Cosmic String Loop Distribution with a Gravitational Wave Cutoff

Larissa Lorenz

Institute of Mathematics and Physics Centre for Cosmology, Particle Physics and Phenomenology (CP3) Université Catholique de Louvain la Neuve

work with C. Ringeval and M. Sakellariadou

JCAP 1010:003 [arXiv:1006.0931]

Outline

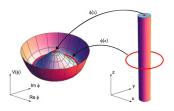
- 1 Introduction
 - Cosmic Strings
 - String Networks and Loop Formation
- 2 Towards the Cosmological Attractor
 - Evolution Equation
 - Loop Production Function
 - Attractor in the Radiation Era
 - Relaxation Towards Scaling
- 3 Conclusions

Outline

- 1 Introduction
 - Cosmic Strings
 - String Networks and Loop Formation
- - Evolution Equation
 - Loop Production Function
 - Attractor in the Radiation Era
 - Relaxation Towards Scaling

What are cosmic strings?

- Cosmic strings are line-like defects produced in GUT phase transitions in the early Universe (Kibble 1976).
- After formation, the cosmic string network undergoes
 - stretching,
 - intercommutation events and
 - energy loss by gravitational radiation.

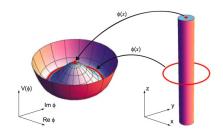


Source: J. Rocha (2008)

Under these effects, the network rapidly reaches a scaling regime.

What are cosmic strings?

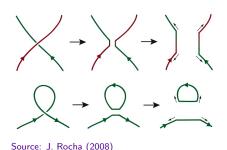
- Energy density $\rho_{\infty} \propto 1/d_{\rm h}^2$: strings never dominate the Universe at late times.
- Long cosmic strings are characterized by their tension U(or dimensionless GU, $G \equiv m_{p_l}^{-2}$).
- Once a candidate for structure formation, now constrained by WMAP to contribute < 10%.



Source: J. Rocha (2008)

for
$$a \propto t^{\nu}$$
: $d_{\rm h}(t) = \frac{t}{1-\nu}$
from CMB: $GU < 7 \times 10^{-7}$

Cosmic string loops



- Loops are formed at intersection or auto-commutation events (P = 1 for Nambu Goto).
- Loops evacuate energy density from the network so that scaling is reached.
- Cosmic string loops are characterized by their length ℓ .

We study the number density distribution $\mathbf{n}(\ell, \mathbf{t})$ of cosmic string loops of size ℓ at time t.

Outline

- 1 Introduction
 - Cosmic Strings
 - String Networks and Loop Formation
- - Evolution Equation
 - Loop Production Function
 - Attractor in the Radiation Era
 - Relaxation Towards Scaling

Distribution of loops

At which size are cosmic string loops typically formed?

- "one scale model" (Kibble 1976): length ℓ given by typical distance between long strings, *i.e.* (fraction of) the horizon size $d_{\rm h}$
- but simulations (Ringeval et al. 2005) indicate that there is also a loop population at smaller $\ell!$

Distribution of loops

At which size are cosmic string loops typically formed?

- "one scale model" (Kibble 1976): length ℓ given by typical distance between long strings, *i.e.* (fraction of) the horizon size $d_{\rm h}$
- but simulations (Ringeval et al. 2005) indicate that there is also a loop population at smaller $\ell!$

$$\text{using }\alpha=\ell/\textit{d}_{\rm h}: \qquad \qquad \frac{\mathrm{d}\textit{n}}{\mathrm{d}\alpha}=\frac{\mathcal{S}(\alpha)}{\alpha\,\textit{d}_{\rm h}^3}\,, \qquad \mathcal{S}(\alpha)=\textit{C}_{\circ}\,\alpha^{-\textit{p}}$$

 $\mathcal{S}(lpha)$ is the "scaling function", where \mathcal{C}_\circ and \emph{p} are fixed from simulations

But:

Simulations do not include the gravitational wave emission (GW) of loops which dominantes for scales $\alpha < \alpha_{\rm d} \propto \Gamma GU$.

The Polchinski Rocha model of loop formation

Polchinski & Rocha (2006, 2007):

- consider stretching the dominant process for long cosmic strings and add loop formation as a perturbation
- loop production function obtained from tangent vector correlators along long strings in scaling
- with $d\langle N\rangle$ the average loop number and $d\sigma$ the unit distance along the long string, it is found that

$$rac{\mathrm{d}\left\langle \mathcal{N}
ight
angle }{\mathrm{d}\sigma\,\mathrm{d}\ell\,\mathrm{d}t}\proptorac{1}{\ell^{3}}\left(rac{\ell}{t}
ight)^{2\chi}$$
 loop production (LP)

power law shape in good agreement with simulations

The Polchinski Rocha model of loop formation

Polchinski & Rocha (2006, 2007):

