Prompt vs direct J/ψ polarization

- Measuring prompt J/ ψ polarization is insufficient for a *clear* solution of existing puzzles. Many prompt J/ ψ s are indirectly produced, their fraction increasing with p_T
- The feed-down from ψ' is well understood:
 - J/ ψ from ψ' has approximately the same polarization as the ψ' : BES and CLEO results for angular distributions of 2S-to-1S transitions (ψ and Υ) show that the accompanying $\pi\pi$ system is predominantly in L=0 state
 - moreover, ψ' polarization should be similar to the direct-J/ ψ polarization
 - $\rightarrow J/\psi$ from $\psi' \cong direct-J/\psi$ polarization
- The "problem" is the feed-down from χ_c
 - CDF measured χ_c/ψ and χ_{c1}/χ_{c2} ratios averaged over p_T and y (i.e. small p_T , midrapidity)
 - they are unknown at the LHC, especially at high p_T (and fwd rapidity)
 - J/ ψ from χ_c can have very different polarization wrt direct J/ ψ
 - the relation between "spin-alignment" and shape of the dimuon angular distribution is totally different for χ_c and J/ψ

```
e.g.: \chi_{c1} and direct J/\psi both longitudinal (J<sub>z</sub>=0): J/\psi from \chi_{c1} \rightarrow 1 + \cos^2 \vartheta direct J/\psi \rightarrow 1 - \cos^2 \vartheta
```

• Even if the *direct* J/ ψ would be fully polarized, the observed *prompt* J/ ψ polarization is expected to be smeared by the χ_c feed-down contribution

Prompt J/ ψ polarization vs R(χ_c)

 $J_z(J/\psi_{dir}) = \pm 1$ fully transverse direct J/ ψ (plots valid for p > 5 GeV/c)

Prompt J/ ψ polarization vs R(χ_c)

 $J_z(J/\psi_{dir}) = 0$ fully longitudinal direct J/ ψ (plots valid for p > 5 GeV/c)

