
Multi-core Aware
Applications in CMS

Christopher D Jones
Peter Elmer

 Liz Sexton-Kennedy
Chris Green

 Anthony Baldocci

For the Offline and Computing Project of CMS

FNAL
Princeton
FNAL

1

Multi-core Aware Applications in CMS CHEP 2010

Overview
Why bother?

Forking: Copy on Write

Framework design

Measurements

Estimating performance of threading

Conclusion

2

Multi-core Aware Applications in CMS CHEP 2010

Why Bother?
HEP processing is naturally parallelizable
We have billions of events
Each event can be processed independently

Memory is becoming a limitation
Historically GB/US$ increases at the same rate as number of transistors in a CPU

http://www.jcmit.com/memoryprice.htm
Funding levels are not guaranteed to stay this high

We can afford 2GB/core now but may not in the future
Opportunistic use of grid sites improves if we lower our memory requirements

Not all grid sites have 2GB/core
Technical limitations on connecting many cores to shared system memory

http://www.intel.com/technology/itj/2007/v11i3/3-bandwidth/7-conclusion.htm

Multi-core aware applications can improve memory sharing
Threading

All threads share the same address space but have to worry about concurrent usage
Forking

Each child process gets its own address space
Untouched memory setup by the parent is shared between the child processes

3

http://www.jcmit.com/memoryprice.htm
http://www.jcmit.com/memoryprice.htm
http://www.intel.com/technology/itj/2007/v11i3/3-bandwidth/7-conclusion.htm
http://www.intel.com/technology/itj/2007/v11i3/3-bandwidth/7-conclusion.htm

Multi-core Aware Applications in CMS CHEP 2010

1

2

Forking: Copy on Write
Parent

1

2

1

2

4

Multi-core Aware Applications in CMS CHEP 2010

Forking: Copy on Write

1

2

Parent

1

2

1

2

Children

Child processes start by sharing the same memory pages as the
parent

5

Multi-core Aware Applications in CMS CHEP 2010

Forking: Copy on Write

1

2

Parent

1

2

1

2

Children

Children get their own pages when asking for new memory

6

Multi-core Aware Applications in CMS CHEP 2010

1

2

1’

1

2

Forking: Copy on Write
Parent

1

2

Children

If a child attempts to write to shared memory, it gets its own copy

7

Multi-core Aware Applications in CMS CHEP 2010

Forking: Copy on Write

1

2

Parent

2

1

2

Children

Parent needs to load into memory often used, non-volatile data

1’

Conditions, calibrations and geometry

8

Multi-core Aware Applications in CMS CHEP 2010

Parent
Reads configuration and loads modules

Configuration says how many children and # events/child
Opens input file and reads first run

modules are not called
Pre-fetches conditions, calibrations and geometry
Sends message to all modules that forking is going to happen

source closes file
Forks

Forking in CMS

9

Multi-core Aware Applications in CMS CHEP 2010

Parent
Reads configuration and loads modules

Configuration says how many children and # events/child
Opens input file and reads first run

modules are not called
Pre-fetches conditions, calibrations and geometry
Sends message to all modules that forking is going to happen

source closes file
Forks

Forking in CMS

Conditions

Geometry

Source Module A Module B Output

9

Multi-core Aware Applications in CMS CHEP 2010

Parent
Reads configuration and loads modules

Configuration says how many children and # events/child
Opens input file and reads first run

modules are not called
Pre-fetches conditions, calibrations and geometry
Sends message to all modules that forking is going to happen

source closes file
Forks

Forking in CMS

Conditions

Geometry

Source Module A Module B Outputfile

9

Multi-core Aware Applications in CMS CHEP 2010

Parent
Reads configuration and loads modules

Configuration says how many children and # events/child
Opens input file and reads first run

modules are not called
Pre-fetches conditions, calibrations and geometry
Sends message to all modules that forking is going to happen

source closes file
Forks

Forking in CMS

Conditions

Geometry

Source Module A Module B Outputfile

9

Multi-core Aware Applications in CMS CHEP 2010

Parent
Reads configuration and loads modules

Configuration says how many children and # events/child
Opens input file and reads first run

modules are not called
Pre-fetches conditions, calibrations and geometry
Sends message to all modules that forking is going to happen

