

FCAL Future

Wolfgang Lohmann, BTU and DESY

- FCAL is a R&D venture to develop novel detector technologies to instrument the very forward region of future collider
- Main collider are ILC, CLIC (LHC, sBELLE)
- LHC is running, timeline for ILC, CLIC are 'gliding'
- Our "glue" is a common physics interest
- Estimates of performance benchmarks are

Tuhoku Univ., Tel Aviv, Univ., DESY (Z.)

Very Forward Instrumentation- Example ILD

- Ongoing simulations to optimize detector design for
 - precise luminosity measurement,
 - hermeticity (electron detection at low polar angles),
 - assisting beam tuning (fast feedback of BeamCal data to machine)
- Challenges: radiation hardness (BeamCal), high precision (LumiCal) and fast readout (both)

Similar or harder challenges are expexted at CLIC
Our effort so far - Develop Technological Solutions to tackle the Challenges

October 5, 2010

FCAL Tel Aviv Oct. 2010

Dates Ahead

- ILC detector DBD 2012 (2013)
 - refining design considerations (MC studies)
 - completing the measurements with the sensor prototypes

- CLIC CDR (2011)
 - completing design studies

- Completing of the sensor plane prototypes (~2012)
 - adding ADCs, modify DAQ

UST ADC chips, PCB 2011

DESY Integration & Test 2011

TA DAQ (@UST) 2011

together beamtest mid 2011-2012

- use of the SLAC chip

SLAC completion of the chip 2011?

UC SC connection to a sensor 2011?

DESY would be interested in beam-test

Hardware issues

- 'second generation' sensor planes (AIDA) (~2014)
 - to be prepared for the calorimeter prototype
 - new connectivity scheme

Based on wire bonding:

- design of a 'slim plane'	Cracow(LumiCal)	DESY (BC)	2011
- production of a plane			2012
- lab & beam tests	+ TA		2012
- production, O(10 pieces)		2013

FE and ADC ASICS must be available 2013 (UST)

Based on second metalisation: to be followed as an option for silicon

Hardware issues

•	ASIC	development	for	CLIC conditions		(~2014)
---	------	-------------	-----	-----------------	--	---------

- specification Cracow INP 20

Mechanical structure for the prototype calorimeter (AIDA)

- CERN 2012

• Infrastructure for the prototype calorimeter (AIDA) (~2014)

- Cooling, concept INP 2012

- prototype, adopted to the setup 2014

- laser position monitoring INP 2012/2014

- DAQ TA/UST 2014 (see point 1)

Midterm Future

FP7 Partners:

AGH-UST Cracow (Marek Idzik)
CERN Geneva (Konrad Elsener)
DESY Zeuthen (W. Lohmann)
IFJPAN Cracow (L. Zawiejski)
TAU Tel Aviv (H. Abramowicz)

Infrastructure to tackle the scientific goal:

FCAL Specific infrastructure:

- •Flexible, high precision tungsten structure
- Fast FE Readout
- Innovative connectivity scheme
- Module construction and test devices (jigs, mechanics and electronics test facilities)
- Position control devices

Infrastructure common with others:

- Power pulsing
- Data acquisition
- Tracking in front of the calorimeter

Simulation Studies to Refine the Design

BeamCal: Electron Detection Capability

5B2009 beam parameter, no anti DID??

LumiCal: - Larger Background for SB2009, possibly no anti-DID, larger inner radius

- Completion of the physics background studies for CLIC

VINCA 2011

- bunch magnetic field effects

VINCA 2012

Both: - exercise of a calibration concept, using muons and Bhabhas