Open charm and

 beauty production at

 beauty production at LHCb

Phillip Urquijo
Syracuse University

On behalf of the LHCb collaboration

LPCC December 2010
Charm and bottom quark production at the LHC

Charm \& Beauty Production

Measurement of the b anti- b cross section in the forward region with semileptonic b-decays. (published, $15 \mathrm{nb}^{-1}$)
b-hadron fragmentation fraction with semileptonic b-decays (preliminary, $3 \mathrm{pb}^{-1}$)

Open charm cross sections, $\mathrm{D}^{+}, \mathrm{D}^{0}, \mathrm{D}_{\mathrm{s}}, \mathrm{D}^{*+}$ (preliminary, $1.8 \mathrm{nb}^{-1}$)

b-Cross section

Physics Letters B 694 (2010) 209-216

b Cross section

- Measure right-sign, vertexed, $\mathrm{D} \mu^{-}$combinations with tracks not pointing at primary vertex
- Background from "Prompt" D separated from Signal using impact parameter
- Require minimum pt on D so that IP is well defined

$\eta=-\ln [\tan (\theta / 2)]$
Phillip Urquijo LPCC December 2010

Fit procedure

- 2D Unbinned log-likelihood fit to $m\left(K-\pi^{+}\right) \& \ln (\mathrm{IP})$. Separate fits for RS and WS samples.
- $\mathrm{m}\left(\mathrm{K}^{\left.-\pi^{+}\right)}\right.$shape from prompt D decays(no muon selection).
- $\ln (\mathrm{IP})$ shape for prompt taken from data, and DfB decays from MC.

- $\mathrm{m}\left(\mathrm{K} \cdot \pi^{+}\right)$sidebands give background under D^{0} peak.
- Only free parameters are the yields.

Data samples

- Two data samples:
- $2.9 \mathrm{nb}^{-1}$ of minimum bias triggers ($>=1$ Track).
- $p\left(\mu^{-}\right)>3 \mathrm{GeV}, \mathrm{p}_{\mathrm{T}}\left(\mu^{-}\right)>0.5 \mathrm{GeV}$
- $12.2 \mathrm{nb}^{-1}$ single muon trigger, $\mathrm{p}_{\mathrm{T}}>1.3 \mathrm{GeV}$.
- For semileptonic decays, trigger much lower than Tevatron.

Fit projection in IP $12.2 \mathrm{nb}^{-1}$

- HLT1 Triggered Sample
- Fit results integrated over pseudo-rapidity [2,6].

b Cross Section

$$
\sigma\left(p p \rightarrow H_{b} X\right)=\frac{\# \text { of detected } D^{0} \mu^{-} \text {and } \bar{D}^{0} \mu^{+} \text {events }}{2 \mathcal{L} \times \text { efficiency } \times \mathcal{B}\left(b \rightarrow D^{0} X \mu^{-} \bar{v}\right) \mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}
$$

Species LEP Z ${ }^{0}$ fraction \% \quad Tevatron fraction \%
Tevatron numbers rather than LEP, raise cross-section by 19% !

Species	LEP Z^{0} fraction $\%$	Tevatron fraction \%
B^{-}	$\mathbf{4 0 . 3} \pm \mathbf{0 . 9}$	$\mathbf{3 3 . 3} \pm \mathbf{3 . 0}$
B^{0}	$\mathbf{4 0 . 3} \pm \mathbf{0 . 9}$	$\mathbf{3 3 . 3} \pm \mathbf{3 . 0}$
B_{s}	$\mathbf{1 0 . 4} \pm \mathbf{0 . 9}$	$\mathbf{1 2 . 1} \pm \mathbf{1 . 5}$
Λ_{b}	$\mathbf{9 . 1} \pm \mathbf{1 . 5}$	$\mathbf{2 1 . 4} \pm \mathbf{6 . 8}$

b-hadron fractions

Preliminary

b-hadron fractions

- Measure using inclusive B semileptonic decays:
- $\mathrm{f}_{\mathrm{s}} /\left(\mathrm{f}_{\mathrm{u}}+\mathrm{f}_{\mathrm{d}}\right) \& \mathrm{f}_{\wedge b} /\left(\mathrm{f}_{\mathrm{u}}+\mathrm{f}_{\mathrm{d}}\right)$ where $\mathrm{f}_{\mathrm{q}} \equiv$ Fraction $\left(\mathrm{b} \rightarrow \mathrm{B}_{\mathrm{q}} \mathrm{X}\right)$
- With $D^{\circ} X \mu^{-} v, D^{+} X \mu^{-} v, D_{s} X \mu^{-} v, \Lambda_{c} X \mu^{-} v$
- Cross feed between channels must be taken into account.