source closes file
Forks

Forking in CMS

Conditions

Geometry

Source Module A Module B Outputfile

forking

9

Multi-core Aware Applications in CMS CHEP 2010

Parent
Reads configuration and loads modules

Configuration says how many children and # events/child
Opens input file and reads first run

modules are not called
Pre-fetches conditions, calibrations and geometry
Sends message to all modules that forking is going to happen

source closes file
Forks

Forking in CMS

Conditions

Geometry

Source Module A Module B Output

9

Multi-core Aware Applications in CMS CHEP 2010

Parent
Reads configuration and loads modules

Configuration says how many children and # events/child
Opens input file and reads first run

modules are not called
Pre-fetches conditions, calibrations and geometry
Sends message to all modules that forking is going to happen

source closes file
Forks

Forking in CMS

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

9

Multi-core Aware Applications in CMS CHEP 2010

Forking in CMS (cont)
Children
Redirects stdout and stderr to own files whose names contain parent PID and child #
Send messages to modules saying process is child X

Output modules append child # to file names
Sources calculate their event ranges to process (no IP communication) and re-open the file

Process events in child’s start/end range normally

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

10

Multi-core Aware Applications in CMS CHEP 2010

Forking in CMS (cont)
Children
Redirects stdout and stderr to own files whose names contain parent PID and child #
Send messages to modules saying process is child X

Output modules append child # to file names
Sources calculate their event ranges to process (no IP communication) and re-open the file

Process events in child’s start/end range normally

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

stdout_243_3 stderr_243_3

10

Multi-core Aware Applications in CMS CHEP 2010

Forking in CMS (cont)
Children
Redirects stdout and stderr to own files whose names contain parent PID and child #
Send messages to modules saying process is child X

Output modules append child # to file names
Sources calculate their event ranges to process (no IP communication) and re-open the file

Process events in child’s start/end range normally

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

stdout_243_3 stderr_243_3

child 3

10

Multi-core Aware Applications in CMS CHEP 2010

out_3.root

Forking in CMS (cont)
Children
Redirects stdout and stderr to own files whose names contain parent PID and child #
Send messages to modules saying process is child X

Output modules append child # to file names
Sources calculate their event ranges to process (no IP communication) and re-open the file

Process events in child’s start/end range normally

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

stdout_243_3 stderr_243_3

child 3

10

Multi-core Aware Applications in CMS CHEP 2010

out_3.root

Forking in CMS (cont)
Children
Redirects stdout and stderr to own files whose names contain parent PID and child #
Send messages to modules saying process is child X

Output modules append child # to file names
Sources calculate their event ranges to process (no IP communication) and re-open the file

Process events in child’s start/end range normally

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

begin:3001
 end:4000

file

stdout_243_3 stderr_243_3

child 3

10

Multi-core Aware Applications in CMS CHEP 2010

out_3.root

Forking in CMS (cont)
Children
Redirects stdout and stderr to own files whose names contain parent PID and child #
Send messages to modules saying process is child X

Output modules append child # to file names
Sources calculate their event ranges to process (no IP communication) and re-open the file

Process events in child’s start/end range normally

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Output

Conditions

Geometry

Source Module A Module B Outputfile

stdout_243_3 stderr_243_3

10

Multi-core Aware Applications in CMS CHEP 2010

Memory Sharing

0

200000

400000

600000

800000

00:00.000 01:00.000 02:00.000 03:00.000 04:00.000 05:00.000

Shared Data vs Time

S
h
a
re

d
 D

a
ta

 (
k
B

)

Time since start of process (minutes)

0

200000

400000

600000

800000

00:00.000 01:00.000 02:00.000 03:00.000 04:00.000 05:00.000

Private Data vs Time

P
ri
va

te
 D

a
ta

 (
k
B

)

Time since start of process (minutes)

Measurements done using reconstruction with 64bit software on
4 CPU, 8 core/CPU 2GHz AMD Opteron(tm) Processor 6128

Shared memory per child: ~700MB
Private memory per child: ~375MB
Total memory used by 32 children: 13GB
Total memory used by 32 separate jobs: 34 GB

Saved 62% of memory

Short periods of high parallelism

Extended periods of only 1 or 2 modules running
Tracking
Electron and muon finding

11

Multi-core Aware Applications in CMS CHEP 2010

Throughput

Measurements done using reconstruction with 64bit software,
raw data, reading and writing to local disk

