Comparison of LumiCal Test Beam Data With MC Simulation

thicknes	high-gain	low- gain
1X0	51.5	45.5
2X0	48.	42.
3X0	44.5	38.5
4X0	41.	35.
5X0	37.5	31.5
6X0	34.	28.
7X0	30.5	24.5
8X0	27.	22.
9X0	22.	?
10X0	22.	?
11X0	22.	?

Moliere Radius

Beam Spot Center (center of instrumented area)

Critical for simulation results:

- size of the air gap
- position of beam w.r.t sensor center
- beam profile (σ_X and σ_Y)

First attempt to reproduce data With the parameters reported By test beam team failed.

- •It seems that MG parameters Better fit HG data
- •MG data simulations fail practically for all runs
- •HG data points are higher then MG Contrary to simulations

Attempt to reduce discrepancy:

- •The only difference in simulation between High and Mid Gains is the size of the air gap (distance absorber-sensor) larger for HG by 6mm .
- Air gaps reported by Test Beam Team as MG used as HG and modified to get better agreement between simulation and Measurement
- Beam profile approximated by gaus with sigma_X = 1.9 sigma_Y = 2.3 mm
- Position of the beam center for MG shifted By 1 mm off the sensor center along x and and up to 4 mm along y (depending on the run)

FCAL Tel Aviv 3-6 October 2010

- "Tuning procedure"
- was successful for MG data except (2X0 and 3X0)
- failed for HG data in the range (5X0 - 8X0)

possible reason for failures:

- improper description of the beam profile (is not really gaus)
- Lack of charge sharing (charge diffusion) between adjacent pads

MID-Gain - OK

High-Gain BAD

HG 6X0 - 8X0

- Saturation seen in data
 But not in MC
- Higher tails seen in data

Summary:

- in most runs agreement between measured and simulated detector response was achieved. It proves proper modeling of the detector in Geant4
- proper modeling of the beam profile may lead to further improvement
- crucial for simulation is accurate knowledge of sensor position and beam parameters
- for the future TB :
 - positioning and logging need to be automatized
 - larger instrumented area (2 sectors, 32 pads) needed to cover shower
 - air gap between absorber and sensor must be constant and reduced do minimum

MIP Signal

