Open charm and beauty production at LHCb

Phillip Urquijo Syracuse University On behalf of the LHCb collaboration

LPCC December 2010 Charm and bottom quark production at the LHC

Charm & Beauty Production

Measurement of the b anti-b cross section in the forward region with semileptonic b-decays. (published, 15 nb⁻¹)

b-hadron fragmentation fraction with semileptonic b-decays (preliminary, 3 pb⁻¹)

Open charm cross sections, D⁺, D⁰, D_s, D^{*+} (preliminary, 1.8 nb^{-1})

b-Cross section

Physics Letters B 694 (2010) 209–216

b Cross section

- Measure right-sign, vertexed, Dµ⁻ combinations with tracks not pointing at primary vertex
- Background from "Prompt" D separated from Signal using impact parameter
- Require minimum p_T on D so that IP is well defined

Fit procedure

- 2D Unbinned log-likelihood fit to m(K⁻π⁺) & ln(IP). Separate fits for RS and WS samples.
- m(K⁻π⁺) shape from prompt D decays(no muon selection).
- In(IP) shape for prompt taken from data, and DfB decays from MC.

• Only free parameters are the yields.

Data samples

- Two data samples:
 - 2.9 nb⁻¹ of minimum bias triggers (>= 1Track).
 - $p(\mu^{-})>3$ GeV, $p_T(\mu^{-})>0.5$ GeV
 - 12.2 nb⁻¹ single muon trigger, p_T >1.3 GeV.
- For semileptonic decays, trigger much lower than Tevatron.

Fit projection in IP 12.2 nb⁻¹

- HLT1 Triggered Sample
- Fit results integrated over pseudo-rapidity [2,6].

Phillip Urquijo LPCC December 2010

b Cross Section

 $\sigma(pp \to H_b X) = \frac{\# \text{ of detected } D^0 \mu^- \text{ and } \overline{D}^0 \mu^+ \text{ events}}{2\mathcal{L} \times \text{ efficiency} \times \mathcal{B}(b \to D^0 X \mu^- \overline{\nu}) \mathcal{B}(D^0 \to K^- \pi^+)}$

Tevatron numbers rather than LEP, raise cross-section by 19%!

Species	LEP Z ⁰ fraction %	Tevatron fraction %
B-	40.3±0.9	33.3±3.0
B ⁰	40.3±0.9	33.3±3.0
Bs	10.4±0.9	12.1±1.5
$\Lambda_{\rm b}$	9.1±1.5	21.4±6.8

b-hadron fractions

Preliminary

b-hadron fractions

- Measure using inclusive B semileptonic decays:
- $f_s/(f_u+f_d) \& f_{\Lambda b}/(f_u+f_d)$ where $f_q = Fraction(b \rightarrow B_qX)$
- With D^oX μ ⁻ ν , D⁺X μ ⁻ ν , D_sX μ ⁻ ν , Λ_c X μ ⁻ ν
 - Cross feed between channels must be taken into account.

Channel	B (%)	Error (%)	
$D^0 \rightarrow K^- \pi^+$	3.89 ± 0.05	1.3	
$D^+ \rightarrow K^- \pi^+ \pi^+$	9.14 ± 0.20	2.2	Limiting factors
$D_s^+ \rightarrow K^- K^+ \pi^+$	5.50 ± 0.27	4.9	
$\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$	5.0 ± 1.3	26	

Hadron Fractions

• Using semileptonic B decays, the fractions are determined as:

$$\frac{f_s}{f_u + f_d} = \frac{N(\overline{B}_s^0)}{N(\overline{B}^0 + B^-)} = \frac{n\left(\overline{B}_s^0 \to DX\mu^-\overline{\nu}\right)}{n\left((\overline{B}^0 + B^-) \to DX\mu^-\overline{\nu}\right)} \frac{\tau_{B^-} + \tau_{\overline{B}^0}}{2\tau_{\overline{B}_s^0}}$$

 $= \frac{n_{\rm corr}(\overline{B}^0_s \to DX\mu^-\overline{\nu})}{n_{\rm corr}(B \to D^0X\mu^-\overline{\nu}) + n_{\rm corr}(B \to D^+X\mu^-\overline{\nu})} \frac{\tau_{B^-} + \tau_{\overline{B}^0}}{2\tau_{\overline{B}^0_s}} \uparrow \int \begin{array}{c} \mathsf{B}_s \to (\mathsf{D}_s^{**} \to \mathsf{DK})X\mu^-\nu \\ \mathsf{B} \to \mathsf{D}_s\mathsf{K}X\mu^-\nu \end{array}$

- n_{corr}: efficiency, branching fraction and cross-feed corrected yield.
 - Cross feed significant for n_{corr}(B_s).
- $\Gamma_{SL}(B_s) = \Gamma_{SL}(B_d) = \Gamma_{SL}(B_u)$, known from theory to <0.1%.