Measure total number events processed divided by the sum of
the time taken by all cores

Ignores edge effects of startup and shutting down

0

0.275

0.550

0.825

1.100

0 8 16 24 32 40

Events/sec/core vs Number of Cores

E
ve

n
ts

/s
e
c
/c

o
re

Number of Cores Used

Measured Forked
Measured Separate Jobs

0

12.5

25.0

37.5

50.0

0 8 16 24 32 40

Events/sec vs Number of Cores

E
ve

n
ts

/s
e
c

Number of Cores Used

Measured Forked
Measured Separate Jobs
Perfect Scaling

12

Multi-core Aware Applications in CMS CHEP 2010

Time Dispersion
The framework does pre-assigned round-robin event distribution
with each child assigned N concurrent events to processes

E.g. with 3 children each told to do 2 concurrent events

The way events are distributed to the children affects how close
in time all the children end work, i.e. dispersion

Measure dispersion by calculating utilization:
(Sum of children processing time)/(max child processing time)/(number of children)

equal to 1 when all children take the same amount of time

1 2 3

Events in File

Child Process

Child Timing
1
2
3

13

Multi-core Aware Applications in CMS CHEP 2010

Time Dispersion
The framework does pre-assigned round-robin event distribution
with each child assigned N concurrent events to processes

E.g. with 3 children each told to do 2 concurrent events

The way events are distributed to the children affects how close
in time all the children end work, i.e. dispersion

Measure dispersion by calculating utilization:
(Sum of children processing time)/(max child processing time)/(number of children)

equal to 1 when all children take the same amount of time

1 2 3

Events in File

Child Process

Child Timing
1
2
3

13

Multi-core Aware Applications in CMS CHEP 2010

Time Dispersion
The framework does pre-assigned round-robin event distribution
with each child assigned N concurrent events to processes

E.g. with 3 children each told to do 2 concurrent events

The way events are distributed to the children affects how close
in time all the children end work, i.e. dispersion

Measure dispersion by calculating utilization:
(Sum of children processing time)/(max child processing time)/(number of children)

equal to 1 when all children take the same amount of time

1 2 3

Events in File

Child Process

Child Timing
1
2
3

13

Multi-core Aware Applications in CMS CHEP 2010

Time Dispersion
The framework does pre-assigned round-robin event distribution
with each child assigned N concurrent events to processes

E.g. with 3 children each told to do 2 concurrent events

The way events are distributed to the children affects how close
in time all the children end work, i.e. dispersion

Measure dispersion by calculating utilization:
(Sum of children processing time)/(max child processing time)/(number of children)

equal to 1 when all children take the same amount of time

1 2 3

Events in File

Child Process

Child Timing
1
2
3

13

Multi-core Aware Applications in CMS CHEP 2010

Time Dispersion
The framework does pre-assigned round-robin event distribution
with each child assigned N concurrent events to processes

E.g. with 3 children each told to do 2 concurrent events

The way events are distributed to the children affects how close
in time all the children end work, i.e. dispersion

Measure dispersion by calculating utilization:
(Sum of children processing time)/(max child processing time)/(number of children)

equal to 1 when all children take the same amount of time

1 2 3

Events in File

Child Process

Child Timing
1
2
3

13

Multi-core Aware Applications in CMS CHEP 2010

Time Dispersion
The framework does pre-assigned round-robin event distribution
with each child assigned N concurrent events to processes

E.g. with 3 children each told to do 2 concurrent events

The way events are distributed to the children affects how close
in time all the children end work, i.e. dispersion

Measure dispersion by calculating utilization:
(Sum of children processing time)/(max child processing time)/(number of children)

equal to 1 when all children take the same amount of time

1 2 3

Events in File

Child Process

Child Timing
1
2
3

13

Multi-core Aware Applications in CMS CHEP 2010

Time Dispersion
The framework does pre-assigned round-robin event distribution
with each child assigned N concurrent events to processes

E.g. with 3 children each told to do 2 concurrent events

The way events are distributed to the children affects how close
in time all the children end work, i.e. dispersion

Measure dispersion by calculating utilization:
(Sum of children processing time)/(max child processing time)/(number of children)

equal to 1 when all children take the same amount of time

1 2 3

Events in File

Child Process

Child Timing
1
2
3

13

Multi-core Aware Applications in CMS CHEP 2010

Time Dispersion MC

Reco MC works reasonably well with max sequential # events
High Pt QCD utilization: 0.92
TTbar utilization: 0.92
Minimum bias utilization: 0.85

