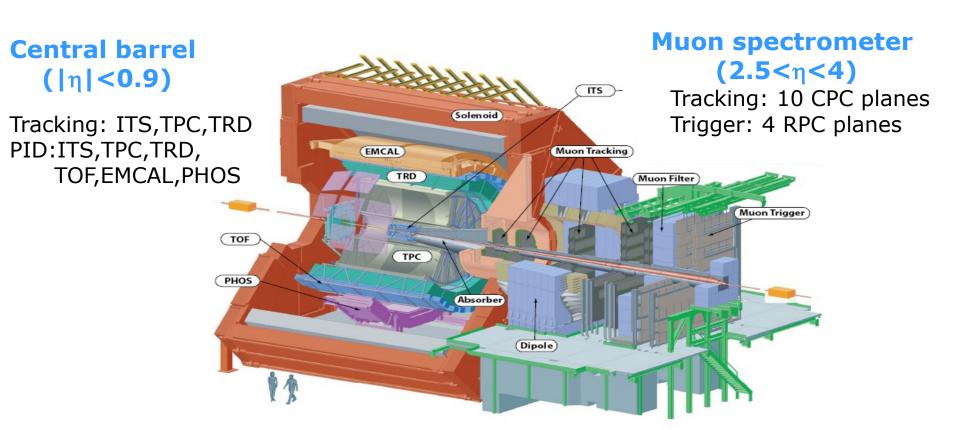
Quarkonium production in ALICE


E. Scomparin (INFN Torino, Italy) for the ALICE Collaboration

- Introduction
- First results: $J/\psi \rightarrow \mu^+\mu^-$ and $J/\psi \rightarrow e^+e^-$ in p-p collisions at 7 TeV
- Pb-Pb run: first performance plots
- Perspectives and conclusions

LPCC Charm and bottom quark production at the LHC December 3 2010 LHC Physics Centre at CERN

The ALICE experiment in a slide

- ALICE is the dedicated heavy-ion experiment at the LHC
 Pb-Pb collisions: main focus of the experiment
 QGP studies
 p-p collisions: important aspect of the physics program
 reference for heavy-ion collision studies
 - p-p physics

Quarkonium measurement in ALICE

- Quarkonium in ALICE can be measured in two ways:
 - in the central barrel in the e^+e^- channel (|y| < 0.9)
 - in the forward spectrometer in the $\mu^+\mu^-$ channel (2.5<y<4)
- 3 sources of J/ψ
 - Direct production
 Feed down from heavier cc states

Prompt J/ψ

radiative decay $\chi_c \rightarrow J/\psi\gamma$ in the central barrel

3) J/ ψ from b-hadron decay \Box

can be identified in the central barrel, good impact parameter resolution ($\sigma_{r_{\phi}} < 60 \ \mu m$ for $p_T > 1 \ GeV/c$)

forward detection more difficult \rightarrow 3-muon events

- \rightarrow B cross section from single- μ
- \rightarrow Semileptonic decays of B pairs

Preliminary ALICE results refer to inclusive J/ψ production

$J/\psi \rightarrow \mu^+\mu^-$: p+p @ $\sqrt{s}=7$ TeV sample

• Data sample:

- Integrated luminosity = 13.6 nb⁻¹, corresponding to data collected between May and July 2010 (~ 10-15% of the 2010 total statistics)
- Trigger: muon in the forward spectrometer, in coincidence with minimum bias interaction trigger

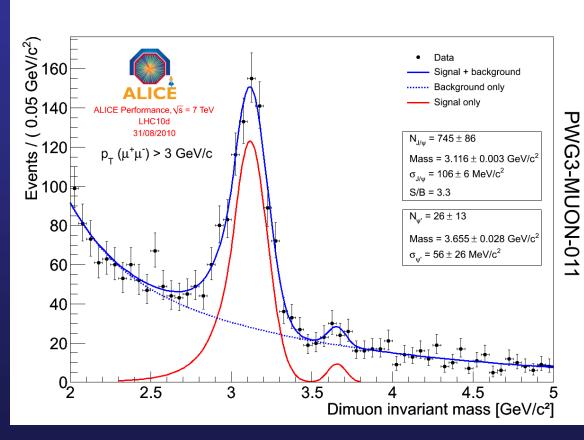
• Run Selection:

• Runs selected according to quality checks on the stability of the muon spectrometer tracking and trigger performances

• Event Selection:

- at least one vertex reconstructed in the silicon pixel detector
- at least one muon reconstructed in the tracking and trigger chambers satisfying the trigger algorithm
- cut on the track position at the end of the front absorber $(2^0 {<} \theta_{abs} {<} 9^0)$

J/ψ rapidity window: 2.5<y<4 transverse momentum window 0<p_T<8 GeV/c (statistics)


$J/\psi \rightarrow \mu^+\mu^-$: signal extraction

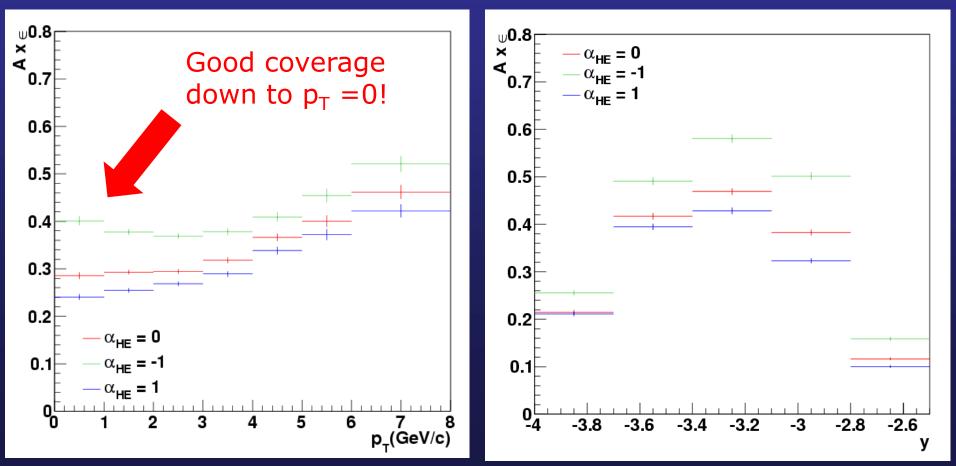
- \bullet The number of J/ ψ is extracted from a fit to the invariant mass spectrum, using
- Crystal Ball shape for the signal (J/ψ and ψ')
 Sum of two exponentials

 Sum of two exponentials for the background

The available J/ψ statistics, used for the cross section determination is

 $N_{J/\psi} = 1909 \pm 78$ S/B (2.9<M<3.3) ~ 2.4

With a suitable p_T cut (smaller background), also the $\psi(2S)$ signal is visible, but with a much lower statistical significance

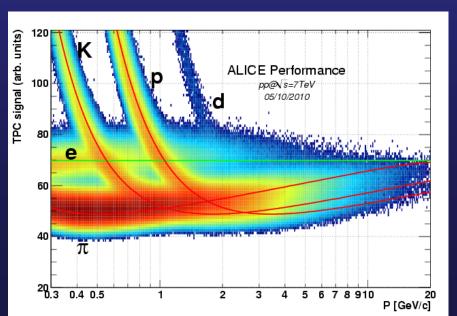

$J/\psi \rightarrow \mu^+\mu^-$: acceptance × efficiency

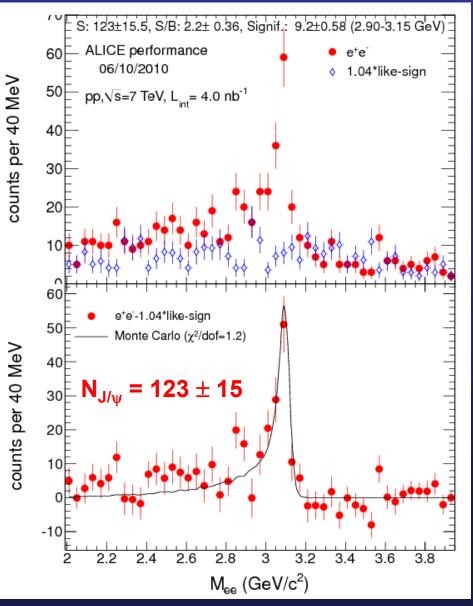
 Based on simulations performed separately for each LHC period, in order to reproduce in a realistic way, the detector status