Channel	B (\%)	Error (\%)
$\mathbf{D}^{\mathbf{0}} \rightarrow \mathbf{K}^{-} \boldsymbol{\pi}^{+}$	3.89 ± 0.05	1.3
$\mathbf{D}^{+} \rightarrow \mathbf{K}^{-} \pi^{+} \pi^{+}$	9.14 ± 0.20	2.2
$\mathbf{D}_{\mathbf{s}}{ }^{+} \mathbf{K}^{-} \mathbf{K}^{+} \pi^{+}$	5.50 ± 0.27	4.9
$\Lambda_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{pK}^{-} \pi^{+}$	5.0 ± 1.3	26

Hadron Fractions

- Using semileptonic B decays, the fractions are determined as:

$$
\begin{aligned}
& \frac{f_{s}}{f_{u}+f_{d}}=\frac{N\left(\bar{B}_{s}^{0}\right)}{N\left(\bar{B}^{0}+B^{-}\right)}=\frac{n\left(\bar{B}_{s}^{0} \rightarrow D X \mu^{-} \bar{\nu}\right)}{n\left(\left(\bar{B}^{0}+B^{-}\right) \rightarrow D X \mu^{-} \bar{\nu}\right)} \frac{\tau_{B^{-}}+\tau_{\bar{B}^{0}}}{2 \tau_{\bar{B}_{s}^{0}}} \\
= & \frac{n_{\text {corr }}\left(\bar{B}_{s}^{0} \rightarrow D X \mu^{-} \bar{\nu}\right)}{n_{\text {corr }}\left(B \rightarrow D^{0} X \mu^{-} \bar{\nu}\right)+n_{\text {corr }}\left(B \rightarrow D^{+} X \mu^{-} \bar{\nu}\right)} \frac{\tau_{B^{-}}+\tau_{\bar{B}^{0}}}{2 \tau_{\bar{B}_{s}^{0}}} \uparrow \downarrow \begin{array}{l}
\text { cross feed correction e.g. } \\
\mathrm{B}_{s} \rightarrow\left(\mathrm{D}_{s} * * \rightarrow \mathrm{DK}\right) X \mu^{-} \mathrm{V} \\
\mathrm{~B} \rightarrow \mathrm{D}_{s} K X \mu^{-} \mathrm{V}
\end{array}
\end{aligned}
$$

- $\mathrm{n}_{\text {corr: }}$ efficiency, branching fraction and cross-feed corrected yield.
- Cross feed significant for $\mathrm{n}_{\text {corr }}\left(\mathrm{B}_{\mathrm{s}}\right)$.
- $\quad \Gamma \mathrm{sL}\left(\mathrm{B}_{\mathrm{s}}\right)=\Gamma \mathrm{sL}\left(\mathrm{B}_{\mathrm{d}}\right)=\Gamma \mathrm{sL}\left(\mathrm{B}_{\mathrm{u}}\right)$, known from theory to $<0.1 \%$.

$\mathrm{b} \rightarrow \mathrm{D}^{\circ} \mathrm{X} \mu \nu$

RS
 Signal $=28474 \pm 190$ Prompt=773 ± 44 Sideb. $=1776 \pm 33$

WS

Signal $=422 \pm 43$
Prompt $=204 \pm 19$
Sideb. $=1410 \pm 21$

$\mathrm{b} \rightarrow \mathrm{D}^{+} \mathrm{X} \mu \nu$

Reconstruct $\mathrm{D}^{+} \rightarrow \mathrm{K} \pi \pi$ inclusive

$\mathrm{b} \rightarrow \mathrm{D}_{\mathrm{s}}+\mathbf{X} \mu^{-} v$

$D_{s}{ }^{+} \rightarrow K K \pi$, Inclusive

RS

Signal $=2208 \pm 61$ Prompt=3 ± 13
Sideb. $=800 \pm 62$
$\Lambda_{c}=504 \pm 64$

WS

Signal $=20 \pm 32$
Prompt $=25 \pm 10$
Sideb. $=621 \pm 45$
$\Lambda_{c}=520 \pm 45$