 $b \rightarrow D^{o}X\mu\nu$

Phillip Urquijo LPCC December 2010

 $b \rightarrow D_s + X \mu - v$

$D_{s}^{+} \rightarrow KK\pi$, Inclusive

$b \rightarrow D_s X \mu \neg v$ Composition

A recent theoretical prediction: Γ s(sl)~90% Ds+Ds* (Ds*/Ds=2.4) + Ds** (arXiv: 1003.5576)

Only $B_s \rightarrow D_{s1} X \mu^- \nu$ has been measured (DØ, PRL**102** 051801).

D_{s1}& D_{s2} decays to a mixture of **D**^(*)**K** and **D_sX.** =>The fraction needs to be measured to determine cross feed.

D0 observed $B_s \rightarrow D_{s1}(2536)^+\mu\nu$, $D_{s1}(2536)^+\rightarrow D^{*+} K^0$ [PRL 102 051801] Nobody has seen $B_s \rightarrow D_{s2}(2536)^+\mu\nu$ before. We used more data to confirm it.

- Determine branching fraction ratios:
 - Ratio of D_{s2}/D_{s1} from the 20pb⁻¹ sample,

$$\frac{\mathcal{B}(\overline{B}_s^0 \to D_{s2}^{*+} X \mu^- \overline{\nu})}{\mathcal{B}(\overline{B}_s^0 \to D_{s1}^+ X \mu^- \overline{\nu})} = 0.61 \pm 0.14 \pm 0.05$$

• And with the semi-inclusive $B_s \rightarrow D_s X \mu^- \nu$ yield from $3pb^{-1}$ we get:

$$\frac{\mathcal{B}(\overline{B}_{s}^{0} \to D_{s1}^{+} X \mu^{-} \overline{\nu})}{\mathcal{B}(\overline{B}_{s}^{0} \to X \mu^{-} \overline{\nu})} = 5.3 \pm 1.2 \pm 0.4\%$$
$$\frac{\mathcal{B}(\overline{B}_{s}^{0} \to D_{s2}^{*+} X \mu^{-} \overline{\nu})}{\mathcal{B}(\overline{B}_{s}^{0} \to X \mu^{-} \overline{\nu})} = 3.2 \pm 1.0 \pm 0.4\%$$

DØ, PRL102 051801 =(9.8±3.0)%

$B_s \rightarrow D_s X \mu \nu : q^2$ Fit

- Must know relative BR of $D_s/D_s^*/D_s^{**}$ to constrain D_s mode efficiency.
- Use neutrino reconstruction with B-flight information to access decay kinematics.
- D_s*/D_s ratio well predicted, but D** fraction highly uncertain.

$$\frac{\mathcal{B}(\overline{B}_s^0 \to D_s^{**} X \mu \nu)}{\mathcal{B}(\overline{B}_s^0 \to D_s^{(*), **} X \mu \nu)} = (11^{+22}_{-11})\%$$

 $\Delta Efficiency(B_s \rightarrow D_s X \mu^- \nu) = 3\%.$

 $\Lambda_b^{o} \rightarrow \Lambda_c^+ X \mu^- v$

Reconstruct $\Lambda_c^+ \rightarrow p^+ K^- \pi^+ (BR = 5.0 \pm 1.3\%)$

Phillip Urquijo LPCC December 2010

$\Lambda_b \rightarrow D^o p X \mu^- \nu$

Similar criteria for D⁰p mode, to determine Λ_b cross feed.

$f_s/(f_u+f_d)$

$f_s/(f_u+f_d) = 0.130 \pm 0.004(stat.) \pm 0.013(sys.)$ [preliminary]

LEP: 0.129 ± 0.012

Tevatron: 0.18 ± 0.03

Higher p_T threshold different cross feed treatment.

 B_s →D⁰KXµν most important correction.

B backgrounds small.

Most systematics cancel in the ratio.

Systematic Sources	Relative Error [%]
Charm hadron BR	5.5
B _s →D ⁰ KXµν Yield	6.3
$B^{0/+} \Lambda_b \rightarrow D_s K X \mu \nu$ Correction	2.0
Efficiencies, mainly Bs	3.0
$\Lambda_{\rm c}$ reflection	1.0
MC statistics	3.0
Background	2.0
Tracking	2.0
Lifetime ratio	1.8
PID	1.4
Trigger	1.4
Total	10

$b \rightarrow D^{o}X\mu\nu$ in $\eta\&p_{T}$

- Measure η dependence in D⁰ mode to compare shape with theory.
- Few events @ low p_T , low η .
 - Due to µ trigger p_T threshold.
- Extrapolation error in efficiency correction for η bins with 0 efficiency @ low p_T is included.

