Study of high energy electron reconstruction for the Beam Calorimeter at ILC

Madalina Stanescu-Bellu

DESY - Zeuthen

3-Oct-2010 – FCAL Meeting Tel Aviv

Detector Concepts at the ILC. The ILD Concept

Detector Concepts:

- 1) Large Detector Concept
- 2) GLD

1 and 2 merged into the International Large Detector (ILD)

- 3) Silicon Detector SiD
- 4) the 4th concept

Forward region of the ILC

Improves the hermeticity (covers more an precise area for detection) down to few mrad polar angles.

Luminosity detector (LumiCal) –

- -> precise luminometer measuring the rate of Bhabba events
- -> acts as mask (reduces background)

Beam calorimeter (BeamCal) -

- -> Polar angles 5->40 mrad (fills the whole of LumiCal)
- -> reduces the backscattering of pairs into the inner ILC detector

Grey = Graphite (10cm, to reduce low energetic backscattered particles from Bcal)

Green = BeamCal (30layers)

BeamCal

EM longitudinal sandwich calorimeter
30layers of Sensors(Diamond)
alternating with Absorbers(Tungsten)

<u>Length=12cm; OuterRadius=15cm</u> <u>14mrad beam crossing angle</u>

Sensors must resist to high radiation

One sensor segment (17 rings divided into 8mm*8mm pads

green=Beamstrahlung pairs black=beam pipes red=reconstructed high energy electron

Analysis of vast amount of deposited energy from e+e- beamstrahlung pairs → fast estimation of the luminosity and post collision measurement of colliding beams parameters

BeamCal - task

The Neutralinos escape without being detected => only the taus are visible.

Conclusion: BeamCal should reconstruct the Single High Energetic Electrons from (2).

<u> 2Photons – SM process</u>

QED process with high cross-section, background from process (1).

Can be suppressed by electron or positron tagging.

Guinea Pig - BeamBeam interaction simulation

When linear e+ e- beams go through each other

- The electric field is mainly compensated, while the magnetic fields of the bunches add up.
- Bunches are squeezed by the magnetic field → LUMINOSITY ENHANCEMENT →
- Transverse acceleration →
- Energy loss in the form of synchrotron radiation: BEAMSTRAHLUNG → BACKGROUNDS

e+e- from the beams→ gamma-gamma → Beamstrahlung e+e-

Beamstrahlung

Guinea Pig - BeamBeam interaction simulation

MONTE CARLO BACKGROUND Simulation from collision of two beams (e+e- or e-e-).

Energy of each beam = 250GeV => a total 500GeV Central Mass Energy

BEAM AND ACCELERATOR PARAMETERS:	<u>NOMINAL</u>	<u>SB-2009</u>
Number of bunches per train	2625	1312
Particles per beam	2.0 x 10^10	2.0 x 10^10
Horizontal Beamsize	640 nm	470nm
Vertical Beamsize	5.7 nm	5.8 nm
Horizontal Emittance	10.0 mm x mrad	10.0 mm x mrad
Vertical Emittance	0.040 mm x mrad	0.035 mm x mrad
Luminosity	2 x 10^34	1.5 x 10^34

OUTPUT:

ASCII format files, 1 file for 1 Bunchcrossing (BX), with Beamstrahlung e+ and e- parameters: Energy in GeV/c (positive for e-, negative for e+); Velocity (v/c): vx,vy,vz

Mokka - general software schema

- → C++ simulation using GEANT4 (which simulates passage of particles through matter)
- → <u>GEOMETRY DATA DRIVEN</u>, several detector models in MySQL geometry database.
- → ALL DETECTORS INCLUDED IN SIMULATIONS (comparing to BECAS, another BeamCal simulation software, which has only BeamCal)
- → Runtime for 1BX:
 - → MOKKA: 3 days→ BECAS: 0.5 day
- → Magnetic Field in MOKKA can be:
 - → Constant on Z axis
 - → 1D field map on Z axis
 - → 2D field map

Mokka- Parameters and files

INPUT: Guinea Pig files (1 file = 1 BX)

OUTPUT: LCIO format files (1 file = 1 BX)

PARAMETERS:

DetectorModel ILD_00fw – **old BeamCal geometry** with 1D field map

ILC_Main_Crossing_angle 14mrad (angle between beam pipes)

LorentzTransformationAngle 7mrad.

Mokka version: 06-07-patch02

BEAMSTRAHLUNG BACKGROUND FILES:

2000 BXs of nominal accelerator and beam parameters passed through Mokka (from DESY Hamburg)

SIGNAL FILES:

- high energetic electrons passed through Mokka (~4000 for each of 50-100-150-200-250GeV), with enough distribution on the impact points for each radius of BeamCal
- another set for Calibrating (~2000 for each of the 5 energies), at the central radii

Marlin

Modular Analysis and Reconstruction for the LINear collider

We wrote a <u>processor</u> which converts: SLCIO format file generated by Mokka, into ROOT format files necessary for the reconstruction algorithm.

