Mokka simulation studies on the Very Forward Detector components at CLIC and ILC

Eliza TEODORESCU (IFIN-HH)

FCAL Collaboration Meeting Tel Aviv, October 2010

Overview

- What is QD0
- •QD0 in Mokka
- Electromagnetic doses for incoherent e+e- pairs
- Electromagnetic doses for Trident pairs
- Ongoing study on neutrons in QD0
- •New Mokka user BeamCal studies in Mokka

Final Focussing (FF) Quadrupole doublet at CLIC

QD0 Prototype

- Should fit into forward region
- -L* = 4.6 m
- Length 1.63 m
- Centered on the incoming beam-pipe
- 10 mrad space for outgoing beam-pipe
- Ri = 4.125 mm, Ro = 35 mm
- Coils extend a little beyond Z=3.5 m
- gradient 575 T/m
- Has to be stable to ≈ 0.1 nm

Superconducting quadrupole not feasible (unlike ILC, vibr. < 50nm)

- More background (BG) accumulated during one train
- Very small beam sizes at CLIC (+smaller bunch spacing: 0.5 ns, 312 bunches/train, 50 trains/s)

Hybrid QD0: permanent magnet + electro-magnet

Final Focussing (FF) at CLIC: quadrupole doublet

• Simplified QD0 model implemented in Mokka for CLIC_ILD detector concept

• What is the radiation dose onto the QD0 at nominal CLIC operating conditions? (sensitivity of permanent magnet material to radiation depends on material choice)

Software

- GuineaPig e+e- incoherent and trident pairs generation
- Mokka detector geometry simulation and particle showering (QGSP_BERT_HP)
- Marlin lcio files processing, analysis and reconstruction
- Root data analysis

Simplified Model of QD0 Prototype

-"8 shape" Quad design: (permits to accommodate the spent beam pipe)

Defined as sensitive detector for simulation studies

QD0 Results

Effect of the background produced during 1 BX at

- nominal CLIC 2008 parameters
- 20 mrad crossing angle
- -For incoherent processes (e+e- Incoherent Pairs)
- -For coherent processes (e+e- Trident Pairs)

Electromagnetic distributions in the X-Y and X-Z planes Fine segmentation for all components

Cylinder:

- 30 radial and 60 azimuthal sections (1mm high and 6 degree wide segments)
- Higher dose on the right: QD0 close to outgoing beam-pipe
- Highest dose: up to $0.5*10^{-6}$ Gy/BX $(1.35*10^{5}$ Gy/yr)
- Lowest dose: 0.05*10⁻⁶ Gy/BX (~kGy/yr)

Yoke and Coils

Much smaller doses than in the cylinder

Yoke:

- Increase around the outgoing beam-pipe,
- Highest dose: $8*10^{-8}$ Gy/BX ($21.5*10^{3}$ Gy/yr)
- Lowest dose: 1.10⁻⁸ Gy/BX (2.7.10³ Gy/yr)
- Lower values for the Coils

100 layers along X-, Y- and Z- axes:

- $-4.5x4.5 \text{ mm}^2$ in the X-Y plane
- $4.5x10 \text{ mm}^2$ in the X-Z plane

Eliza Teodorescu, FCAL Meeting, Tel Aviv

Electromagnetic dose along the depth of the Cylinder, Yoke and Coils

Cylinder and Yoke: after the first quarter of their length the dose is very close to 0 Coils: negligible dose only after the first half of the length

Eliza Teodorescu, FCAL Meeting, Tel Aviv

Electromagnetic dose along the depth of the Cylinder, Yoke and Coils

Cylinder and Yoke: after the first quarter of their length the dose is very close to 0 Coils: negligible dose only after the first half of the length

Trident Pairs - Electromagnetic dose

- Input files = 64% of a full BX (results rescaled to one BX)
- Dose behavior similar for incoherent and trident pairs but:
- larger number of particles and higher energies:

The doses from trident pairs are up to a factor three larger

Yoke

Eliza Teodorescu, FCAL Meeting, Tel Aviv

Trident Pairs - Electromagnetic dose

- Input files = 64% of a full BX (results rescaled to one BX)
- Dose behavior similar for incoherent and trident pairs but:
- larger number of particles and higher energies:

The doses from trident pairs are up to a factor three larger

Coils

Eliza Teodorescu, FCAL Meeting, Tel Aviv

Trident Pairs - Electromagnetic dose

- The doses from trident pairs are up to a factor three larger except for the cylinder
- Trident pairs:
 - wider distributions
 - larger total energy deposited (1.8 TeV compared to 1.6 TeV)
- This is also mirrored in the maximum dose in a single cell

Cylinder

Incoherent vs. Trident Pairs - Electromagnetic dose per cell

Complementary info on electromagnetic dose:

Few cells are exposed to the highest dose

Total Dose (Coherent + Incoherent) in the permanent magnet ~ 1 MGy/yr

Cylinder

Eliza Teodorescu, FCAL Meeting, Tel Aviv

Neutrons in QD0 - ongoing study

BeamCal at ILC

- Sandwich Calorimeter
- Centered on outgoing beam pipe

- Inner radius: 2.0 cm

- Outer Radius: 15 cm

Using the new BeamCal driver (by André Sailer): BeamCal01

- include it into ILD_00fwp01 Mokka model
- -write the Marlin processor to convert lcio to root files
- Comparison between Becas and Mokka results

Electromagnetic dose

Becas - almost double energy deposition Slight difference in the maximum depth Becas, layers 5-6 Mokka, layers 4-5

Electromagnetic dose

Mokka Case

Maximum Dose ~35 kGy/yr (layer 4)

Electromagnetic dose at the maximum of the shower

The dose is twice as large with Becas (at the maximum, lr.5 and 4, respectively) Mokka: ~0.2 MGy/yr closest to the beam-pipe

Electromagnetic dose per cell

Mokka Case

Energy per cell: **0.4 GeV/BX**

Dose per cell: ~0.2_{*}10⁶Gy/yr

Mokka Neutrons in BeamCal – ongoing study

Conclusions

- Detailed but simplified model of the final focus quadrupole magnet implemented in Mokka
- Estimated the electromagnetic dose in different components of QD0
- Dose decreases rapidly in the beam direction
- Highest dose for the permanent magnet less than 270 kGy/yr for Incoherent Pairs and ~500 kGy/yr for the Trident Pairs
- Highest dose in the CLIC QD0 permanent magnet for one year of operation approaches 1 MGy/yr
- In the yoke and coils much smaller doses: highest is 80 kGy/yr (yoke) and 3kGy/yr (coils)
- Electromagnetic doses in BeamCal with Mokka are ~2 times lower than with Becas
- Two magnitude order difference between inner and outer regions of the sensor, with Mokka
- Ongoing study on neutrons both for QD0 and BeamCal in Mokka

Thank you!