Preliminary LumiCal beam test results

Jonathan Aguilar, Marcin Chrząszcz, Eryk Kielar, Szymon Kulis, Wojciech Wierba, and Leszek Zawiejski

Preview

- Electronics setup
- Telescope setup
- Beam test data
- Simulation of beam test data

Goals

- Check that readout chain output is reasonable
 - Energy deposition fits Landau distro
 - Good signal-to-noise ratio
- Calibration mode and physics mode
 - Shaper and preamp have different gains
 - Only observe saturation in high-gain mode with absorbers

Sensors

- 1 tile (4 sectors)
- 64 radial pads / sector (1.8 mm)
- High resistivity n-type
 Si bulk, 320 um thick
- p+ pads with Al metallization, DC coupled

Fanout

Only "one-sided" bonded to sensor

Electronics: FE ASIC

- Charge-sensitive amplifier
- 1st order shaping
- Pole-zero cancellation circuit
- ∼1V dynamic range
- Gain
 - Low: 0.105 mV/fC
 - High: 25 mV/fC
 - Beam test: high gain and medium gain (preamp high, shaper low)

Development of front-end electronics for the luminosity detector at ILC http://dx.doi.org/10.1016/j.nima.2009.06.059

Electronics: ADC

- ADC: Caen VME V1724
- 14 bits
- 8 channels
- 100 msps
 - Sampling period 10 ns
- Optical link

PCB

Full readout chain

- Biasing & power blocks
- Output buffers (line drivers)
- 5 chips bonded
- Sensor & fanout glued
- 8 sensors pads bonded

Telescope

- 3 modules
 - 2 single-sided Si planes per module, 32 x 32 x 0.3 mm
 - Perpendicular
- 640 strips/plane
 - Strip pitch 25 um
 - Readout pitch 50 um

Photo credit: Hans Henschel

Setup 1 – no tungsten

Front

Top

Photo credit: Hans Henschel

Setup 2 – tungsten absorbers (not to scale)

Setup 2: tungsten absorbers

Sensor box Tungsten plates Stand

Triggers
Photo credit: Marcin Chrząszcz

Telescope planes (3rd hidden)

Telescope control and DAQ software

- X-Y table control software (written by Sandro)
- DESY ADC DAQ program modified to support our ADC (ask Szymon for details)
- Temperature monitoring software
- Telescope DAQ
 - http://www.desy.de/~gregor/MVD_Telescope

```
short_intro.html (for reference)
```

Beam positions

Calibration signals

pad	rms baseline	landau mpv	SNR	pad	rms baseline	landau mpv	SNR
0	33.2	588.7	17.7	4	16.7	300.5	18
1	31.2	586.9	18.8	5	17.1	303.8	17.8
2	31.5	588.4	18.7	6	17.2	302.4	17.5
3	31.4	587.5	18.7	7	18.4	303.6	16.5

Units: ADC LSB

Timing

Time response of single front-end channel

Neighboring signals

Amplitude

Measurement (red) versus simulation (green) for 2 X0, sum over all channels

Energy deposition in single channel fits Landau distribution

Crosstalk

Position reconstruction

Position calculated from telescope data.

Color set by pad signal.

Simulation

- Reproduce beam test results
- Geant4 Monte Carlo
- Simulations done by both Bogdan and me
- Units scaled to units of MPV, where the MPV is taken from the distribution of energy deposition

Simulation 1: The Good

Scales normalized

Beam test: (ADC count)/(single electron MPV)

Simulation: (Energy deposition)/(single electron

MPV) $1 X_0$

Simulation 2: The Bad

Simulation 3: The Ugly

Some notes and future directions

- Max charge deposition: ~200 fC
 - Measured in medium-gain mode, saturates preamp in calibration mode
- Now that we have position reconstruction working, we can try to reproduce the beam test data more precisely

Summary

- ADC and ASIC appear to be working
- Simulation matches beam test data well for low radiation lengths, but not for high
- Crosstalk should be explained
- Lessons learned for next beam test
 - Keep distance between absorbers and sensors controlled
 - Measure distances more precisely
 - Cover both x and y range of pads

The Krakow members would like to thank DESY-Zeuthen for their invaluable help

DESY-Hamburg Beam Test Fashion Show

Photo artist: Marcin Chrząszcz