- consider stretching the dominant process for long cosmic strings and add loop formation as a perturbation
- loop production function obtained from tangent vector correlators along long strings in scaling
- with $d\langle N\rangle$ the average loop number and $d\sigma$ the unit distance along the long string, it is found that

$$rac{\mathrm{d}\left\langle\mathcal{N}
ight
angle}{\mathrm{d}\sigma\,\mathrm{d}\ell\,\mathrm{d}t}\proptorac{1}{\ell^3}\left(rac{\ell}{t}
ight)^{2\chi}$$
 loop production (LP)

power law shape in good agreement with simulations

Rocha (2007):

study evolution of loop number density with LP and GW

Extending the Polchinski Rocha model

The emission of gravitational waves (for $\alpha < \alpha_{\rm d} = \Gamma GU$) renders the cosmic string loops smoother and smoother on short scales.

No (or much less) loops should be formed below the scale of gravitational backreaction (BR) given by $\alpha_c = \Upsilon (GU)^{1+2\chi}$.

```
here: \Gamma, \Upsilon coefficients with \Gamma \simeq 10^2, \Upsilon \simeq 10
```

Our approach:

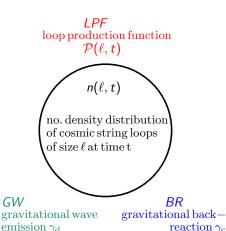
- Use Polchinski Rocha loop production function with coefficients adjusted to numerical simulations in the region $\alpha > \alpha_d$.
- Account for gravitational wave emission.
- Change loop production function below α_c to phenomenologically include gravitational backreaction.
- Do not neglect transient solutions.

What is the "full scaling regime"?

Towards the Cosmological Attractor

Outline

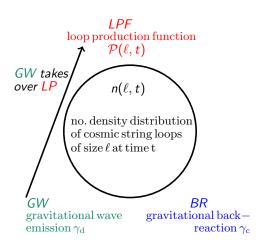
- - Cosmic Strings
 - String Networks and Loop Formation
- 2 Towards the Cosmological Attractor
 - Evolution Equation
 - Loop Production Function
 - Attractor in the Radiation Era
 - Relaxation Towards Scaling



$$\frac{\mathrm{d}}{\mathrm{d}t}\left(a^3\frac{\mathrm{d}n}{\mathrm{d}\ell}\right) = a^3\mathcal{P}(\ell,t)$$

Towards the Cosmological Attractor

GW

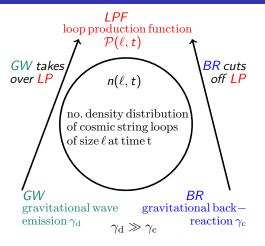


$$\frac{\mathrm{d}}{\mathrm{d}t}\left(a^3\frac{\mathrm{d}n}{\mathrm{d}\ell}\right)=a^3\mathcal{P}(\ell,t)$$

Towards the Cosmological Attractor

shrinking by GW emission

$$\begin{split} \frac{\partial}{\partial t} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) - \gamma_{\mathrm{d}} \frac{\partial}{\partial \ell} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) \\ = a^3 \mathcal{P}(\ell, t) \end{split}$$



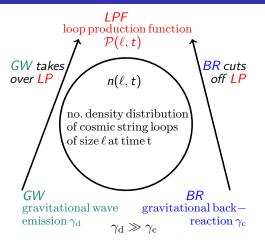
$$\frac{\mathrm{d}}{\mathrm{d}t}\left(a^3\frac{\mathrm{d}n}{\mathrm{d}\ell}\right)=a^3\mathcal{P}(\ell,t)$$

shrinking by GW emission:

$$\frac{\partial}{\partial t} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) - \gamma_{\mathrm{d}} \frac{\partial}{\partial \ell} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right)$$
$$= a^3 \mathcal{P}(\ell, t)$$

new: smoothing by BR

$$\frac{\partial}{\partial t} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) - \gamma_{\mathrm{d}} \frac{\partial}{\partial \ell} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right)$$
$$= a^3 \mathcal{P}(\ell, t)$$



$$\frac{\mathrm{d}}{\mathrm{d}t}\left(a^3\frac{\mathrm{d}n}{\mathrm{d}\ell}\right)=a^3\mathcal{P}(\ell,t)$$

shrinking by GW emission:

$$\frac{\partial}{\partial t} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) - \gamma_{\mathrm{d}} \frac{\partial}{\partial \ell} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right)$$
$$= a^3 \mathcal{P}(\ell, t)$$

new: smoothing by BR

$$\frac{\partial}{\partial t} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right) - \gamma_{\mathrm{d}} \frac{\partial}{\partial \ell} \left(a^3 \frac{\mathrm{d}n}{\mathrm{d}\ell} \right)$$
$$= a^3 \mathcal{P}(\ell, t)$$

change of variables:

