
Parallelizing Atlas Reconstruction and
Simulation:

Issues and Optimization Solutions for
Scaling on Multi- and Many-CPU Platforms

Charles Leggett1

Sebastien Binet2, Paolo Calafiura1, Keith Jackson1, David
Levinthal3, Mous Tatarkhanov1, Yushu Yao1

1Lawrence Berkeley National Lab, 2LAL, 3Intel

10/19/10CHEP 20102/23

Introduction

• Days of easy performance gains from faster CPU
frequency are over.
– CPU manufacturers are putting multiple cores on each CPU
– Hyperthreading increase number of virtual cores

• Atlas reconstruction uses ~ 1.5Gb of memory, so we will
run out of memory if we just run multiple jobs
simultaneously

• We will need to parallelize our code

• Two foci
– The results of parallelizing Atlas reconstruction, and how it scales

with the number of cores
– The issues we discovered while measuring scaling, and the

implications

10/19/10CHEP 20103/23

Styles of Parallelism

• Job
– Easiest
– Least data/code sharing
– No code rewriting
– AthenaMJ

• Event
– Share configuration information, services, some code
– Code changes to framework, transparent to users
– Parallelize I/O
– AthenaMP

• Sub-event
– Pick “regions of interest” within event to parallelize, eg calorimeter

• Algorithmic
– True vectorization
– Hardest
– Requires much re-writing of user code

10/19/10CHEP 20104/23

Job Level Parallelism with AthenaMJ

end

for i in range(4):
 $> Athena.py -c “EvtMax=25; SkipEvents=$i*25” Jobo.py

c
o
re

-0

JOB 0:
Events: [1,…,24]

c
o
re

-1

JOB 1:
Events: [25,…,49]

c
o
re

-2

JOB 2:
Events: [50,…,74]

c
o
re

-3

JOB 3:
Events: [75,…,99]

PARALLEL: independent jobs

start

endstart

endstart

endstart

init

init

init

init

10/19/10CHEP 20105/23

Event Level Parallelism with AthenaMP

end

Input
Files

Output
Files

OS-fork merge

firstEvnts

c
o
re

-0

WORKER 0:
Events: [0, 4, 8,…96]

c
o
re

-1

WORKER 1:
Events: [1, 5, 9,…,97
]

c
o
re

-2

WORKER 2:
Events: [2, 6, 10,
…,98]

c
o
re

-3

WORKER 3:
Events: [3, 7, 11,
…,99]

output-
tmp
files

output
tmp
files

Output
tmp
files

Output
tmp
files

init

Maximize
the shared
memory!

PARALLEL: workers event loopSERIAL:
parent-init-fork

SERIAL:
 parent-merge and finalize

> Athena.py --nprocs=4 -c EvtMax=100 Jobo.py

10/19/10CHEP 20106/23

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

single proc
AthenaMP

nbr of processes

m
e

m
o

ry
 u

se
 p

e
r

p
ro

ce
ss

, G
b

Memory Usage

AthenaMP ~0.5 Gb physical memory saved per process

- 8 core HT machine

• Single reco process uses ~1.5 Gb
• We can save significant memory through OS level sharing

10/19/10CHEP 20107/23

Event Throughput

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

50

AthenaMP
AthenaMJ

nbr of processes

e
ve

nt
s

/ m
in

memory limit hit,
swapping begins

- 8 core HT machine

10/19/10CHEP 20108/23

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

HT on
HT off

nbr of processes

e
ve

nt
s

/ m
in

Hyper-Threading

• Nature of instruction pipeline allows instructions to be
interleaved
– OS sees “virtual cores” as just another processor
– Only effective until one of the threads saturates a shared resource and

stalls

• Turn on HT when you have more processes than cores

- AthenaMP
- 8 cores,
- no affinity pinning

10/19/10CHEP 20109/23

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

affinity pinned
floating

nbr of processes

e
ve

nt
s

/ p
ro

c
/ m

in

CPU Affinity

• Linux schedulers will move processes from core to core during the
course of a job

• We can prevent this by pinning a process to a core via its affinity, and
gain 20%

- 100 events
- no event queue

10/19/10CHEP 201010/23

Part II

• Tools used to study performance and direct optimization

• Discoveries made from studying hardware level events

10/19/10CHEP 201011/23

Tools

• Linux tools:
– sar (I/O to disk and system loads)
– vmstat: memory performace
– IPM: time spent in I/O vs computation
– numastat/numactl: reports/controls NUMA memory settings

• Intel Performance Tuning Utility (PTU)
– Uses linux kernel module to provide a sampling profiler
– Captures information from hardware counters available on Intel

chips
• Information available varies between processor families

– Most accurate tool to understand what's going on at the hardware
level

– HUGE number of counters available
• Need an expert to know which counters to profile

