Astroparticle Physics with IceCube

Nick van Eijndhoven nickve.nl@gmail.com http://w3.iihe.ac.be for the IceCube collaboration

Vrije Universiteit Brussel

Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

Cosmic radiation	1
Possible high-energy engine	3
Hunting for cosmic neutrinos	4
The IceCube Neutrino Observatory	5
Neutrinos from transients (GRBs & AGN)	17
Outlook	21

Electromagnetic radiation

$E^{2.7}$ scaled flux

- Spectral features (knee, ankle) *E* limits of cosmic accelerators ?
- What are these accelerator sites ? Violent explosive phenomena
 - Supernovae
 - Gamma Ray Bursts
 - Black holes (AGN)

Supernova blast wavesProtons : $E_{max} \approx 10^{15}$ eV ('knee')Larger nuclei : $E_Z = Z E_{proton}$

Above 10^{19} eV

Only candidates : GRBs & AGN Out of reach for terrestrial accel.

General picture

Acceleration in shock waves

Processes in the jet

High-energy photons and neutrinos

Neutrino production mechanism

• Δ prod. threshold : $E_{\gamma} \geq 10 \, \, \mathrm{eV}$ (UV photons)

Neutrino detection mechanism

The IceCube Collaboration

USA:

Bartol Research Institute, Delaware University of California, Berkeley University of California, Irvine Pennsylvania State University **Clark-Atlanta University Ohio State University** Georgia Tech University of Maryland University of Alabama, Tuscaloosa University of Wisconsin-Madison University of Wisconsin-River Falls Lawrence Berkeley National Lab. University of Kansas Southern University and A&M College, Baton Rouge University of Alaska, Anchorage

Sweden: Uppsala Universitet Stockholm Universitet

Oxford Universit

Switzerland:

DESY-Zeuthen Universität Mainz Universität Dortmund Universität Wuppertal Humboldt Universität MPI Heidelberg RWTH Aachen Universität Bonn Buhr-Universität Bochum

Germany:

Belgium: Université Libre de Bruxelles Vrije Universiteit Brussel

Université de Mons-Hainaut

Universiteit Gent

Bruxelles

Japan: Chiba University

New Zealand: University of Canterbury

34 institutions, 250 members http://icecube.wisc.edu

Number of strings : 1 (05) 9 (06) 22 (07) 40 (08) 59 (09) 79 (10) 86 (11)

Ince detection principle (both upgoing and downgoing μ)

Using downgoing μ 's from air showers

The shadow of the Moon (40-string detector, preliminary)

Angular resolution : $\sim 0.8^\circ$

Using downgoing μ 's from air showers

Large scale Cosmic Ray anisotropy (40-string detector, preliminary)

Equatorial skymap (40-strings all-sky point source search 2008-2009)

- Decl. range : $-85^{\circ} < \delta < 85^{\circ}$ Grid search : $0.1^{\circ} \times 0.1^{\circ}$ (Gaussian PDF)
- Colours indicate pre-trial significances (P-values)
- Most significant excess at location α = 7h 35m 0s δ = 15.15°

Randomised α data sets \rightarrow post-trial : P-value=0.1817

 $\nu_{\mu} + \bar{\nu}_{\mu}$ Effective area at final cuts (40-strings solid angle averaged)

• Turn over at high *E* due to absorbtion by the Earth North : 10 TeV-PeV South : >PeV Atm : 250 GeV-15 TeV

- Observed event rate = incoming flux $\cdot A_{eff} \rightarrow$ In case no signal is observed
- Provide median sensitivity and (90% CL) upper limits (Feldman-Cousins)
- Increase model flux until a certain significance is reached \rightarrow Disc. potential Benchmark : 50% chance that a 5 σ post-trial detection is made for E^{-2}

Various sensitivities

Search for Dark Matter particles

- Observations of cosmic motions and gravitational lensing
 - \rightarrow Most of the matter in the Universe is (yet) undetected
- This exotic invisible matter must be made of particles that
 - Have mass (since they induce gravitational lensing)
 - Only interact weakly (if at all) with ordinary particles
 - Hence the name Weakly Interacting Massive Particles (WIMPS)
- Within the Minimal Supersymmetric Standard Model (MSSM) Possible candidate : Lightest supersymmetric particle (neutralino $\tilde{\chi}$)
- How to detect these MSSM particles ?
 - Direct searches : Recoil of nuclei or production in accelerators
 - Indirect searches via their decay in detectable normal SM particles