•
$$(\ell,t) o (\gamma,t)$$
 with $\gamma \equiv \frac{\ell}{t}$

$$\mathcal{F}(\gamma,t) \equiv \mathrm{d}n/\mathrm{d}\ell$$

Evolution of $\mathcal{F}(\gamma, t)$

$$t\frac{\partial(\mathsf{a}^3\mathcal{F})}{\partial t} - (\gamma + \gamma_{\mathrm{d}})\frac{\partial(\mathsf{a}^3\mathcal{F})}{\partial \gamma} = \mathsf{a}^3t\mathcal{P}(\gamma,t)$$

Towards the Cosmological Attractor

- $\gamma_{\rm d} = \Gamma GU$: GW emission scale, $\gamma_{\rm c} = \Upsilon (GU)^{1+2\chi}$: gravitational BR scale
- $\mathcal{P}(\gamma, t)$ piecewise, but continuous for $\gamma > \gamma_c$ and $\gamma < \gamma_c$
- variable ranges for γ and t:
 - $0 < \gamma < \gamma_{\rm max}$ (horizon-sized loops)
 - $t_{ini} < t < t_0$

What is a phenomenological form for \mathcal{P} ?

Towards the Cosmological Attractor

Loop Production Function Outline

- - Cosmic Strings
 - String Networks and Loop Formation
- 2 Towards the Cosmological Attractor
 - Evolution Equation
 - Loop Production Function
 - Attractor in the Radiation Era
 - Relaxation Towards Scaling

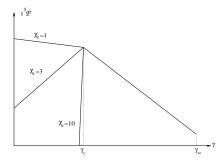
Shape of the loop production function $\mathcal{P}(\gamma, t)$

Towards the Cosmological Attractor

- Polchinski Rocha: $t^5 \mathcal{P}(\gamma,t) = c \, \gamma^{2\chi-3}$
- for $\gamma > \gamma_{\rm d}$, fix parameters c and χ from simulations (this includes "loops from loops" etc.)
- assumption for $\gamma < \gamma_{\rm c}$: $t^5 \mathcal{P}(\gamma,t) = c_{\rm c} \, \gamma_{\rm c}^{2\chi_{\rm c}-3}$
- impose continuity at $\gamma=\gamma_{\rm c}$, i.e. $c_{\rm c}=c\gamma_{\rm c}^{2(\chi-\chi_{\rm c})}$

Shape of the loop production function $\mathcal{P}(\gamma,t)$

- Polchinski Rocha: $t^5 \mathcal{P}(\gamma, t) = c \gamma^{2\chi 3}$
- for $\gamma > \gamma_{\rm d}$, fix parameters c and χ from simulations (this includes "loops from loops" etc.)
- assumption for $\gamma < \gamma_{\rm c}$: $t^5 \mathcal{P}(\gamma,t) = c_{\rm c} \, \gamma_{\rm c}^{2\chi_{\rm c}-3}$
- impose continuity at $\gamma=\gamma_{\rm c}$, i.e. $c_{\rm c}=c\gamma_{\rm c}^{2(\chi-\chi_{\rm c})}$



 $1 \leq \chi_{c} < \infty$: details of smoothing

solve evolution equation in the two domains and choose initial conditions

Solving the evolution equation

$$t\frac{\partial(a^{3}\mathcal{F})}{\partial t} - (\gamma + \gamma_{\rm d})\frac{\partial(a^{3}\mathcal{F})}{\partial \gamma} = a^{3}t \left\{ \begin{array}{ll} c\gamma^{2\chi-3}, & \gamma > \gamma_{\rm c} \\ c_{\rm c}\gamma^{2\chi_{\rm c}-3}, & \gamma < \gamma_{\rm c} \end{array} \right.$$

Towards the Cosmological Attractor

Solving the evolution equation

$$t\frac{\partial(a^{3}\mathcal{F})}{\partial t} - (\gamma + \gamma_{\rm d})\frac{\partial(a^{3}\mathcal{F})}{\partial \gamma} = a^{3}t \left\{ \begin{array}{l} c\gamma^{2\chi - 3}, & \gamma > \gamma_{\rm c} \\ c_{\rm c}\gamma^{2\chi_{\rm c} - 3}, & \gamma < \gamma_{\rm c} \end{array} \right.$$

Towards the Cosmological Attractor

The solutions to this equation with $a \propto t^{\nu}$ are:

$$\mathcal{F}(\gamma,t) = \frac{c_{\rm c}}{\mu_{\rm c}} \frac{(\gamma + \gamma_{\rm d})^{2\chi_{\rm c} - 3}}{t^4} {}_2F_1\left(3 - 2\chi_{\rm c}, \mu_{\rm c}; \mu_{\rm c} + 1; \frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}}\right) + \frac{\mathcal{I}_{\rm c}(\gamma t + \gamma_{\rm d} t)}{a^3}$$