10/19/10CHEP 201012/23

Initial Assumptions

• Our initial assumption was that we were I/O and memory
bandwidth limited
– We were WRONG

10/19/10CHEP 201013/23

1E+4 1E+5 1E+6 1E+7 1E+8

1

10

100

1000

10000

100000

L3 (4*3 MB)

arbitrary memory address (bytes)

ac
ce

ss
e

s

Size of Atlas Reconstruction

10/19/10CHEP 201014/23

1E+4 1E+5 1E+6 1E+7 1E+8

1

10

100

1000

10000

100000

0

10

20

30

40

50

60

70

80

90

100

Atlas Reco
Percent Usage

arbitrary memory address (bytes)

ac
ce

ss
e

s

p
e

rc
e

nt

Size of Atlas Reconstruction

10/19/10CHEP 201015/23

1E+4 1E+5 1E+6 1E+7 1E+8

1

10

100

1000

10000

100000

0

10

20

30

40

50

60

70

80

90

100

L1 (32K)
Atlas Reco
Percent Usage

arbitrary memory address (bytes)

ac
ce

ss
e

s

p
e

rc
e

nt

Size of Atlas Reconstruction

 L
1

C
ac

h
e

Penalties
L1 miss: 6 cycles

6.5 % fit in L1

10/19/10CHEP 201016/23

1E+4 1E+5 1E+6 1E+7 1E+8

1

10

100

1000

10000

100000

0

10

20

30

40

50

60

70

80

90

100

L2 (256 K)
Atlas Reco
Percent Usage

arbitrary memory address (bytes)

ac
ce

ss
e

s

p
e

rc
e

nt

Size of Atlas Reconstruction

Penalties
L1 miss: 6 cycles
L2 miss: 38 cycles

 L
2

C
ac

h
e

30% fit in L2

10/19/10CHEP 201017/23

1E+4 1E+5 1E+6 1E+7 1E+8

1

10

100

1000

10000

100000

0

10

20

30

40

50

60

70

80

90

100

L3 (4*2 MB)
L3 (4*3 MB)
Atlas Reco
Percent Usage

arbitrary memory address (bytes)

ac
ce

ss
e

s

p
e

rc
e

nt

L

3
C

ac
h

e

 N
eh

al
em

Size of Atlas Reconstruction

Penalties
L1 miss: 6 cycles
L2 miss: 38 cycles
L3 miss: 200 to 350 cycles

best case:
94.5% fit in L3
97% for Westmere

more realistic:
73.5% fit in L3
82% for Westmere

10/19/10CHEP 201018/23

Optimizing Large Object Oriented Code

• Inlining used to be the advice of choice but things are more
complicated

• Inlining increases binary size and can make ifetch misses
more costly and code slows down
– Even if fewer in overall number

• Large codes built of many small methods can result in flat
cycle profiles
– It can take thousands of functions to account for 80% of the clock

cycle samples

– Thus thousands of functions must be optimized to achieve a
significant performance improvement

10/19/10CHEP 201019/23

Issues with Large OOP Code Bases

• Function calls result in added instructions
– Call and return

– Runtime address resolution (trampolines) required for position
independent code/ shared object cross invocations

• Indirect branches can be more costly

– Freeing & restoring registers for local use

– Setting and reading function arguments

• Virtual function calls (function pointers) increase indirect
call instructions and associated pointer loads
– Virtual functions can't be inlined!

• Atlas code has 2500 shared libraries!

10/19/10CHEP 201020/23

Observations from PTU

• In Atlas code, functions are on average only 33 instructions
long

• Overhead for function calls is anywhere between 6 and 12
instructions
– We can have up to 35% overhead!

• We also see instruction starvation of about 20%

10/19/10CHEP 201021/23

Detecting OOP Inefficiencies

• Classic OOP will result in code bases of small functions
integrated together to invoke the algorithm

• With the help of experts at Intel we have developed a
series of signatures that identify these inefficiencies using
hardware counters and PTU

• All these are present in Atlas code (as well as other LHC
codes)

Low instruction_retired / call retired
High call_retired / branch_retired
High indirect_call / call_retired
High uops_issued.core_stall_cycles – resource_stalls.any

measures instruction starvation in pipeline

High ∑latency(source)*ifetch_miss(source)

10/19/10CHEP 201022/23

Conclusions: Short Term Solutions

• Use social network analysis/network theory to identify clusters
of active, costly function call activity

• Order clusters by total time and/or total “cost”
– Split time of functions shared between clusters by call counts

