High precision measurements of luminosity at future linear colliders and polarization of lepton beams

Results of test beam analysis for GaAs prototype

Novgorodova Olga

Plan:

- > Introduction
- > Beam Calorimeter
- > Sector Prototype for BeamCal
- > Test Beam DESYII (Summer 2010)
- > Measurements
- > Analysis
- > Conclusions

Beam Calorimeter

- > Around Beam-pipe
- 30 Layers
 - Tungsten absorber:
 - Sensor layer GaAs or Di
- > Radii 2...15 cm, depth ~12 cm
- Sensor segmentation 8x8 mm²

Radii 2...8.5 cm

Al metallization

Thickness 500 µm

GaAs plate

First Prototype for GaAs

5 GaAs Sensor Plates were tested in the Lab **Al window Fan Out** Sensor **R/O Board**

Al window

TestBeam DESY II

Test Beam Area 22

> Set Up with two boxes

Test Beam Set Up

- > 7mm scintillator fingers
- > Zeus Telescope
 - > 3 Si planes
 - > Double perpendicular layers
 - > 640 strip channels (50µm)
- > Precise XY Table
- > Sensor Box
- > ADC v1721 as for BCM1F
- > Veto scheme
- Beam > DAQ systems
 - > Telescope
 - > BCM1F

Test Beam Measurements

- > To prove front end electronics operation together with sensor and automated readout
- Measure every pad (~200.000 events)
- Edges between pads irradiation
 Green and red regions
 ~2.000.000 events
- > Cross talk measurements

Charge Collection Efficiency (CCE)

$$CCE = \frac{Q_{collected}}{Q_{induced}}$$

$$CCD = CCE d_{thikness}$$

CCE ~ 30%, HV 60V

Beam Profile

- > Beam Profile
- > No tracking
- > 90 degree rotation
- > 3 Scint in coincidence

Telescope Analysis

- TelAna provides information about hits (two algorithms of hit calculations + alignment between Si planes)
 - DIG digital → seed signal
 - COG center of gravity
- > Tracks are reconstructed:
 - 3 hits per telescope
 - 1 hit in every plane
 - 62% of tracks
- > 2 telescope planes are used for linear fit for prediction of the position in the sensor

Time Stamping

- > Telescope DAQ has ~msec; Sensor Box DAQ ~ μsec
- > shift between samples in DUT and Telescope ±2 events

Time Stamping Example

- Same threshold
- Diff shifts in time stampings

- > 3 Si Planes X positions
- > Blue 1 plane
- > Green 2 plane
- > Black 3 plane
- > Red DUT
- > Reconstruction position for outer pad

Tracking

Alignment

- No connection between Telescope and Sensor Box
- > Alignment is made for Telescope itself

> Surrounding pads were not grounded.

CCE vs Position

- Number of hits as a function of reconstructed x position in sensor box.
- CCE as a function of reconstructed x position in sensor box.

Spectra

Different behavior in different areas of pad

Conclusions

- In the summer 2010 a first measurement combining a sensor with a front-end ASIC was made on the TestBeam DESYII (Hamburg).
- > The next step will be to add the ADC ASIC.
- > BUT:
- > Analysis is continuing for edge investigations
- Tracking and alignment have to be understood fully
- CCE vs Voltage measures in the Lab to compare results with previous measurements and with test beam results
- >

Back Up Slides

>Thank You for Your Attention!

Lab Measurements

- > I-V and C-V measurements of GaAs sectors
- CCE for every pad
- > Signal to Noise ratio
- > Cross Talk
- > CCE vs Voltage

- > Tracking reconstruction
- > Tracking analysis and uniformity studies