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 5.75 11.50 17.25 23.00

Duration (minutes)

F
o

rk
e
d

 C
h
ild

High Pt QCD
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 3 6 9 12

Duration (minutes)

F
o

rk
e
d

 C
h
ild

TTbar

Duration of Forked Children For Reconstruction

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 3.5 7.0

Duration (minutes)

F
o

rk
e
d

 C
h
ild

Minimum Bias

14

Multi-core Aware Applications in CMS CHEP 2010

Time Dispersion
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 7.5 15.0 22.5 30.0

Duration (minutes)

F
o

rk
e
d

 C
h
ild

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 3.975 7.950 11.925 15.900

Duration (minutes)

F
o

rk
e
d

 C
h
ild

Duration of Forked Children
using 1 Sequential Event

Duration of Forked Children
using Max Sequential Events

Some RAW files have ‘bigger’ events at beginning of file
The output files from the fast children are half the size of the files from the slow children

Utilization of max sequential events: 0.38

Utilization of 1 sequential event: 0.95
15

Multi-core Aware Applications in CMS CHEP 2010

Event Distribution
Large N (concurrent events) helps with input efficiency
ROOT has a read-ahead cache so large N means more cache hits
Measurement with N = max with 32 children

Average total read operations/sec after startup: 6.2 ops/s
Average read size after startup: 600kB

Measurement with N = 1 with 32 children
Average total read operations/sec after startup: 156 ops/s
Average read size after startup: 25kB

Minimum N should probably be around (cache size)/(average event size in the file)

Max size N (#events/#cores) aids in merging of result file
Can merge output files in order and get back event ordering of original input file

Large N can lead to large dispersion if event characteristics
change over the length of the input file (i.e. with time)

16

Multi-core Aware Applications in CMS CHEP 2010

Read Performance
How reco file is merged affects input performance of analysis
Merge step always takes the same amount of time regardless of event ordering
Output files are just concatenated together

Reason: framework always ‘plays’ events from same luminosity
section contiguously

Luminosity section is created every 23 seconds during data taking
If events from same lumi are scattered through a file, file reads will be ‘random’

RECO with max consecutive events read-via-cache: 5900 MB
RECO with 1 consecutive event read-via-cache: 750 MB

Optimum is to keep events from same Lumi together
Order of events in Lumi does not matter

Planned solution:
Each child writes one temporary file per lumi section
Merge job reads the temporary files in lumi section order

Max N

Small N

input file
child output files

NOTE: color denotes luminosity section

17

Multi-core Aware Applications in CMS CHEP 2010

Threading
Threading an application should allow greater event throughput
with nearly the same memory footprint

Simplest change would be to run modules in parallel
Assumes Module A not dependent on results from Module B

Conditions

Geometry

Source Module A Module B Output

18

Multi-core Aware Applications in CMS CHEP 2010

Threading
Threading an application should allow greater event throughput
with nearly the same memory footprint

Simplest change would be to run modules in parallel
Assumes Module A not dependent on results from Module B

Conditions

Geometry

Source

Module A

Module B

Output

18

Multi-core Aware Applications in CMS CHEP 2010

Threading Estimates
Can estimate performance benefits from threading if know
Average time each module takes to process an event
What modules create data used by another module

Already recorded by framework

Calculation
Sort module’s by start time

end time of last to stop dependent module
Last module’s end time is estimated parallel processing time for 1 event
Gives # of concurrently running modules per time period

19

Multi-core Aware Applications in CMS CHEP 2010

Threading Estimates
Can estimate performance benefits from threading if know
Average time each module takes to process an event
What modules create data used by another module

Already recorded by framework

Calculation
Sort module’s by start time

end time of last to stop dependent module
Last module’s end time is estimated parallel processing time for 1 event
Gives # of concurrently running modules per time period

19

B

A

C

D

Multi-core Aware Applications in CMS CHEP 2010

Threading Estimates
Can estimate performance benefits from threading if know
Average time each module takes to process an event
What modules create data used by another module

Already recorded by framework

Calculation
Sort module’s by start time

end time of last to stop dependent module
Last module’s end time is estimated parallel processing time for 1 event
Gives # of concurrently running modules per time period

