
The evolution of CMS
software performance studies

Matti Kortelainen
Helsinki Institute of Physics

with P. Elmer, G. Eulisse, V. Innocente, C. Jones and L. Tuura
on behalf of the CMS collaboration

International Conference on Computing in High
Energy and Nuclear Physics 2010, Taipei, Taiwan

October 19, 2010

Introduction

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 2/24

• Improving software performance and efficiency
gives clear benefits
− Less resources required
− Less time needed

• The program performance must be measured
• What can be measured?

− CPU time (per processed event)
− Memory allocations and footprint
− CPU/wall clock time ratios
− I/O rates and patterns
− Event data sizes, transactions to databases,

application startup times, software compilation
times, etc.

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 3/24

History

What has been done
Lessons learnt

Evolution of the optimization model

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 4/24

• From “Performance Task Force” ...
− Started with cleanup of basic C++

errors
? Reducing dynamic memory churn
? Unnecessary copies and temporaries

• ... to work done routinely and system-
atically as a part of release integration,
testing and planning
− Various metrics (CPU time, memory

footprint etc) produced automatically
during integration builds

− Results are available on the web

CPU time/event for series
of integration builds

Observations: dynamic memory
management & code size

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 5/24

• In the past, 20 % of CPU time was spent in memory (de)allocation
• Some common causes for the dynamic memory churn

− Confusion how std::vector works, copying of large structures
− Dynamic memory allocation in tight loops, numerous tiny objects
− Multiple in-memory copies, strings used in inappropriate places

• CMS applications have from about 500 to over 1000 shared libraries
− Now testing single big binaries, with shared libraries only for exter-

nals

Observations: dynamic memory
management & code size

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 5/24

• In the past, 20 % of CPU time was spent in memory (de)allocation
• Some common causes for the dynamic memory churn

− Confusion how std::vector works, copying of large structures
− Dynamic memory allocation in tight loops, numerous tiny objects
− Multiple in-memory copies, strings used in inappropriate places

• CMS applications have from about 500 to over 1000 shared libraries
− Now testing single big binaries, with shared libraries only for exter-

nals

std::vector<float> rescaledNoises() {
std::vector<float> noises = getNoises();
std::vector<float> gains = getGains();
std::transform(noises.begin(), noises.end(), gains.begin(),

noises.begin(), std::divides<float>());
return noises;

}

Example of
std::vector

copying

Observations: external issues

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 6/24

• Transition to 64 bit
− More and larger registers, reduced function call overhead, etc.
− Transition from x87 to SSE floating point simultaneously
− 5–20 % improvements in CPU time seen
− Memory footprint increases by 25–30 % (in RSS)

• GCC compiler version updates
− 4.3.4 used in production, 4.5 testing is starting

• Vectorization
− As supported by compiler (tree-vectorize in GCC)
− Directly implemented in some CMSSW utilities algorithms such as

geometrical vectors and rotations
• Starting performance measurements

CPU time/event by release

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 7/24

Reconstruction of TTbar MC events (64 bit)
Release Date Time/event # of allocs Alloc rate
3_5_X 2010-02-06 4.1 s 334 k 53.9 GB 821 kHz 126 MB/s
3_6_X 2010-04-16 3.4 s 314 k 53.5 GB 934 kHz 152 MB/s
3_7_X 2010-05-27 3.2 s 293 k 47.3 GB 914 kHz 140 MB/s
3_8_X 2010-07-21 3.1 s 284 k 42.6 GB 920 kHz 141 MB/s

• CPU time/event has decreased despite continued development in re-
construction algorithms

• Number of memory allocations has decreased (rate has not)
• About 8 % of CPU time still wasted in malloc/free/etc
• The comparison is not entirely fair, also other optimizations have been

going on simultaneously
• Measured on 2.33 GHz Intel Xeon E5410 (Harpertown), 16 GB memory

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 8/24

Present state

Where we are now

Status

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 9/24

We know what to do for the dynamic mem-
ory allocations, and we know how to use the
tools like Valgrind and IgProf to detect and
measure them.

