 3 -5 October 2010 High precision measurements ...

Chicane properties

(W. Oliver, MDI workshop, SLAC, 2005)

X_{max} = 4 ω₀ p_T L / m² ← position of Compton edge is independent of beam energy e.g. X_{max} = 17.8 cm for $ω_0 = 2.33$ eV, P_T = 0.25 GeV/c, L = 20 m

Tel Aviv, 3 -5 October 2010 High precision measurements ...

movable laser beam

Tel Aviv, 3 -5 October 2010 High precision measurements ...

vacuum chamber overview

chambers are tapered to minimize wake fields

Tel Aviv, 3 -5 October 2010 High precision measurements ...

vacuum chamber detail

laser beam crossing requires ~ 1 m long insertion/exit slots along z (wake field effects have been studied and were found to be harmless)

Tel Aviv, 3 -5 October 2010 High precision measurements ...

electron detector

- design similar to gas Cerenkov employed in SLD Compton polarimeter
- C_4F_{10} gas (~10 MeV threshold)
- detector will be immune against low-energy and diffuse background (syn. rad.)
- 20 channels, 10 mm wide each, will cover a large fraction of the Compton spectrum
- Cerenkov photon detection with conventional PMs, but other technologies are also explored

Tel Aviv, 3 -5 October 2010 High precision measurements ...

some simulation results

input parameters

0.5 x 10^6	no. of Compton evt's per po	larity
676749.	random seed	
2.33	laser photon energy	(eV)
250.	electron energy	(GeV)
10.	crossing angle	(mrad)
1.50	luminosity (10^32 / cm	1^2 / sec)
0.250	chicane transv. mom. kick (GeV/c)
2.	magnet length	(m)
20.	cntr. dist. magnets 1&2 (3&	4) (m)
10.	cntr. distance magnets 2&3	(m)
0.7	dist. mag. 4 edge to det. ch.	n (m)
20	no. of det. channels (max. 1	00)
10.	det. channel x-size (hor.)	(mm)
20.	det. channel y-size (vert.)	(mm)
150.	det. channel length along z	(mm)
20.	distance det. ch. 1 to beam	(mm)
50.	z-dist. btw. det. channels	(mm)
1	meas. time for stat. error	(sec)
0.80	beam pol. to calculate stat.	error

 $E_0 = 250 \text{ GeV}$ $\omega_0 = 2.33 \text{ eV} \text{ (green laser)}$ $\mathcal{L} = 1.5 \text{ x } 10^{32}/\text{cm}^2/\text{sec}$

results

Ch. #	x [mm]	\mathbf{N} +	N-	Α	Rate*A ²	Rate [MHz]	dP/P [%]
1	25	60,682	23,368	-0.444	0.337	1.710	0.228
2	35	45,868	17,348	-0.451	0.262	1.287	0.260
3	45	35,673	16,012	-0.380	0.152	1.052	0.335
4	55	28,337	16,029	-0.277	0.069	0.903	0.486
5	65	22,996	16,956	-0.151	0.019	0.813	0.924
6	75	18,333	17,876	-0.013	0.000	0.737	11.521
7	85	15,248	18,744	0.103	0.007	0.692	1.466
8	95	12,025	19.818	0.245	0.039	0.648	0.646
9	105	9,881	20,480	0.349	0.075	0.618	0.473
10	115	7,815	21,525	0.467	0.130	0.597	0.370
11	125	6,246	21,961	0.557	0.178	0.574	0.324
12	135	4,849	22,795	0.649	0.237	0.562	0.289
13	145	3,479	23,315	0.740	0.299	0.545	0.266
14	155	2,385	23,821	0.818	0.357	0.533	0.250
15	165	1,346	24,171	0.895	0.416	0.519	0.238
16	175	457	20,900	0.957	0.398	0.435	0.249
17	185	0	0				
18	195	0	0				
19	205	0	0				
20	215	0	0				

overall stat. error: for dT = 1 sec

dP/P = 0.082% (very fast!)

Tel Aviv, 3 -5 October 2010 High precision measurements ...

ILC polarimeter chicane: some nasty historic detour

Tel Aviv, 3 -5 October 2010 High precision measurements ...

electron spectroscopy at CLIC

BDS detail behind s = 742 m

Laser IP at s = 742 m, Compton electron detector at s = 907 m (behind 12 dipoles, as shown, or behind a lesser number of dipoles, but with reduced performance)

Tel Aviv, 3 -5 October 2010 High precision measurements ...

CLIC detector hodoscope: where to place it?

- trajectories shown indicate Compton electrons in the range of interest: red, orange and yellow trajectories correspond to the Compton edge for beam energies of 1.5 TeV, 1.0 TeV and 0.5 TeV.
- a detector position behind 12 dipoles (at s = 907 m) would give excellent coverage for beam energies from 1.5 TeV down to 135 GeV, but would require several wide-aperture dipoles
- a detector position behind 6 dipoles (at s = 835 m) would work only for beam energies down to 511 GeV.

Tel Aviv, 3 -5 October 2010 High precision measurements ...

CLIC study: expected performance

Mean Energy and Bin Width (GeV)

Tel Aviv, 3 -5 October 2010 High precision measurements ...

CLIC study: expected performance

Tel Aviv, 3 -5 October 2010 High precision measurements ...

CLIC study: statistical errors

measurement time	1 s	60 s
statistical error	$\Delta P/P$	$\Delta P/P$
bins 1-10 (edge region) combined	0.89%	0,11%
all 25 bins combined	0.61%	0.08%

Tel Aviv, 3 -5 October 2010 High precision measurements ...

summary & conclusion

- laser-based Compton scattering provides a powerful tool for high-energy electron and positron beam polarimetry
- with suitable lasers matched to the bunch and pulse pattern of the machine, measurements will be very fast, allowing instant feedback for spin control elements in the machine
- overall errors for ILC will be limited by systematics to the level of ~ 0.2% which is comparable to the degree of depolarization of the incoming beams from beam-beam interaction up to the lumi-weighted interaction point
- comparison of upstream polarimetry with downstream polarimetry (not covered here) and physics-based polarization analysis will check the control of systematics
- detailed studies have been carried out for TESLA and for ILC, based on a dedicated TTF-style laser
- a feasibility study has also been carried out for CLIC, assuming a standard Q-switched YAG laser

Tel Aviv, 3 -5 October 2010 High precision measurements ...