- $\mu_c \equiv 3\nu 2\chi_c 1$
- $\mathcal{I}_{c}(x)$ are two unknown functions related by continuity:

$$\mathcal{I}_{\rm c}(x) = \mathcal{I}(x) + K \frac{(\gamma_{\rm d} + \gamma_{\rm c})^4}{x^4} \, \left[a \! \left(\frac{x}{\gamma_{\rm c} + \gamma_{\rm d}} \right) \right]^3 \, , \label{eq:continuous}$$

where K is a constant

Solving the evolution equation

$$t\frac{\partial(a^{3}\mathcal{F})}{\partial t} - (\gamma + \gamma_{\rm d})\frac{\partial(a^{3}\mathcal{F})}{\partial \gamma} = a^{3}t \left\{ \begin{array}{ll} c\gamma^{2\chi - 3}, & \gamma > \gamma_{\rm c} \\ c_{\rm c}\gamma^{2\chi_{\rm c} - 3}, & \gamma < \gamma_{\rm c} \end{array} \right.$$

Towards the Cosmological Attractor

The solutions to this equation with $a \propto t^{\nu}$ are:

$$\mathcal{F}(\gamma,t) = \frac{c_{\rm c}}{\mu_{\rm c}} \frac{(\gamma + \gamma_{\rm d})^{2\chi_{\rm c} - 3}}{t^4} {}_2F_{\rm l}\left(3 - 2\chi_{\rm c}, \mu_{\rm c}; \mu_{\rm c} + 1; \frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}}\right) + \frac{\mathcal{I}_{\rm c}(\gamma t + \gamma_{\rm d} t)}{a^3}$$

- $\mu_c \equiv 3\nu 2\chi_c 1$
- $\mathcal{I}_{c}(x)$ are two unknown functions related by continuity:

$$\mathcal{I}_{c}(x) = \mathcal{I}(x) + K \frac{(\gamma_{d} + \gamma_{c})^{4}}{x^{4}} \left[a \left(\frac{x}{\gamma_{c} + \gamma_{d}} \right) \right]^{3},$$

where K is a constant

• The unknown functions can be fixed from the initial loop number density distribution $\mathcal{N}_{\text{ini}}(\ell)$ at t_{ini} .

With $\mathcal{I}(x)$ and $\mathcal{I}_{c}(x)$ fixed, the solution has **three** parts:

$$\begin{split} t^4 \mathcal{F}(\gamma \geq \gamma_{\mathrm{c}}, t) &= \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{s_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \, \mathcal{N}_{\mathrm{ini}} \Big\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \Big\} + C(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} f\left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- C(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^{2\chi + 1} \left(\frac{s_{\mathrm{ini}}}{a}\right)^3 f\left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) \end{split}$$

With $\mathcal{I}(x)$ and $\mathcal{I}_c(x)$ fixed, the solution has **three** parts:

$$\begin{split} t^4 \mathcal{F}(\gamma \geq \gamma_{\mathrm{c}}, t) &= \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{s_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \mathcal{N}_{\mathrm{ini}} \Big\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \Big\} + C(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} f\left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- C(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^{2\chi + 1} \left(\frac{s_{\mathrm{ini}}}{a}\right)^3 f\left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) \end{split}$$

Towards the Cosmological Attractor 00000**000000**00000000

$$\begin{split} t^4 \mathcal{F}(\gamma_{\mathcal{T}} &\leq \gamma < \gamma_{\mathrm{c}}, t) = \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \mathcal{N}_{\mathrm{ini}} \left\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \right\} + C_{\mathrm{c}} (\gamma + \gamma_{\mathrm{d}})^{2\chi_{\mathrm{c}} - 3} f_{\mathrm{c}} \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- C (\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^{2\chi + 1} \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 f \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) + K \left(\frac{\gamma_{\mathrm{c}} + \gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right)^4 \left[\frac{a_{\mathrm{d}} \left(\frac{\gamma + \gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} t\right)}{a(t)}\right]^3 \end{split}$$

With $\mathcal{I}(x)$ and $\mathcal{I}_{c}(x)$ fixed, the solution has **three** parts:

$$\begin{split} t^4 \mathcal{F}(\gamma \geq \gamma_{\mathrm{c}}, t) &= \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{s_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \, \mathcal{N}_{\mathrm{ini}} \Big\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \Big\} + C(\gamma + \gamma_{\mathrm{d}})^2 \chi^{-3} f\left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- C(\gamma + \gamma_{\mathrm{d}})^2 \chi^{-3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^2 \chi^{+1} \left(\frac{s_{\mathrm{ini}}}{a}\right)^3 f\left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) \end{split}$$