– Calls have a direction

• Utility functions must not be viewed as bridges

• Manually reduce function count in hot clusters by explicit code
inlining

• Prioritize work by call overhead cost to be gained

• Duplicate code as needed

• Reduce cross shared object call counts

10/19/10CHEP 201023/23

Conclusions: Longer Term Solutions

• We (HEP) are not the only ones facing these problems
– Oracle, IBM, Google all have similar issues

• They're only just now beginning to realize it

• We need new tools and analysis techniques
– Current tools fail to show where the problem are, or are not suited

to large scale deployment

• We need to drive these optimization techniques into the
compilers and linkers themselves

• Changes at the hardware level would also improve the
situation
– It's already happening: new counters are being included in Intel's

Westmere and Sandybridge chips which make profiling more useful
– If we can show Intel exactly what's wrong, and what it will take to fix

it in hardware, they will listen.

10/19/10CHEP 201024/23

Extra

10/19/10CHEP 201025/23

25

Architecture Upgrades
Intel NehalemIntel Cloverfield

most of LXPLUS machines

CPU-Memory symmetric access
• Hyper Threading ->two logical cores on physical one
• QPI Quick Path from CPU to CPU and CPU-to-Memory
• Turbo Boost -> dynamic change of CPU-frequency

• CPU-Memory non-symmetric access (NUMA)

10/19/10CHEP 201026/23

Sub-Event Parallelism

• Event based parallelism requires heavy I/O at end of jobs
for merging output files
– develop parallel I/O mechanisms

• Use separate worker threads to process distinct regions of
interest
– calorimeter, muon, silicon, etc
– single worker thread to distribute data objects to clients

• Will require significant rewriting of framework code

10/19/10CHEP 201027/23

Event Throughput Per Process for RDO to ESD Reconstruction on
Different Machines

turboboost
Nehalem: 2x quad core X550
 2.67 GHz, 24 Gb

Cloverfield: 2x quad core Xeon E5345
 2.33 GHz, 16 Gb

AMD: 8x quad core Opteron 8384-256Gb

10/19/10CHEP 201028/23

Worker Throughput, No Event Queue

individual worker
event rates

overall job rate

- 8 core HT machine

10/19/10CHEP 201029/23

Event Distribution Using Queue

c
o
re

-0

WORKER 0:
Events: [0, 4, 5,…]

c
o
re

-1
WORKER 1:
Events: [1, 6, 9,…]

c
o
re

-2

WORKER 2:
Events: [2, 8, 10,…]

c
o
re

-3

WORKER 3:
Events: [3, 7, 11,…]

events = multiprocesssing.queue(EvtMax+ncpus)
events = [0,1,2,3,4,…,99, None,None,None,None]

…

evt_loop(evt=events.get(); evt != None):
 evt_loop_mgr.seek (evt_nbr)
 evt_loop_mgr.nextEvent ()

Balance the arrival times of workers!
Slower worker doesn’t get left behind

10/19/10CHEP 201030/23

Worker Throughput with Event Queue

overall throughput,
without queue

individual worker
event rates

overall throughput,
with queue

- 8 core HT machine

10/19/10CHEP 201031/23

Intel PTU in Action

10/19/10CHEP 201032/23

Intel PTU Source View

10/19/10CHEP 201033/23

Size of CERN programs

Cacheline access frequency evaluated by sorting cachelines
by their accesses

Thus a binary working set size measurement

10/19/10CHEP 201034/23

0.8969516205 cycles/instruction

0.5032359284 retirement_stall_cycles/all_cycles

instruction starvation stall evaluation

0.1990232561 Instruction_starvation_stall_cycles/all_cycles

0.0637655987 L2_ifetch_hit*6/all_cycles

0.0434461272 llc_ifetch_hit*38/all_cycles

0.0046586531 ifetch_local_dram*200/all_cycles

0.0003089745 ifetch_remote_dram*350/all_cycles

0.0062712638 itlb_miss*35/all_cycles

0.1184506174 sum of ifetch penalties/all_cycles

load latency stall evaluation

0.0182017861 Load_l2_data_hit*6/all_cycles

0.0542206392 Load_LLC_data_hit*38/all_cycles

0.0557115481 Load_local_dram_data_hit*200/all_cycles

0.0001682534 Load_remote_dram_data_hit*350/all_cycles

0.1283022268 sum of load data fetch penalties/all_cycles

6.4360070187 instructions/branch

33.3007279867 instructions/call

5.1741286002 branches/call

0.1596675103 fraction of indirect calls

0.116038481 fraction of indirect branches

0.0213900884 fraction of mispredicted branches

Atlas PTU Results Overview

