Quarkonium Physics in CASCADE

Sergey Baranov

P.N.Lebedev Institute of Physics, Moscow

N.P. Zotov

SINP, Lomonosov Moscow State University

PLAN OF THE TALK

- 1. Preface on k_t -factorization
- 2. Theoretical framework
- 3. Numerical results
- 4. Conclusions

1. PREFACE ON k_t -FACTORIZATION

CASCADE is a Monte-Carlo generator using the CCFM equation for the evolution of parton densities (in the backward evolution scheme). On the technical side, similar to other generators.

Point of importance: using the k_t -, not the collinear factorization.

In the collinear scheme, the evolution is only used to calculate the parton densities and has no effect on the hard interaction subprocess.

In the k_t -factorization, the parton evolution changes the character of the hard interaction: both the kinematics (due to the initial parton transverse momentum) and polarization properties (longitudinal component for the off-shell gluons).

The evolution cascade is part of the hard interaction. By means of the evolution equation we resum a subset of Feynman diagrams (up to infinitely high order) representing higher-order contributions: i.e., the ladder diagrams enhanced with $\alpha_s^n[\ln(1/x)]^n$.

THE BENEFIT:

With the LO matrix elements for the hard subprocess we get access to effects requiring complicated next-to-leading order calculations in the collinear scheme. Many important results have been obtained in the k_t -factorization much earlier than in the collinear case.

Upon including more NLO, NNLO,.. corrections, the collinear results become closer to the k_t -factorization predictions.

EXAMPLES:

- Azimuthal correlations in open Heavy Flavor production;
- $-p_t$ dependence of the J/ψ and Υ cross sections $(1/p_t^8 \text{ versus } 1/p_t^4)$
- $-J/\psi$ and Υ spin alignement (transverse versus longitudinal)

Now concentrate on the Quarkonium physics, see below

2. THEORETICAL FRAMEWORK

2.1 Color-Singlet Gluon-Gluon Fusion

Perturbative production of a heavy quark pair within QCD; Gluon polarization vectors: $\epsilon_q^{\mu} = k_T^{\mu}/|k_T|$

```
E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977);
Ya. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978);
L.V. Gribov, E.M. Levin, M. G. Ryskin, Phys. Rep. 100, 1 (1983).
```

Spin projection operators to guarantee the proper quantum numbers:

for Spin-triplet states
$$\mathcal{P}(^3S_1) = \not\in_V(\not p_Q + m_Q)/(2m_Q)$$

for Spin-singlet states
$$\mathcal{P}(^1S_0) = \gamma_5(\not p_Q + m_Q)/(2m_Q)$$

Probability to form a bound state is determined by the wave function:

for S-wave states $|R_S(0)|^2$ is known from leptonic decay widths;

for P-wave states $|R'_P(0)|^2$ is taken from potential models. E. J. Eichten, C. Quigg, Phys. Rev. D 52, 1726 (1995)

If $L \neq 0$ and $S \neq 0$ we use the Clebsch-Gordan coefficients to reexpress the $|L,S\rangle$ states in terms of $|J,J_z\rangle$ states, namely, the χ_0,χ_1,χ_2 mesons.

2.2 Accessing the Polarization of vector mesons

Polarization is measured via the angular distributions of the decay products. The most general form for $V \to \mu^+ \mu^-$:

$$\frac{d\sigma}{d\cos\theta\,d\phi} \propto 1 + \lambda\cos^2\theta + \mu\sin2\theta\,\cos\phi + \frac{\nu}{2}\sin^2\theta\,\cos2\phi$$

Four conventional frame definitions:

- Recoil $\vec{z} = -\vec{p_1} \vec{p_2}$
- Gottfried-Jackson $\vec{z} = \vec{p_1}$
- Target $\vec{z} = -\vec{p_2}$
- $\begin{array}{ll} \textbf{-Collins-Soper} & \vec{z} = \vec{p_1}/|p_1| \vec{p_2}/|p_2| \\ \textbf{and always} & \vec{y} = [\vec{p_1} \times \vec{p_2}], & \vec{x} = [\vec{y} \times \vec{z}] \end{array}$

Vector meson $(V = J/\psi, \psi', \Upsilon, \Upsilon', \Upsilon'')$ spin density matrix:

$$\epsilon_V^{\mu} \epsilon_V^{*\nu} = 3(l_1^{\mu} l_2^{\nu} + l_2^{\mu} l_1^{\nu} - m_V^2 g^{\mu\nu}/2)/m_V^2$$

Equivalent to $-g^{\mu\nu} + p_V^{\mu} p_V^{\nu} / m_V^2$ but gives access to the decay variables. Mode d'emloi: generate MC events including decays and apply a three-parametric fit.