$\mathrm{b} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{X} \mu^{-} v$ Composition

A recent theoretical prediction:
「s(sl)~90\% Ds+Ds* (Ds*/Ds=2.4) + Ds** (arXiv: 1003.5576)

Only $B_{s} \rightarrow D_{s 1} X \mu^{-} v$ has been measured (D \varnothing, PRL102 051801).
$D_{s 1} \& D_{s 2}$ decays to a mixture of $\mathbf{D}^{(*)} \mathbf{K}$ and $\mathbf{D}_{s} \mathbf{X}$.
=> The fraction needs to be measured to determine cross feed.
— predicted (Godfrey-Isgur model)

- observed

D0 observed $B_{s} \rightarrow D_{s 1}(2536)^{+} \mu v, D_{s 1}(2536)^{+} \rightarrow D^{*+} K^{0}$ [PRL 102 051801]
Nobody has seen $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2}(2536)^{+} \mu v$ before. We used more data to confirm it.

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}^{\circ} \mathrm{K}^{+} \mathrm{X} \mu^{-} \boldsymbol{v} 20 \mathrm{pb}^{-1}$

8.3σ significance for $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s} 2} \mu^{-\mathrm{v}}$ mode. Discovery!

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}^{\circ} \mathrm{K}^{+} \mathrm{X} \mu^{-} v$

- Determine branching fraction ratios:
- Ratio of $\mathrm{D}_{\mathrm{s} 2} / \mathrm{D}_{\mathrm{s} 1}$ from the $20 \mathrm{pb}^{-1}$ sample,

$$
\frac{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s 2}^{*+} X \mu^{-} \bar{\nu}\right)}{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s 1}^{+} X \mu^{-} \bar{\nu}\right)}=0.61 \pm 0.14 \pm 0.05
$$

- And with the semi-inclusive $B_{s} \rightarrow D_{s} X \mu^{-} v$ yield from $3 \mathrm{pb}^{-1}$ we get:

$$
\begin{aligned}
& \frac{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s 1}^{+} X \mu^{-}-\bar{\nu}\right)}{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow X \mu^{-} \bar{\nu}\right)}=5.3 \pm 1.2 \pm 0.4 \% \\
& \frac{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s 2}^{*+} X \mu^{-} \bar{\nu}\right)}{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow X \mu^{-} \bar{\nu}\right)}=3.2 \pm 1.0 \pm 0.4 \%
\end{aligned}
$$

$$
\text { Dø, PRL102 } 051801
$$

$$
=(9.8 \pm 3.0) \%
$$

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{X} \mu^{-} v: \mathrm{q}^{2}$ Fit

- Must know relative BR of $\mathrm{D}_{\mathrm{s}} / \mathrm{D}_{\mathrm{s}}^{*} / \mathrm{D}_{\mathrm{s}}^{* *}$ to constrain D_{s} mode efficiency.
- Use neutrino reconstruction with B-flight information to access decay kinematics.
- $\mathrm{D}_{\mathrm{s}}{ }^{*} / \mathrm{D}_{\mathrm{s}}$ ratio well predicted, but $\mathrm{D}^{* *}$ fraction highly uncertain.

$$
\frac{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{* *} X \mu \nu\right)}{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{(*), * *} X \mu \nu\right)}=\left(11_{-11}^{+22}\right) \%
$$

$$
\Delta \text { Efficiency }\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} X \mu^{-} v\right)=3 \%
$$

$\Lambda_{b}{ }^{0} \rightarrow \Lambda_{c}{ }^{+} X \mu^{-} v$

Reconstruct $\Lambda_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{p}^{+} \mathrm{K}^{-} \pi^{+}(\mathrm{BR}=5.0 \pm 1.3 \%)$

RS

Signal $=3250 \pm 7$ Prompt $=50 \pm 13$ Sideb. $=446 \pm 15$

$\Lambda_{b} \rightarrow D^{o} p X \mu^{-} v$

Similar criteria for $\mathrm{D}^{0} \mathrm{p}$ mode, to determine Λ_{b} cross feed.