Most of the hot spots have been fixed in the
code. However, this makes it challenging to
get a noticeable total impact with only small,
localized optimizations. A consequence is
that more work is required to get significant
improvements.

of functions

0 200 400 600 800 100012001400160018002000

F
ra

c
ti
o

n
 o

f
a

ll
c
y
c
le

s

0

0.2

0.4

0.6

0.8

1

IgProf

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 10/24

• A simple tool for measuring
− Sampling profiles
− Memory allocations
− Memory leaks

• Works in Linux (both 32 and
64 bit), no recompilation
needed

• Freely available at Source-
Forge

• Web based navigator for easy
browsing and sharing of the
reports http://igprof.sourceforge.net/

http://igprof.sourceforge.net/

IgProf: performance profile

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 11/24

Foo

http://cms-service-sdtweb.web.cern.ch/cms-service-sdtweb/igperf/vocms81/slc5_amd64_gcc434/380p4/navigator/recottbar02_perf/16

Seconds

http://cms-service-sdtweb.web.cern.ch/cms-service-sdtweb/igperf/vocms81/slc5_amd64_gcc434/380p4/navigator/recottbar02_perf/16

IgProf: memory allocations

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 12/24

Foo

http://cms-service-sdtweb.web.cern.ch/cms-service-sdtweb/igperf/vocms81/slc5_amd64_gcc434/380p4/navigator/recottbar03_total/16

Bytes # allocs

http://cms-service-sdtweb.web.cern.ch/cms-service-sdtweb/igperf/vocms81/slc5_amd64_gcc434/380p4/navigator/recottbar03_total/16

IgProf: status update

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 13/24

• IgProf now supports 64-bit Linux systems
• Originally ∼10 % of profile hits lost due to stack

unwinding inaccuracies
• GCC issues

− Only versions 4.5.0 and later generate sufficiently
accurate unwind info

− Need to rebuild as much as possible, including
libm, with 4.5.0+

− Issues tracing through global constructors (_init,
crt) may still remain

• libunwind issues
− Latest git version needed, includes several of our

critical fixes, especially for accuracy and reliability
− Factor 5–6 performance improvement, not in git yet

but criticial for memory profiling

Function
Caller #1
Caller #2

Caller #3
Caller #4

...

Determine the func-
tion call chain by
unwinding the call
stack

Profiling with CPU performance events

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 14/24

CPUs and memory architectures have become more
and more complex. Although sampling profilers
can tell where the problems are, they don’t tell
too much about what the actual problem is.

Modern CPUs have a Performance Monitoring
Unit (PMU) which has counters for various per-
formance events, like for
• Retired instructions
• Unhalted cycles (“all” cycles), stalled cycles
• Cache hits and misses, local/remote memory

access (NUMA)

Tools: Perfmon2 (see talk by D. Kruse in this session)
and Intel Performance Tuning Utility (PTU)

Intel Performance Tuning Utility

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 15/24

• Commercial product from Intel
• Profiling by the performance events
• Plugin to Eclipse, kernel module for the PMU

interaction
• Can show events per

− process, module, source file, function
− source line, basic block and even assembly

line (limited precision)
• Has also more sophisticated analysis tools

− Difference of two profiles
− Cache line distributions

• Results can be studied in Eclipse, and
exported to a spreadsheet

PTU: function list

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 16/24

Foo

CPI ∼6.8

PTU: source view

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 17/24

Foo

CPU_CLK_UNHALTED.THREAD

INST_RETIRED.ANY

UOPS_RETIRED.STALL_CYCLES

Lessons from PTU

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 18/24

• The actually executed code can be seen from the retired instructions
and the retired cycles events

• Found functions with
− bad Cycles/Instruction (CPI) ratio
− high number of divisions and square roots (ARITH.CYCLES_DIV_BUSY)

• Almost half of the cycles are spent in front end decoder stalls
− In other words, CPU starved from instructions
− Not analyzed, known causes include bad branch prediction perfor-

mance and high sensitivity to icache misses (L1I, L2, ITLB)
− Possible sources include code size and locality1, and function pointer

chasing (incl. virtual functions)
− Single big binaries expected to yield much more insight