Towards the Cosmological Attractor

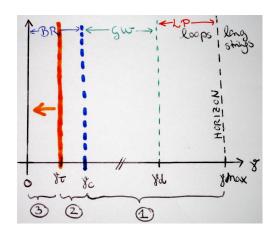
$$\begin{split} t^4 \mathcal{F}(\gamma_{\mathcal{T}} \leq \gamma < \gamma_{\mathrm{c}}, t) &= \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \mathcal{N}_{\mathrm{ini}} \left\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \right\} + \mathcal{C}_{\mathrm{c}}(\gamma + \gamma_{\mathrm{d}})^{2\chi_{\mathrm{c}} - 3} f_{\mathrm{c}} \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- \mathcal{C}(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^{2\chi + 1} \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 f \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) + \mathcal{K}\left(\frac{\gamma_{\mathrm{c}} + \gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right)^4 \left[\frac{a\left(\frac{\gamma + \gamma_{\mathrm{d}}}{\gamma_{\mathrm{c}} + \gamma_{\mathrm{d}}} t\right)}{a(t)}\right]^3 \end{split}$$

$$\begin{split} t^4 \mathcal{F}(\gamma < \gamma_{\mathcal{T}}, t) &= \left(\frac{t}{t_{\rm ini}}\right)^4 \left(\frac{a_{\rm ini}}{a}\right)^3 t_{\rm ini}^4 \mathcal{N}_{\rm ini} \left\{ \left[\gamma + \gamma_{\rm d} \left(1 - \frac{t_{\rm ini}}{t}\right)\right] t \right\} + C_{\rm c} (\gamma + \gamma_{\rm d})^{2\chi_{\rm c} - 3} f_{\rm c} \left(\frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}}\right) \right. \\ &\qquad \qquad - C_{\rm c} (\gamma + \gamma_{\rm d})^{2\chi_{\rm c} - 3} \left(\frac{t}{t_{\rm ini}}\right)^{2\chi_{\rm c} + 1} \left(\frac{a_{\rm ini}}{a}\right)^3 f_{\rm c} \left(\frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}} \frac{t_{\rm ini}}{t}\right) \end{split}$$

where $C \equiv c/\mu$, $f(x) \equiv {}_{_2}F_1(3-2\chi,\mu;\mu+1;x)$ to simplify notations

$$\gamma_{ au}(t) \equiv (\gamma_{
m c} + \gamma_{
m d}) rac{t_{
m ini}}{t} - \gamma_{
m d}$$

Why three?



$$1 \gamma \geq \gamma_{\rm c}$$

Towards the Cosmological Attractor

> $\gamma_{\tau} \leq \gamma < \gamma$: "on-site production" vs. "produced and shrunk"

$$\gamma < \gamma_{\tau}$$
: "non-contaminated"

Solution 3 dies out when $\gamma_{\tau}(t_{\tau}) = 0$, that is at

$$rac{t_{ au}-t_{
m ini}}{t_{
m ini}} = rac{\gamma_{
m c}}{\gamma_{
m d}}\,.$$

Asymptotic expansions

With $\mathcal{I}(x)$ and $\mathcal{I}_c(x)$ fixed, the solution **soon** has **two** parts:

$$\begin{split} t^4 \mathcal{F}(\gamma \geq \gamma_{\mathbf{C}}, t) &= \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \, \mathcal{N}_{\mathrm{ini}} \Big\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \Big\} + C(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} f\left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- C(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^{2\chi + 1} \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 f\left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) \\ t^4 \mathcal{F}(0 \leq \gamma < \gamma_{\mathbf{C}}, t) &= \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \, \mathcal{N}_{\mathrm{ini}} \Big\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \Big\} + C_{\mathrm{c}}(\gamma + \gamma_{\mathrm{d}})^{2\chi_{\mathrm{c}} - 3} f_{\mathrm{c}} \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- C(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^{2\chi + 1} \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 f\left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) + \mathcal{K}\left(\frac{\gamma_{\mathrm{c}} + \gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right)^4 \left[\frac{a\left(\frac{\gamma + \gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} t\right)}{a(t)}\right]^3 \end{split}$$

Towards the Cosmological Attractor

Asymptotic expansions

With $\mathcal{I}(x)$ and $\mathcal{I}_{c}(x)$ fixed, the solution **soon** has **two** parts:

$$\begin{split} t^4 \mathcal{F}(\gamma \geq \gamma_{\mathbf{C}}, t) &= \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \, \mathcal{N}_{\mathrm{ini}} \Big\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \Big\} + \mathcal{C}(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} f \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- \mathcal{C}(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^{2\chi + 1} \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 f \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) \\ t^4 \mathcal{F}(0 \leq \gamma < \gamma_{\mathbf{C}}, t) &= \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \, \mathcal{N}_{\mathrm{ini}} \Big\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \Big\} + \mathcal{C}_{\mathbf{C}}(\gamma + \gamma_{\mathrm{d}})^{2\chi_{\mathbf{C}} - 3} f_{\mathbf{C}} \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- \mathcal{C}(\gamma + \gamma_{\mathrm{d}})^{2\chi - 3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^{2\chi + 1} \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 f \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) + \mathcal{K}\left(\frac{\gamma_{\mathrm{c}} + \gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right)^4 \left[\frac{a \left(\frac{\gamma + \gamma_{\mathrm{d}}}{\gamma_{\mathrm{c}} + \gamma_{\mathrm{d}}} t\right)}{a(t)}\right]^3 \end{split}$$