Input: realistic y and $p_T J/\psi$ distributions

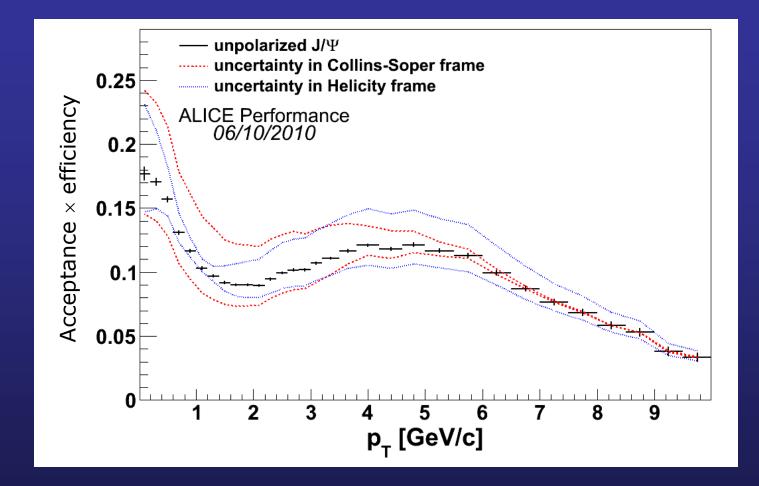
 $p_T \rightarrow CDF$ extrapolation $y \rightarrow CEM$ calculation

• Study of differential distributions: 1D acceptance correction


$J/\psi \rightarrow e^+e^-: p+p @ \sqrt{s=7} TeV sample$ and signal extraction


• Analysis is based, for the moment, on a smaller data sample wrt to $J/\psi \rightarrow \mu^+\mu^ \rightarrow L=4.0 \text{ nb}^{-1}$ (~15% of 2010 stat.)

Track selection:


 $|\eta^{e+,e^{-}}|{<}0.88$ and $|y^{J/\psi}|{<}0.88$ $p_{T}^{\,e+,e^{-}}{>}1$ GeV/c

TPC-based PID

$J/\psi \rightarrow e^+e^-$: acceptance × efficiency

• Also in the electron channel, very good coverage down to $p_T = 0$

Integrated cross section(s)

Cross section calculated as

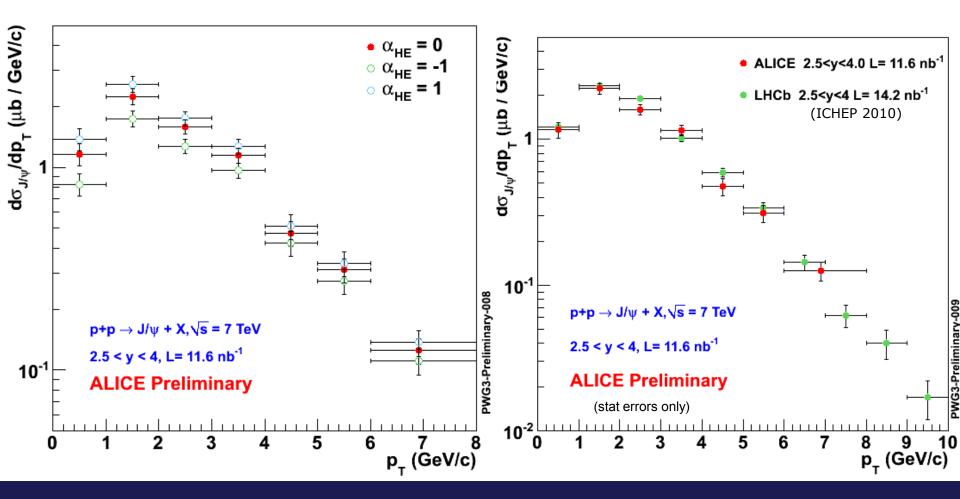
$$\sigma_{J/\psi} (2.5 < y < 4) = \frac{N_{J/\psi}}{Acc_{J/\psi} \times \varepsilon} \times \frac{1}{L}$$