L. Tuura, V. Innocente, G. Eulisse, Analysing CMS software performance using IgProf, OProfile and callgrind, CHEP071

None of these can be seen in sampling profiles!

http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030
http://dx.doi.org/10.1088/1742-6596/119/4/042030

ptuview, a web display for PTU reports

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 19/24

• Analyzing PTU reports requires either Eclipse+PTU itself, or the
reports can be exported to a spreadsheet
− Neither is very handy for sharing the information in a large

collaboration
− Started to write a tool for displaying the reports on the web

• ptuview is a CGI script written in Python
− JavaScript used for UI improvements

• Uses the spreadsheet files exported from PTU as the data store
• Lists events per function, also source and assembly views
• Performance events organized as a tree to intuitively guide through the

most important events
• Freely available at http://mkortela.web.cern.ch/mkortela/ptuview/

• Development effort continues

http://mkortela.web.cern.ch/mkortela/ptuview/
http://mkortela.web.cern.ch/mkortela/ptuview/
http://mkortela.web.cern.ch/mkortela/ptuview/
http://mkortela.web.cern.ch/mkortela/ptuview/
http://mkortela.web.cern.ch/mkortela/ptuview/
http://mkortela.web.cern.ch/mkortela/ptuview/
http://mkortela.web.cern.ch/mkortela/ptuview/
http://mkortela.web.cern.ch/mkortela/ptuview/
http://mkortela.web.cern.ch/mkortela/ptuview/
http://mkortela.web.cern.ch/mkortela/ptuview/

ptuview: tree diagram

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 20/24

Foo

http://mkortela.web.cern.ch/mkortela/cgi-bin/demo/ptuview/cern_wsm/hot/function

http://mkortela.web.cern.ch/mkortela/cgi-bin/demo/ptuview/cern_wsm/hot/function

ptuview: function list

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 21/24

Foo

http://mkortela.web.cern.ch/mkortela/cgi-bin/demo/ptuview/cern_wsm/hot/function

Sorting

Tooltip for the formula

Links to source
views

http://mkortela.web.cern.ch/mkortela/cgi-bin/demo/ptuview/cern_wsm/hot/function

ptuview: source view

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 22/24

Foo

http://mkortela.web.cern.ch/mkortela/cgi-bin/demo/ptuview/cern_wsm/src/67#414

CPU_CLK_UNHALTED.THREAD Links to assembly view

http://mkortela.web.cern.ch/mkortela/cgi-bin/demo/ptuview/cern_wsm/src/67#414

Multicore

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 23/24

• Although we could benefit from multicore
machines by running blindly a process per
core, we would also need more memory
(O(1 GB)/process)

• Most of the memory is only read and could
be shared between the processes (program
code, conditions, geometry, etc)

• For example, by forking and relying on
copy-on-write by the operating system we
can save substantial amount of memory

• See talk by C. Jones in parallel session 18
(today morning) for more information

of cores
0 5 10 15 20 25 30 35

T
o

ta
l
m

e
m

o
ry

 (
G

B
)

0

5

10

15

20

25

30

35
Separate jobs

Forked jobs

Measurement with 64 bit software
on 4 CPU, 8 core/CPU 2 GHz
AMD Opteron

34 GB

13 GB

Conclusions

M.J. Kortelainen (HIP), The evolution of CMS software performance studies CHEP10, 2010–10–19 24/24

• Long experience from a dedicated effort for performance optimization
• Moved from a “task force” to a routine work done as a part of the re-

lease integration and testing
• Continued to improve the CMSSW reconstruction performance
• Actively and systematically with better tools

− IgProf has been updated to 64 bit
− We are in transition to use tools with CPU performance events

? Perfmon2
? Intel Performance Tuning Utility (PTU)

− A web display (ptuview) being developed to ease the sharing of the
performance reports in a large collaboration

• Future plans
− Continue the development of multicore aware CMSSW
− Continue to learn the new tools and to interpret their output