19

B

A

C

D

Multi-core Aware Applications in CMS CHEP 2010

Threading Estimates
Can estimate performance benefits from threading if know
Average time each module takes to process an event
What modules create data used by another module

Already recorded by framework

Calculation
Sort module’s by start time

end time of last to stop dependent module
Last module’s end time is estimated parallel processing time for 1 event
Gives # of concurrently running modules per time period

19

B

A

C

D

Multi-core Aware Applications in CMS CHEP 2010

Threading Estimates
Can estimate performance benefits from threading if know
Average time each module takes to process an event
What modules create data used by another module

Already recorded by framework

Calculation
Sort module’s by start time

end time of last to stop dependent module
Last module’s end time is estimated parallel processing time for 1 event
Gives # of concurrently running modules per time period

19

B

A

C

D

Parallel Time

Multi-core Aware Applications in CMS CHEP 2010

Threading Estimates
Can estimate performance benefits from threading if know
Average time each module takes to process an event
What modules create data used by another module

Already recorded by framework

Calculation
Sort module’s by start time

end time of last to stop dependent module
Last module’s end time is estimated parallel processing time for 1 event
Gives # of concurrently running modules per time period

19

B

A

C

D

Parallel Time
1 2 1

Multi-core Aware Applications in CMS CHEP 2010

Reco Samples Used
Minimum Bias
Quickest to processes and most prevalent

T Tbar
Middle of the road complexity

High Pt (3.0 - 3.5TeV) QCD
Most complex and slowest to process

20

Multi-core Aware Applications in CMS CHEP 2010

TTbar Estimates

0

4

8

12

16

20

0 0.5 1.0 1.5 2.0

Number of Running Modules vs Time for TTBar RECO
N

u
m

b
e
r

o
f

c
o

n
c
u
rr

e
n
tl
y

ru
n
n
in

g
 m

o
d

u
le

s

Average time processing one event (sec)

Short periods of high parallelism

Extended periods of only 1 or 2 modules running

21

Tracking
Electron and
muon finding

Multi-core Aware Applications in CMS CHEP 2010

Min Bias Estimates

0

6

12

18

24

30

0 0.2 0.4 0.6 0.8

Number of Running Modules vs Time for Minbias RECO
N

u
m

b
e
r

o
f

c
o

n
c
u
rr

e
n
tl
y

ru
n
n
in

g
 m

o
d

u
le

s

Average time processing one event (sec)

22

Multi-core Aware Applications in CMS CHEP 2010

High Pt Estimates

0

4

8

12

16

20

0 1.75 3.50 5.25 7.00

Number of Running Modules vs Time for High Pt QCD RECO
N

u
m

b
e
r

o
f

c
o

n
c
u
rr

e
n
tl
y

ru
n
n
in

g
 m

o
d

u
le

s

Average timeline for processing one event (sec)

23

Multi-core Aware Applications in CMS CHEP 2010

Estimate Comparison

Event Type Max number
of threads

Average number
of threads

Minimum bias 26 2.64

T Tbar 16 2.62

High Pt QCD 20 2.19

24

Multi-core Aware Applications in CMS CHEP 2010

Fewer Threads
Previous estimates assumed infinite number of available threads

Assume module processing time scales with #modules/#threads

1.0

1.4

1.8

2.2

2.6

3.0

1 4 7 10 13 16

TTbar Speedup vs Number of Cores

S
e
ri
a
l p

ro
c
e
ss

in
g

 t
im

e
/p

a
ra

lle
l p

ro
c
e
ss

in
g

 t
im

e

Number of Available Threads

90% of max reached using only 4 threads

25

Multi-core Aware Applications in CMS CHEP 2010

Conclusion
Forking
Provides good memory sharing

Saving 21 GB when running 32 children
The simplest event splitting per children is fine for MC but inefficient for data

Need more analysis to determine what event splitting to use for children to get good I/O
Event order in merged file must be controlled to guarantee good analysis read performance

Splitting reco output on luminosity section boundary should be sufficient

Threading
Future may require using cores to speed up the processing of a single event
Present decomposition of algorithms not conducive to high parallelization
Work needed to make present code thread safe is beyond the potential gains

For now and the near future, forking provides the best benefits

26