$n\left(D^{0} p X \mu^{-} v\right)$
$=106 \pm 25 \pm 27$
c.f. Masses of observed states, though cannot confirm their presence.

$$
\begin{aligned}
& \Lambda_{\mathrm{c}}(2880)^{+} \rightarrow \mathrm{p} \mathrm{D}^{0}, \mathrm{~m}_{\mathrm{PDG}}=2881.5 \mathrm{MeV}, \Gamma_{\mathrm{PDG}}=5.8 \pm 1.1 \mathrm{MeV} \\
& \Lambda_{\mathrm{c}}(2940)^{+} \rightarrow \mathrm{p} \mathrm{D}^{0}, \mathrm{~m}_{\mathrm{PDG}}=2939.3 \mathrm{MeV}, \Gamma_{\mathrm{PDG}}=17 \pm 8 \mathrm{MeV}
\end{aligned}
$$

$f_{S} /\left(f_{u}+f_{d}\right)$		
$\mathrm{f}_{\mathrm{s}} /\left(\mathrm{f}_{\mathrm{u}}+\mathrm{f}_{\mathrm{d}}\right)=0.130 \pm 0.004$ (stat.) ± 0.013 (sys.) [preliminary]		
LEP: 0.129 ± 0.012	Systematic	Relative
		Error [\%]
Tevatron: 0.18 ± 0.03	Charm hadro	5.5
	$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}^{0} \mathrm{KX} \mu \mathrm{v}$	6.3
Higher p_{T} threshold different cross feed treatment.	$\mathrm{B}^{0 /+} \Lambda_{\mathrm{b}} \rightarrow \mathrm{D}_{5} \mathrm{KX}$	2.0
	Efficiencies, m	3.0
	Λ_{c} reflection	1.0
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}^{0} \mathrm{KX} \mu \mathrm{v}$ most important correction.	MC statistics	3.0
	Background	2.0
	Tracking	2.0
B backgrounds small.	Lifetime ratio	1.8
Most systematics cancel in the ratio.	PID	1.4
	Trigger	1.4
	Total	10

$\mathrm{b} \rightarrow \mathrm{D}^{\circ} \mathrm{X} \mu v$ in $\eta \& \mathrm{p}_{\mathrm{T}}$

- Measure η dependence in D^{0} mode to compare shape with theory. Few events @ low pt, low η.
- Due to μ trigger p_{T} threshold.

Extrapolation error in efficiency correction for η bins with 0 efficiency @ low p_{T} is included.

$\mathrm{b} \rightarrow \mathrm{D}^{\circ} \mathrm{X} \mu \nu \mathrm{dN} / \mathrm{d} \eta$

- Background subtracted.
- Uncorrelated errors shown: stat, and systematics (including efficiency extrapolation errors).
- Correlated errors are not negligible.

Cross check

Within error, fragmentation fraction constant in η.

- Only stat errors shown.

Open charm cross sections

Preliminary
LHCb-CONF-2010-013

Open Charm Production

- Cross sections of $\mathrm{D}^{0}, \mathrm{D}^{*}(2010)^{+}, \mathrm{D}^{+}, \mathrm{D}_{\mathrm{s}}{ }^{+}$in bins of y and p_{T} from $0<p_{\boldsymbol{T}}<8 \mathrm{GeV}$ and $2<\mathrm{Y}<4.5$
- Preliminary results on $1.8 \mathrm{nb}^{-1}$.
- Same approach as b-cross section analysis.
- Mass distributions determine D background fraction and Ln (IP) for background due to $\mathrm{D}^{\prime} \mathrm{s}$ from B decays.

D^{0} Cross section $1.8 \mathrm{nb}^{-1}$

D^{+}Cross section $1.8 \mathrm{nb}^{-1}$

Phillip Urquijo LPCC December 2010

D^{*+} Cross section $1.8 \mathrm{nb}^{-1}$

D_{s} Cross section (1.8 nb ${ }^{-1}$)

Data: 16\% correlated error not represented

- $\sigma\left(\mathrm{D}^{+}\right) / \sigma\left(\mathrm{D}_{\mathrm{s}}{ }^{+}\right)=2.32 \pm 0.27 \pm 0.26$
- $\mathrm{f}\left(c \rightarrow \mathrm{D}^{+}\right) / \mathrm{f}\left(c \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{+}\right)=3.08 \pm 0.70(\mathrm{PDG})$

Charm Cross Section (Preliminary)