• The ALICE results, integrated over y and p_T, are:

 $\sigma_{J/\psi}(-0.88 < y < 0.88) = 12.95 \pm 2.15(stat) \pm 2.32(syst)_{-2.55}^{+1.26}(syst.pol.) \ \mu b$

$$\sigma_{J/\psi}(2.5 < y < 4) = 7.25 \pm 0.29(stat) \pm 0.98(syst)_{-1.50}^{+0.87}(syst.pol.) \,\mu b$$

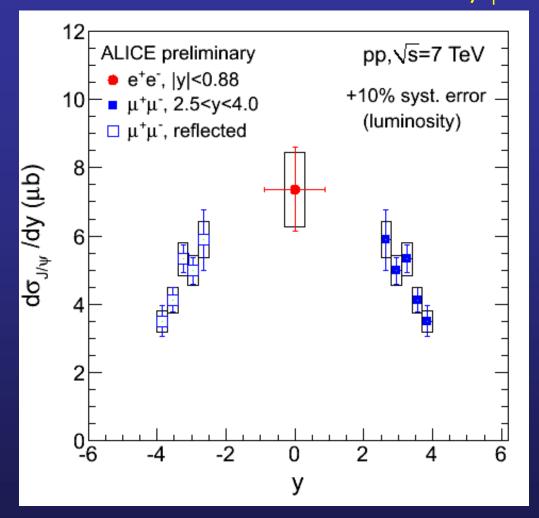
(polarization-related errors calculated in the helicity frame)


Very good agreement with the corresponding LHCb result obtained at forward rapidity (ICHEP2010)

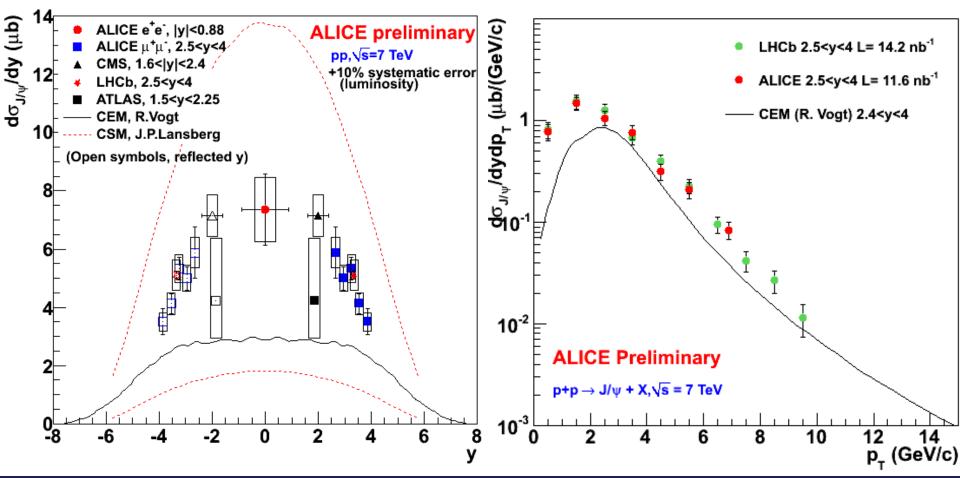
 $\sigma_{J/\psi}(2.5 < y < 4) = 7.65 \pm 0.19(stat) \pm 1.10(syst)_{-1.27}^{+0.87}(syst.pol.) \,\mu b$