ROOT file:

tree with a branch for each pad : coordinates of pad and total energy deposited in the pad from the hits.

Beamstrahlung pairs - longitudinal shower development - 2000BXs in Mokka

Visualization of an EM <u>shower</u> evolution: sequence of br<u>emsstrahlung and pair production</u> of incoming electrons/photons.

Maximum for Longitudinal Shower: 4th BCal layer.

1Absorber layer=1Tungsten radiation length=0.35cm

In 1 radiation length, electrons loose all but 1/e of energy by bremstrahlung, and photons 7/9 of energy by pair production.

Beamstrahlung pairs - transversal shower development – 2000BXs in Mokka

BCAL ON NEGATIVE Z

BCAL ON POSITIVE Z

Maximum development around the first radii. 1Cell Size= 0.8 RM (1 Moliere Radius RM has 90% of all transversal E). White DeadArea is for Beam Pipes passage with 14mrad Crossing Angle, outgoing pipe being in the middle.

Single High Energetic Electron shower development – 100GeV in Mokka

Longitudinal shower of 100GeV sHEE. Peak at 7th BCal Layer, deeper than background.

Reconstruction Algorithm

Background influence:

- From 10 BXs of beamstrahlung background, calculate Mean and RMS for each pad
- Superimpose an 11th background BX with 1 single High Energetic electron (1 sHEe)
- Subtract from each cell the background Mean and 1 RMS (against fluctuations).
- Search for clusters:

Cluster definition:

- 1 cluster is made of towers with more then 10 consecutive cells
- Around the tower with maximal energy (Enmax), search neighboring towers
- If one of the neighbor towers has En>0.9 Enmax, then search neighbors for this tower too
- A cluster is considered a reconstructed electron if the Energy, Radius and Phi are within 1 RMS of the original values of the generated sHEe.

Calibration of BeamCal

The detector acts with a linear response to the shower (because not all is measured by the sensors, most is deposited in the absorbers).

Generate sHEEs with energy 50-100-150-300-250GeV, **that have the shower ~fully inside BeamCal** (i.e. at the medium radia) and plot energy spectrum

Make Gauss fit, use the Means in the *calibration curve* and fit linearly.

Calibration result will be used in the algorithm to identify the initial energy from the reconstructed cluster:

sHEe energy = 59.3 * deposited energy + 0.86

Energy resolution

The energy resolution of a calorimeter can be parameterized as

 $\sigma = p2*E + Resolution*sqrt(E) + p0$

Where:

1st term = detector non-uniformity and calibration uncertainty

<u>2nd term</u> = Resolution = statistics-related fluctuations (intrinsic shower fluctuations, sampling fluctuations)

3rd term = electronic noise

Use the same entries from the calibration histograms, but scaled with the calibration result. *fit polynomially.*

Energy resolution = 28%

Efficiency analysis - BeCas background files - BeCas signal files

Eff = Nb of reconstructed clusters / Nb of generated signal electrons

Electrons of higher energies or at higher radii are better reconstructed.

Reconstruction efficiency for sHEe as a function of radius: 50 (triangle), 150 (square), 250 (circle) GeV nominal beam parameters.

Fake rate analysis - Mokka background files - BeCas signal files

- → BXs of Beamstrahlung background can be mistakenly interpreted as sHEe.
- → Causes: the Beamstrahlung spectrum has a tail at high energies; large local fluctuations in the background.
- → We apply the algorithm in the same way, but use the 11th background BX without superimposing with a sHEe.
- → For every energy E, plot number of reconstructed signal electrons of energy >= E

Fake Rate = 1.5 %

Higher than 60GeV the fake rate is too small and we need higher statistics to investigate more precisely.

Generation of signal files – new set

I prepared in MOKKA a new set of signal files, 4000 for each energy.

PROBLEM:

It seems there are no impact points from the 12th radii forth (if the momenta are changed to direct the electron to higher radii, I just get showers with no defined impact point (probably because of backscattering).

Conclusions and future steps

What we did:

- We simulated in Mokka 2000 BXs of beamstrahlung pairs, with nominal beam parameters.
- We simulated in BeCas Single High Energy Electrons (sHEs)of 50-100-150-200-250 GeV and superimposed them on the background.
- An algorithm was developed to detect a sHEE on top of the pair background, and first efficiency and fake rate results were done.

Next steps:

- Tuning of the algorithm (change the number of RMS's threshold)
- Optimization of calorimeter segmentation. (both for smallest fake rate and highest efficiency in reconstruction)
- A new set of signal files was generated in Mokka. Algorithm will be run on these too.

Outlook:

- Results of this analysis will be used for stau production studies in the ILD detector.

THANK YOU VERY MUCH FOR LISTENING!!