After traces of \mathcal{N}_{ini} have vanished:

$$\gamma \ll \gamma_{\rm c} \ll \gamma_{\rm d}$$

$$\gamma_{\rm c} < \gamma \ll \gamma_{\rm d}$$

$$\gamma \gg \gamma_{\rm d}$$

$$t^4 \mathcal{F} \simeq \frac{C\mu}{2-2\chi} \frac{\gamma_c^{2\chi-2}}{\gamma_c}$$

$$t^4 \mathcal{F} \simeq \frac{C\mu}{2-2\gamma} \frac{\gamma^{2\chi-2}}{\gamma_d}$$

$$t^4 \mathcal{F} \simeq C \, \gamma^{2\chi - 3}$$

independent of $\chi_c!$

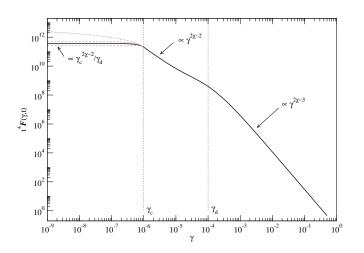
smooth matching

 C,χ from simulations

Outline

- - Cosmic Strings
 - String Networks and Loop Formation
- 2 Towards the Cosmological Attractor
 - Evolution Equation
 - Loop Production Function
 - Attractor in the Radiation Era
 - Relaxation Towards Scaling

Scaling solution in the radiation era



$$\nu = 1/2$$

$$\nu_{\alpha} = 2$$

$$\gamma_{
m d}=10^{-4}$$
 $\gamma_{
m c}=10^{-6}$

$$\gamma_{\mathrm{c}} = 10^{-6}$$

 C, χ from Ringeval et al. (2005)

Towards the Cosmological Attractor

Outline

- - Cosmic Strings
 - String Networks and Loop Formation
- 2 Towards the Cosmological Attractor
 - Evolution Equation
 - Loop Production Function
 - Attractor in the Radiation Era
 - Relaxation Towards Scaling

Relaxations and processes

The loop number density distribution $\mathcal{F}(\gamma,t)$ undergoes two relaxations:

- lacksquare from initial distribution $\mathcal{N}_{\mathrm{ini}}(\ell)$ to radiation scaling solution $\mathcal{F}_*(\gamma,t_*)$
- **2** from radiation scaling solution $\mathcal{F}_*(\gamma, t_*)$ to matter scaling solution

The loop number density distribution $\mathcal{F}(\gamma, t)$ undergoes two relaxations:

I from initial distribution $\mathcal{N}_{\text{ini}}(\ell)$ to radiation scaling solution $\mathcal{F}_*(\gamma, t_*)$

Towards the Cosmological Attractor

2 from radiation scaling solution $\mathcal{F}_*(\gamma, t_*)$ to matter scaling solution

Model cosmological background in terms of z using $(H_0, \Omega_{r_0}, \Omega_{m_0})$:

$$t_{
m rad}(z) \simeq rac{1}{2 \mathcal{H}_0 \sqrt{\Omega_{
m r_0}}} rac{1}{(1+z)^2} \ t_{
m mat}(z) \simeq rac{2}{3 \mathcal{H}_0 \sqrt{\Omega_{
m m_0}}} rac{1}{(1+z)^{3/2}}$$

- good approximation apart from transition and for z > 2
- instantaneous transition from radiation to matter at

$$z_* = rac{9}{16} rac{\Omega_{
m m_0}}{\Omega_{
m r_0}} - 1 = rac{9}{16} (1 + z_{
m eq}) - 1$$

•
$$h=0.72,~\Omega_{\mathrm{m_0}}h^2=0.13,~\Omega_{\mathrm{r_0}}h^2=2.471\times 10^{-5}$$

Relaxations and processes

The loop number density distribution $\mathcal{F}(\gamma,t)$ undergoes two relaxations:

I from initial distribution $\mathcal{N}_{\mathrm{ini}}(\ell)$ to radiation scaling solution $\mathcal{F}_*(\gamma,t_*)$

Towards the Cosmological Attractor

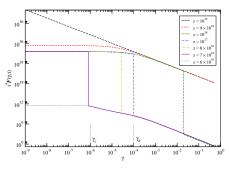
 $oldsymbol{\mathbb{Z}}$ from radiation scaling solution $\mathcal{F}_*(\gamma,t_*)$ to matter scaling solution

