Astroparticle Physics with IceCube

Overview

Cosmic radiation 1
Possible high-energy engine 3
Hunting for cosmic neutrinos 4
The IceCube Neutrino Observatory 5
Neutrinos from transients (GRBs \& AGN) 17
Outlook 21

Electromagnetic radiation

$$
E^{2.7} \text { scaled flux }
$$

Supernova blast waves
Protons: $E_{\text {max }} \approx 10^{15} \mathrm{eV}$ ('knee')
Larger nuclei : $E_{Z}=Z E_{\text {proton }}$

- Spectral features (knee, ankle)
E limits of cosmic accelerators ?
- What are these accelerator sites ?

Violent explosive phenomena

- Supernovae
- Gamma Ray Bursts
- Black holes (AGN)

Above $10^{19} \mathrm{eV}$
Only candidates: GRBs \& AGN
Out of reach for terrestrial accel.

General picture

Acceleration in shock waves

Processes in the jet

High-energy photons and neutrinos

Neutrino production mechanism

- Δ prod. threshold : $E_{\gamma} \geq 10 \mathrm{eV}$ (UV photons)

Neutrino detection mechanism

The IceCube Collaboration

 Universiteit

The IceCube Neutrino Observatory

Number of strings : 1 (05) 9 (06) 22 (07) 40 (08) 59 (09) 79 (10) 86 (11)

InIce detection principle (both upgoing and downgoing μ)

Using downgoing μ 's from air showers

The shadow of the Moon (40-string detector, preliminary)

Angular resolution : $\sim 0.8^{\circ}$

Using downgoing μ 's from air showers

Large scale Cosmic Ray anisotropy (40-string detector, preliminary)

Equatorial skymap (40-strings all-sky point source search 2008-2009)

- Decl. range : $-85^{\circ}<\delta<85^{\circ}$ Grid search : $0.1^{\circ} \times 0.1^{\circ}$ (Gaussian PDF)
- Colours indicate pre-trial significances (P -values)
- Most significant excess at location $\alpha=7 \mathrm{~h} 35 \mathrm{~m} 0 \mathrm{~s} \quad \delta=15.15^{\circ}$

Randomised α data sets \rightarrow post-trial : P -value $=0.1817$

Effective area \equiv observed event rate / incoming flux (from simulations) $\nu_{\mu}+\bar{\nu}_{\mu}$ Effective area at final cuts (40-strings solid angle averaged)

- Turn over at high E due to absorbtion by the Earth

North : $10 \mathrm{TeV}-\mathrm{PeV}$
South : $>\mathrm{PeV}$
Atm : $250 \mathrm{GeV}-15 \mathrm{TeV}$

- Observed event rate $=$ incoming flux $\cdot A_{\text {eff }} \rightarrow$ In case no signal is observed
- Provide median sensitivity and ($90 \% \mathrm{CL}$) upper limits (Feldman-Cousins)
- Increase model flux until a certain significance is reached \rightarrow Disc. potential Benchmark : 50% chance that a 5σ post-trial detection is made for E^{-2}

Various sensitivities

Search for Dark Matter particles

- Observations of cosmic motions and gravitational lensing
\rightarrow Most of the matter in the Universe is (yet) undetected
- This exotic invisible matter must be made of particles that
- Have mass (since they induce gravitational lensing)
- Only interact weakly (if at all) with ordinary particles

Hence the name Weakly Interacting Massive Particles (WIMPS)

- Within the Minimal Supersymmetric Standard Model (MSSM)

Possible candidate : Lightest supersymmetric particle (neutralino $\tilde{\chi}$)

- How to detect these MSSM particles ?
- Direct searches: Recoil of nuclei or production in accelerators
- Indirect searches via their decay in detectable normal SM particles
- WIMPS loose energy via NC interactions while traversing massive objects \rightarrow Get trapped around/in the Sun, Galactic Centre (GC) or Halo (GH)
- Large concentrations of $\tilde{\chi} \longrightarrow$ High self-annihilation rate Self-annihilation into neutrinos : $\tilde{\chi} \tilde{\chi} \rightarrow b \bar{b}, \tau^{+} \tau^{-}, W^{+} W^{-}, \ldots \rightarrow \nu$'s
- IceCube : search for high- $E \nu$'s from the center of the Sun, the GC or GH
- Might discover the $\tilde{\chi}$ via indirect detection
- Determination of ν flux enables probing the $\sigma_{\tilde{\chi} N}$

Note: $\sigma_{S I}$ is expected to be too small but $\sigma_{S D}$ might be significant