- X-sections in p_{T} and Y agree well with predictions.
- Combining $\mathrm{D}^{0} / \mathrm{D}^{+} / \mathrm{D}^{*+} / \mathrm{D}_{\mathrm{s}}{ }^{+}(\mathrm{LHCb}-\mathrm{CONF}-2010-013)$
- $\sigma(p p \rightarrow c c X)=1234 \pm 189 \mu b(\mathrm{pT}<8 \mathrm{GeV} / \mathrm{c}, 2<y<4.5)$
- $\sigma(p p \rightarrow c c X)=6100 \pm 934 \mu b$ (full $p T, Y$, Pythia extrap.)
- Final result to come with more data $\sim 14 \mathrm{nb}^{-1}$.
- Systematic uncertainties mostly constant in p_{T} and Y
- 10\% Luminosity, 3\% per track for Tracking efficiency
- Channel dependent: Fit systematics, Particle ID, Trigger, Selection efficiencies.

Conclusions

- Cross sections determined, error limited by luminosity measurement.
- $\sigma(p p \rightarrow b b X)=284 \pm 20 \pm 49 \mu \mathrm{~b}$ PLB 694 (2010) 209-216
- $\sigma(p p \rightarrow c c X)=6100 \pm 934 \mu b$ Preliminary
- Model independent b-hadron fragmentation fractions determined:
- $f_{s} /\left(f_{u}+f_{d}\right)=0.130 \pm 0.004$ (stat.) ± 0.013 (sys.) Preliminary
- Discovered, and measured the $B R$ of a new semileptonic b mode, $D_{s 2}$, and improved understanding of B_{s} semileptonic width.
- Refined b-production measurements in η show unexpected shape at towards central region.
- But must understand pT extrapolation.
- J/ Ψ results also tell us about b-production: More details in Wenbin's talk.

backup

$\mathrm{b} \rightarrow \mathrm{D}^{\circ} \mathrm{X} \mu v$ in η bins

Measure η dependence in D^{0} mode to compare shape with theory.

η

Fits to $\mathrm{D}^{\mathrm{o}} \mu^{-} 2.9 \mathrm{nb}^{-1}$

 Untriggered SampleFit results integrated $2<\eta<6$.

Hadron Fractions

- Yields must be corrected for cross feed between Bs, and Bu+Bd.

$$
\begin{gathered}
n_{\text {corr }}\left(\bar{B}_{s}^{0} \rightarrow D X \mu^{-} \bar{\nu}\right)=\frac{n\left(D_{s}^{+} \mu^{-}\right)}{\mathcal{B}\left(D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right) \epsilon\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+}\right)}+2 \frac{n\left(D^{0} K^{+} \mu^{-} \bar{\nu}\right)}{\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right) \epsilon\left(\bar{B}_{s}^{0} \rightarrow D^{0} K^{+}\right)} \\
n_{\text {corr }}\left(B \rightarrow D^{0} X \mu^{-} \bar{\nu}\right)=\frac{n\left(D^{0} X \mu^{-} \bar{\nu}\right)-n\left(D^{0} K^{+} X \mu^{-} \bar{\nu}\right) \frac{\epsilon\left(\bar{B}_{s}^{0} \rightarrow D^{0}\right)}{\epsilon\left(\bar{B}_{s}^{0} \rightarrow D^{0} K^{+}\right)}-n\left(D^{0} p \mu^{-} \bar{\nu}\right) \frac{\epsilon\left(\Lambda_{b} \rightarrow D^{0}\right)}{\epsilon\left(\Lambda_{b} \rightarrow D^{0} p\right)}}{\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right) \epsilon\left(B \rightarrow D^{0}\right)} \\
n_{\text {corr }}\left(B \rightarrow D^{+} X \mu^{-} \bar{\nu}\right)=\frac{1}{\epsilon\left(B \rightarrow D^{+}\right)}\left[\frac{n\left(D^{+} \mu^{-}\right)}{\mathcal{B}\left(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\right)}-\frac{n\left(D^{0} K^{+} \mu^{-}\right)}{\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)} \frac{\epsilon\left(\bar{B}_{s}^{0} \rightarrow D^{+}\right)}{\epsilon\left(\bar{B}_{s}^{0} \rightarrow D^{0} K^{+}\right)}\right. \\
\left.-\frac{n\left(D^{0} p \mu^{-}\right)}{\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)} \frac{\epsilon\left(\Lambda_{b} \rightarrow D^{+}\right)}{\epsilon\left(\Lambda_{b} \rightarrow D^{0} p\right)}\right]
\end{gathered}
$$