- WIMPS loose energy via NC interactions while traversing massive objects
 - \rightarrow Get trapped around/in the Sun, Galactic Centre (GC) or Halo (GH)
- Large concentrations of $\tilde{\chi} \to$ High self-annihilation rate Self-annihilation into neutrinos : $\tilde{\chi} \tilde{\chi} \to b\bar{b}, \tau^+\tau^-, W^+W^-, \ldots \to \nu$'s
- \bullet IceCube : search for high- $E~\nu{\rm 's}$ from the center of the Sun, the GC or GH
 - Might discover the $ilde{\chi}$ via indirect detection
 - Determination of ν flux enables probing the $\sigma_{\tilde{\chi}N}$ Note : σ_{SI} is expected to be too small but σ_{SD} might be significant
- E_{ν} depends on $M_{\tilde{\chi}}$ and annihilation channel Hard channel : $\tilde{\chi} \, \tilde{\chi} \to W^+ W^-, \tau^+ \tau^- \to \nu$'s Soft channel : $\tilde{\chi} \, \tilde{\chi} \to b \overline{b} \to \nu$'s For $M_{\tilde{\chi}} = 1$ TeV $\to E_{\nu} <$ a few 100 GeV
- Extend IceCube sensitivity to lower energies
 - \rightarrow DeepCore component is sensitive down to $\sim 20~{\rm GeV}$

A_{eff} improvement with DeepCore

• Solar WIMP analysis with 22 strings (PRL 102 (2009) 201302)

No signal observed

- \rightarrow Provide limits
- Total Amanda data nearly analysed
 - \rightarrow Provide sensitivity

- Signals are atm. background ν Not distinguishable from cosmic ν
- \bullet Extend exposure time \rightarrow Hot spots
- Or : Look at transient phenomena

Specific location and time (satellite)

- \rightarrow nearly no background
- Simultaneous $\gamma \nu$ signal Fails in case of time difference
- Rolling time window

Can only investigate individual bursts Needs : bursts with multi ν signals

• New more sensitive method

Stacking of time info of various bursts

Signal \rightarrow clustering of data bins

Toy model simulation

100 GRBs of which \sim 10% yield 1 detected μ (homogeneous over Northern sky) Atm. background from the entire Northern hemisphere : \sim 300 upmu/day

All Northern sky data

 5° area around GRB position

- $\gamma \nu$ time difference irrelevant
- Low rates revealed with large stats.

Neutrinos from transients (GRBs & AGN)

• Sensitivity parameters

Vrije

Brussel

Universiteit

- Number of GRBs in the sample Fraction f which yields a μ signal
- * Model expectations $f \approx 0.01 0.1$ (Halzen et al., ApJ 527 (1999) L93)
- Sensitivity for a discovery
 Minimal *f* for a 5σ signal
 (NvE, Astrop. Phys. 28 (2008) 540)

Sensitivity for 5σ discovery

Neutrinos from AGN flares

- AGN flare → like a GRB
 Timescales much longer (days)
 → Accumulate more background
 Position is known before the flare
 → Observe specific patch on the sky
 Clustering in position instead of time

 Relative positions w.r.t. AGN
 Signal → clustering at AGN position
- \bullet Relative positions of all μ pairs

Allows detection of extended sources

- World's largest neutrino observatory (IceCube) operational at the South Pole > 90% of the foreseen IceCube detector has been deployed
 IceCube sensors are working correctly (Moon shadow, CR-anisotropy, skymap)
- IceCube will be completed late 2010/ early 2011

Nicely in time with satellite observations (Swift, Fermi)

- \rightarrow Perfect for research of transients
- Very detailed investigation of the Northern Sky
- DeepCore extension will open up Southern Sky (Galactic Center) and lower E Increase of sensitivity for low mass WIMP searches Additional (transient) sources to be studied
- Very sensitive method for detection of GRB neutrinos (AGN is in progress) Expect new discoveries in the next 5 years

Advent of very interesting times for Neutrino Astronomy !

Origin of cosmic rays

• Supernova blast waves

Moving charge in static mag. field Gyroradius $r = \frac{p}{ZeB}$ $(\vec{p} \perp \vec{B})$ $\rightarrow \left(\frac{p}{1 \text{ eV}}\right) = 0.03 \cdot Z\left(\frac{B}{1 \mu \text{G}}\right) \left(\frac{r}{1 \text{ m}}\right)$ • Accelerator of size R $r > R \rightarrow$ particles escape $\rightarrow E_{max}$ Typical : $B \approx \mu G$ $R \approx 10$ pc \rightarrow **Protons** : $E_{max} \approx$ **PeV** ('knee') * At a certain $r \rightarrow E_Z = Z E_{proton}$ $*E > 10^{19} \text{ eV} \rightarrow r > R_{aalaxy}$ \Rightarrow Extra-galactic origin

What causes the 'ankle' ? Even more violent phenomena (AGN and GRBs)

Energy spectra for $M_{\tilde{\chi}} = 1$ TeV