- Background subtracted.
- Uncorrelated errors shown: stat, and systematics (including efficiency extrapolation errors).
- Correlated errors are not negligible.

Cross check

- Within error, fragmentation fraction constant in η.
 - Only stat errors shown.

Open charm cross sections

Preliminary LHCb-CONF-2010-013

Open Charm Production

- •Cross sections of D⁰, D*(2010)⁺, D⁺, D_s⁺ in bins of y and p_T from 0<p_T<8 GeV and 2<Y<4.5
 - Preliminary results on 1.8 nb⁻¹.
- •Same approach as *b*-cross section analysis.
 - •Mass distributions determine D background fraction and Ln (IP) for background due to D's from B decays.

Phillip Urquijo LPCC December 2010

D^o Cross section 1.8 nb⁻¹

D+Cross section 1.8 nb⁻¹

D*+ Cross section 1.8 nb-1

D_s Cross section (1.8 nb⁻¹)

Data: 16% correlated error not represented

- $\sigma(D^+)/\sigma(D_s^+) = 2.32 \pm 0.27 \pm 0.26$
- $f(c \rightarrow D^+)/f(c \rightarrow D_s^+) = 3.08 \pm 0.70 \text{ (PDG)}$

Charm Cross Section (Preliminary)

- X-sections in p_T and Y agree well with predictions.
- Combining D⁰/D⁺/D^{*+}/D_s⁺(LHCb-CONF-2010-013)
 - $\sigma(pp \rightarrow ccX) = 1234 \pm 189 \ \mu b \ (pT < 8 \ GeV/c, 2 < y < 4.5)$
 - $\sigma(pp \rightarrow ccX) = 6100 \pm 934 \ \mu b$ (full pT, Y, Pythia extrap.)
- Final result to come with more data ~ 14 nb⁻¹.
- Systematic uncertainties mostly constant in p_T and Y
 - 10% Luminosity, 3% per track for Tracking efficiency
 - Channel dependent: Fit systematics, Particle ID, Trigger, Selection efficiencies.

Conclusions

- Cross sections determined, error limited by luminosity measurement.
 - $\sigma(pp \rightarrow bbX) = 284 \pm 20 \pm 49 \ \mu b$ PLB 694 (2010) 209–216
 - $\sigma(pp \rightarrow ccX) = 6100 \pm 934 \ \mu b$ Preliminary
- Model independent b-hadron fragmentation fractions determined:
 - $f_s/(f_u+f_d) = 0.130 \pm 0.004(stat.) \pm 0.013(sys.)$ Preliminary
- Discovered, and measured the BR of a new semileptonic b mode, D_{s2} , and improved understanding of B_s semileptonic width.
- Refined b-production measurements in η show unexpected shape at towards central region.
 - But must understand pT extrapolation.
- J/ψ results also tell us about *b*-production: More details in Wenbin's talk.

backup

<u>кнср</u>

Phillip Urquijo LPCC December 2010

Hadron Fractions

• Yields must be corrected for cross feed between Bs, and Bu+Bd.

$$n_{\rm corr}(\overline{B}^0_s \to DX\mu^-\overline{\nu}) = \frac{n(D_s^+\mu^-)}{\mathcal{B}(D_s^+ \to K^+K^-\pi^+)\epsilon(\overline{B}^0_s \to D_s^+)} + 2\frac{n(D^0K^+\mu^-\overline{\nu})}{\mathcal{B}(D^0 \to K^-\pi^+)\epsilon(\overline{B}^0_s \to D^0K^+)}$$

$$n_{\rm corr}(B \to D^0 X \mu^- \overline{\nu}) = \frac{n(D^0 X \mu^- \overline{\nu}) - n(D^0 K^+ X \mu^- \overline{\nu}) \frac{\epsilon(\overline{B}_s^0 \to D^0)}{\epsilon(\overline{B}_s^0 \to D^0 K^+)} - n(D^0 p \mu^- \overline{\nu}) \frac{\epsilon(\Lambda_b \to D^0)}{\epsilon(\Lambda_b \to D^0 p)}}{\mathcal{B}(D^0 \to K^- \pi^+) \epsilon(B \to D^0)}$$

$$n_{\rm corr}(B \to D^+ X \mu^- \overline{\nu}) = \frac{1}{\epsilon(B \to D^+)} \left[\frac{n(D^+ \mu^-)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)} - \frac{n(D^0 K^+ \mu^-)}{\mathcal{B}(D^0 \to K^- \pi^+)} \frac{\epsilon(\overline{B}_s^0 \to D^+)}{\epsilon(\overline{B}_s^0 \to D^0 K^+)} - \frac{n(D^0 p \mu^-)}{\mathcal{B}(D^0 \to K^- \pi^+)} \frac{\epsilon(\Lambda_b \to D^+)}{\epsilon(\Lambda_b \to D^0 p)} \right]$$