- E_{ν} depends on $M_{\tilde{\chi}}$ and annihilation channel

Hard channel : $\tilde{\chi} \tilde{\chi} \rightarrow W^{+} \boldsymbol{W}^{-}, \tau^{+} \tau^{-} \rightarrow \nu^{\prime}$ s
Soft channel : $\tilde{\chi} \tilde{\chi} \rightarrow b \bar{b} \rightarrow \nu$'s
For $M_{\tilde{\chi}}=1 \mathrm{TeV} \rightarrow E_{\nu}<$ a few 100 GeV

- Extend IceCube sensitivity to lower energies
\rightarrow DeepCore component is sensitive down to $\sim 20 \mathrm{GeV}$
$A_{\text {eff }}$ improvement with DeepCore

- Solar WIMP analysis with 22 strings (PRL 102 (2009) 201302)
No signal observed
\rightarrow Provide limits
- Total Amanda data nearly analysed \rightarrow Provide sensitivity

- Signals are atm. background ν

Not distinguishable from cosmic ν

- Extend exposure time \rightarrow Hot spots
- Or : Look at transient phenomena Specific location and time (satellite) \rightarrow nearly no background
- Simultaneous $\gamma-\nu$ signal

Fails in case of time difference

- Rolling time window

Can only investigate individual bursts Needs : bursts with multi ν signals

- New more sensitive method

Stacking of time info of various bursts
Signal \rightarrow clustering of data bins

Toy model simulation
100 GRBs of which $\sim 10 \%$ yield 1 detected μ (homogeneous over Northern sky) Atm. background from the entire Northern hemisphere : ~ 300 upmu/day

All Northern sky data

5° area around GRB position

- $\gamma-\nu$ time difference irrelevant
- Low rates revealed with large stats.

GRB Discovery Potential

- Sensitivity parameters

Number of GRBs in the sample
Fraction f which yields a μ signal * Model expectations $f \approx 0.01-0.1$ (Halzen et al., ApJ 527 (1999) L93)

- Sensitivity for a discovery

Minimal f for a 5σ signal
(NvE, Astrop. Phys. 28 (2008) 540)

Sensitivity for $5 \boldsymbol{\sigma}$ discovery

Neutrinos from AGN flares

- AGN flare \rightarrow like a GRB

Timescales much longer (days)
\rightarrow Accumulate more background
Position is known before the flare
\rightarrow Observe specific patch on the sky
Clustering in position instead of time

- Relative positions w.r.t. AGN

Signal \rightarrow clustering at AGN position

- Relative positions of all μ pairs

Allows detection of extended sources

- World's largest neutrino observatory (IceCube) operational at the South Pole
$>\mathbf{9 0 \%}$ of the foreseen IceCube detector has been deployed
IceCube sensors are working correctly (Moon shadow, CR-anisotropy, skymap)
- IceCube will be completed late 2010/ early 2011

Nicely in time with satellite observations (Swift, Fermi)
\rightarrow Perfect for research of transients

- Very detailed investigation of the Northern Sky
- DeepCore extension will open up Southern Sky (Galactic Center) and lower E Increase of sensitivity for low mass WIMP searches
Additional (transient) sources to be studied
- Very sensitive method for detection of GRB neutrinos (AGN is in progress)

Expect new discoveries in the next 5 years
Advent of very interesting times for Neutrino Astronomy !

| Vrije
 Universiteit
 Brussel | Outlook |
| :--- | :--- |\quad BRUXELLES BRUSSEL

Origin of cosmic rays

- Supernova blast waves

Moving charge in static mag. field
Gyroradius $r=\frac{p}{Z e B} \quad(\vec{p} \perp \vec{B})$
$\rightarrow\left(\frac{p}{1 \mathrm{eV}}\right)=0.03 \cdot Z\left(\frac{B}{1 \mu \mathrm{G}}\right)\left(\frac{r}{1 \mathrm{~m}}\right)$

- Accelerator of size R
$r>R \rightarrow$ particles escape $\rightarrow E_{\text {max }}$
Typical : $B \approx \mu \mathrm{G} \quad R \approx 10 \mathrm{pc}$
\rightarrow Protons: $E_{\text {max }} \approx \operatorname{PeV}$ ('knee')
* At a certain $r \rightarrow E_{Z}=Z E_{\text {proton }}$
*E $>10^{19} \mathrm{eV} \rightarrow r>R_{\text {galaxy }}$
\Rightarrow Extra-galactic origin

What causes the 'ankle' ?
Even more violent phenomena
(AGN and GRBs)

Energy spectra for $M_{\tilde{\chi}}=1 \mathrm{TeV}$