There are two relaxation processes:

- f I "sweeping leftwards": $\mathcal{N}_{
 m ini}[\ell>d_{
 m h}(t_{
 m ini})]=0$
- 2 damping of terms with $\mathcal{N}_{\mathrm{ini}}$

$$\begin{split} t^4 \mathcal{F}(\gamma \geq \gamma_{\mathbf{c}}, t) &= \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \mathcal{N}_{\mathrm{ini}} \Big\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \Big\} + C(\gamma + \gamma_{\mathrm{d}})^2 \chi^{-3} f \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- C(\gamma + \gamma_{\mathrm{d}})^2 \chi^{-3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^2 \chi^{+1} \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 f \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) \\ t^4 \mathcal{F}(0 \leq \gamma < \gamma_{\mathrm{C}}, t) &= \left(\frac{t}{t_{\mathrm{ini}}}\right)^4 \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 t_{\mathrm{ini}}^4 \mathcal{N}_{\mathrm{ini}} \Big\{ \left[\gamma + \gamma_{\mathrm{d}} \left(1 - \frac{t_{\mathrm{ini}}}{t}\right)\right] t \Big\} + C_{\mathrm{c}}(\gamma + \gamma_{\mathrm{d}})^2 \chi_{\mathrm{c}} - 3 f_{\mathrm{c}} \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \\ &- C(\gamma + \gamma_{\mathrm{d}})^2 \chi^{-3} \left(\frac{t}{t_{\mathrm{ini}}}\right)^2 \chi^{+1} \left(\frac{a_{\mathrm{ini}}}{a}\right)^3 f \left(\frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} \frac{t_{\mathrm{ini}}}{t}\right) + \mathcal{K}\left(\frac{\gamma_{\mathrm{c}} + \gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right)^4 \left[\frac{a\left(\frac{\gamma + \gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}} t\right)}{a(t)}\right]^3 \end{split}$$

Initial distribution and relaxation



Vachaspati & Vilenkin (1984): random walk model

$$t_{\mathrm{ini}}^4 \mathcal{N}_{\mathrm{ini}}(\ell) = C_{\mathrm{i}} \left(\frac{t_{\mathrm{ini}}}{\ell} \right)^{5/2}.$$

where $1 < C_i < (GU)^{-3/4}$

- no damping (cancellations)
- "sweeping" complete at

$$\frac{1+z_{\rm h}(\gamma)}{1+z_{\rm ini}} = \sqrt{\frac{\gamma+\gamma_{\rm d}}{2+\gamma_{\rm d}}}$$

Towards the Cosmological Attractor

Relaxation from radiation to matter

For $\nu = 2/3$, the ${}_2F_1$ function becomes a polynomial expression:

$$f(x) = \frac{1}{(1-x)^{2-2\chi}} \left(1 - \frac{x}{2-2\chi}\right)$$

Towards the Cosmological Attractor

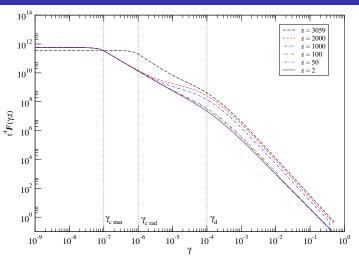
ullet damping of \mathcal{N}_* complete by $(\gamma\gg\gamma_{
m d})$

$$\frac{1 + z_{\rm d}(\gamma)}{1 + z_{*}} = \left(\frac{C_{\rm M}}{C_{\rm R}}\right)^{1/(3/2 - 3\chi_{\rm R})} \gamma^{2(\chi_{\rm M} - \chi_{\rm R})/(3/2 - 3\chi_{\rm R})}$$

"sweeping" less efficient

for large γ , $z_{\rm d} \simeq 300$, but intermediate scales $\gamma_{\rm c} < \gamma \ll \gamma_{\rm d}$ relax last

Relaxation from radiation to matter



$$\gamma_{
m d} = 10^{-4}$$
, $\gamma_{
m c}({\it rad}) = 10^{-6}$, $\gamma_{
m d}({\it mat}) = 10^{-7}$

"production resumed"

Conclusions

- We studied the evolution of the cosmic string loop number density distribution $dn/d\ell(\ell,t)$
 - using the Polchinski Rocha model for loop production with numerically adjusted coefficients,
 - including emission of gravitational waves and
 - including smoothing by gravitational backreaction.
- $dn/d\ell(\ell,t)$ rapidly assumes a universal form on all length scales, insensitive to the details of the backreaction.
- Our study may be extended by
 - recalculating the GW constraints using the new loop distribution,
 - using the parameters to describe other energy loss mechanisms or
 - considering the case $P \neq 1$ (cosmic superstrings).

Can cosmic string loops be Dark Matter?