2.3 Feed-down from P-wave states

Assuming the dominance of electric dipole transitions, we have: Angular distributions in the polarized χ_J decays

$$d\Gamma(\chi_1 \to V\gamma)/d\cos\theta \propto \left[\left(1 + \frac{1}{2}\rho \right) + \left(1 - \frac{3}{2}\rho \right)\cos^2\theta \right]$$
$$d\Gamma(\chi_2 \to V\gamma)/d\cos\theta \propto \left[\left(\frac{5}{6} - \frac{1}{12}\xi - \frac{1}{3}\tau \right) - \left(\frac{1}{2} - \frac{1}{4}\xi - \tau \right)\cos^2\theta \right]$$

where $\rho = d\sigma_{\chi_1(|h|=1)}/d\sigma_{\chi_1}$, $\xi = d\sigma_{\chi_2(|h|=1)}/d\sigma_{\chi_2}$, $\tau = d\sigma_{\chi_2(|h|=2)}/d\sigma_{\chi_2}$ (all known from the χ_J production matrix elements)

Polarization of the decay products

$$\sigma_{V(h=0)} = B(\chi_1 \to V\gamma) \left[(1/2) \, \sigma_{\chi_1(|h|=1)} \right]
+ B(\chi_2 \to V\gamma) \left[(2/3) \, \sigma_{\chi_2(h=0)} + (1/2) \, \sigma_{\chi_2(|h|=1)} \right]
\sigma_{V(|h|=1)} = B(\chi_1 \to V\gamma) \left[\sigma_{\chi_1(h=0)} + (1/2) \, \sigma_{\chi_1(|h|=1)} \right]
+ B(\chi_2 \to V\gamma) \left[(1/3) \, \sigma_{\chi_2(h=0)} + (1/2) \, \sigma_{\chi_2(|h|=1)} + \sigma_{\chi_2(|h|=2)} \right].$$

P.Cho, M.Wise, S.Trivedi, Phys. Rev. D 51, R2039 (1995)

3. NUMERICAL RESULTS

Comparison with LHC data on the J/ψ production

More on theoretical uncertainties

Effect of the scale in the $\alpha_s(\mu^2)$: Upper (dashed) lines $-\mu^2 = k_t^2$; lower (solid) lines $-\mu^2 = p_t^2 + m^2$ Upper panel $-\Upsilon$, lower panel $-\chi_b$ Effect of the flux definition: Solid lines $-1/\lambda^{1/2}(\hat{s}, k_{t1}^2, k_{t2}^2)$ dashed lines $-1/\hat{s}$ thick dash-dotted $-1/(p_t^2+m^2)$

$\Upsilon(1S)$ Spin alignement at the TEVATRON

Dash-dotted lines – JB gluons; dashed – dGRV gluons; Thin lines – direct Υ only; thick lines – with χ_b decays added. \circ D.Acosta et al.(CDF), Phys. Rev. Lett. **88**, 161802 (2002); \times V.M.Abazov et al.(DO), Phys. Rev. Lett. **101**, 182004 (2008)

4. CONCLUSIONS

For the Quarkonium Physics tasks CASCADE is equipped with:

- Off-shell $g^* + g^* \rightarrow V + g$ matrix elements for $V = J/\psi$, $\psi(2S)$, $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$
- Full spin density matrix for leptonic decays $V \rightarrow l^+ + l^-$
- Off-shell $g^* + g^* \rightarrow \chi_J$ matrix elements for $\chi_J = \chi_{cJ}(1S), \ \chi_{bJ}(1S), \ \chi_{bJ}(2S)$ with J = 0, 1, 2
- Full information on the χ_J spin alignment parameters to generate the decays $\chi_J \to V + \gamma$ followed by $V \to l^+ + l^-$

ALL IS READY FOR USE

YOU ARE WELCOME!