Towards the Cosmological Attractor

in the matter era:

$$t^4 \mathcal{F}(\gamma \geq \gamma_{\rm c},t) = \frac{C}{\gamma^{2-2\chi}(\gamma + \gamma_{\rm d})} \left(1 - \frac{1}{2-2\chi} \frac{\gamma_{\rm d}}{\gamma + \gamma_{\rm d}}\right)$$

$$\begin{split} t^{4}\mathcal{F}(\gamma<\gamma_{\mathrm{c}},t) &= \frac{C_{\mathrm{c}}\gamma^{2\chi_{\mathrm{c}}-2}}{\gamma+\gamma_{\mathrm{d}}} \left(1 + \frac{1}{2\chi_{\mathrm{c}}-2} \frac{\gamma_{\mathrm{d}}}{\gamma+\gamma_{\mathrm{d}}}\right) \\ &+ \mathcal{K}\left(\frac{\gamma_{\mathrm{c}}+\gamma_{\mathrm{d}}}{\gamma+\gamma_{\mathrm{d}}}\right)^{2} \end{split}$$

use these calculate loop energy density:

$$ho_{\circ} = rac{U}{t^2} \int_0^{\gamma_{
m max}} t^4 \mathcal{F}(\gamma,t) \gamma \, \mathrm{d}\gamma,$$

Can cosmic string loops be Dark Matter?

in the matter era:

$$t^{4}\mathcal{F}(\gamma \geq \gamma_{\mathrm{c}}, t) = \frac{\mathcal{C}}{\gamma^{2-2\chi}(\gamma + \gamma_{\mathrm{d}})} \left(1 - \frac{1}{2-2\chi} \frac{\gamma_{\mathrm{d}}}{\gamma + \gamma_{\mathrm{d}}}\right) \qquad \Omega_{\circ} = \frac{3\pi^{2} \mathcal{C}}{\left(1 - \chi\right) \sin(2\pi\chi)} \frac{GU}{\gamma_{\mathrm{d}}^{1-2\chi}}$$

$$\begin{split} t^{4}\mathcal{F}(\gamma<\gamma_{\mathrm{c}},t) &= \frac{C_{\mathrm{c}}\gamma^{2\chi_{\mathrm{c}}-2}}{\gamma+\gamma_{\mathrm{d}}} \left(1 + \frac{1}{2\chi_{\mathrm{c}}-2} \frac{\gamma_{\mathrm{d}}}{\gamma+\gamma_{\mathrm{d}}}\right) \\ &+ K \left(\frac{\gamma_{\mathrm{c}}+\gamma_{\mathrm{d}}}{\gamma+\gamma_{\mathrm{d}}}\right)^{2} \end{split}$$

use these calculate loop energy density:

$$ho_{\circ} = rac{U}{t^2} \int_0^{\gamma_{
m max}} t^4 \mathcal{F}(\gamma, t) \gamma \, \mathrm{d}\gamma,$$

then one finds $\Omega_0 \equiv \rho_0/\rho_{\rm crit}$:

$$\Omega_{\circ} = rac{3\pi^2 \mathit{C}}{(1-\chi) \sin(2\pi\chi)} rac{\mathit{GU}}{\gamma_{
m d}^{1-2\chi}}$$

which for our parameters is

$$\Omega_{\circ} \simeq 0.10 \times (GU)^{0.59} < 10^{-5}$$

for current GU values

Cosmic string loops are not a suitable DM candidate.

How far to the nearest loop?

$$t^3 n_L = \int_0^{L/t} t^4 \mathcal{F}(\gamma, t) \, \mathrm{d}\gamma$$

 n_l : number density of loops with length $\ell < L$ at t

for $\gamma_{\rm c} < \gamma_{\rm d} \ll L/t$:

$$t^3 n_L = \frac{2\chi_{\rm c} - 2\chi}{2\chi_{\rm c} - 1} \frac{C}{\gamma_{\rm d} \gamma_{\rm c}^{1 - 2\chi}} \,.$$

How far to the nearest loop?

$$t^3 n_L = \int_0^{L/t} t^4 \mathcal{F}(\gamma, t) \, \mathrm{d}\gamma$$

 n_l : number density of loops with length $\ell < L$ at t

for $\gamma_{\rm c} < \gamma_{\rm d} \ll L/t$:

$$t^3 n_L = \frac{2\chi_c - 2\chi}{2\chi_c - 1} \frac{\mathcal{C}}{\gamma_d \gamma_c^{1 - 2\chi}}.$$

with our parameters:

$$n_L \simeq \frac{6.1 \times 10^{-5}}{t^3} (GU)^{-1.65}$$

today $t = t_0$ for $GU \simeq 7 \times 10^{-7}$:

$$n_L \simeq 5.5 \times 10^{-6} \,\mathrm{Mpc}^{-3}$$

loops from very light cosmic strings more numerous