Systematic errors

Muons	Source of systematic error				
	Uncertainty on signal extraction	7.5 %			
	p_T and y shapes in the MC	2%			
	Trigger efficiency	4%	polarization	λ=-1	λ=1
	Tracking efficiency	2%	Helicity	-21%	+12%
	Normalization	10 %	Collins-Soper	-31%	+15%
	Total systematic error	13.5 %			
Electrons	Source of systematic error				
Electrons	Source of systematic error Kinematics	<1%			
Electrons	-	<1% 10%	polarization	λ= -1	λ=1
Electrons	Kinematics		polarization Helicity	λ=-1 -20%	λ= 1 +10%
Electrons	Kinematics Track quality, #clusters TPC	10%			
Electrons	Kinematics Track quality, #clusters TPC PID cuts	10% 10%	Helicity	-20%	+10%

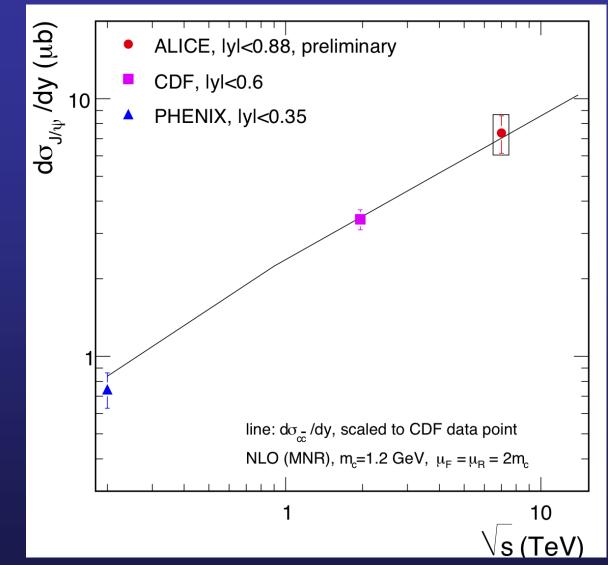

Differential cross section: $d\sigma_{J/\psi}/dp_T$ (2.5<y<4)

Very good agreement with the LHCb result in the same rapidity range

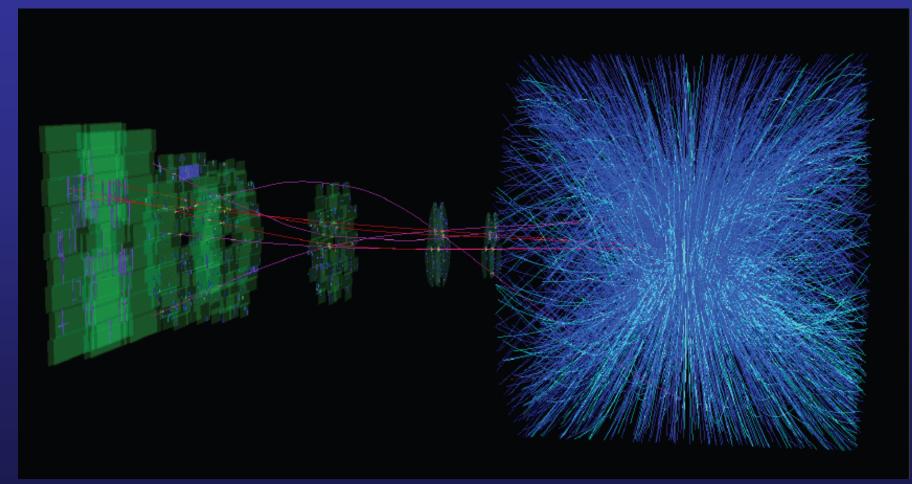

 Other sources of point to point systematic errors (signal extraction, acceptance input) vary between 3 and 10% (not yet fully evaluated)

Differential cross section: $d\sigma_{J/\psi}/dy$ (p_T>0)

- ALICE can measure the distribution of the inclusive J/ψ production in a wide rapidity range
- p_T coverage extends to zero at both central and forward rapidities

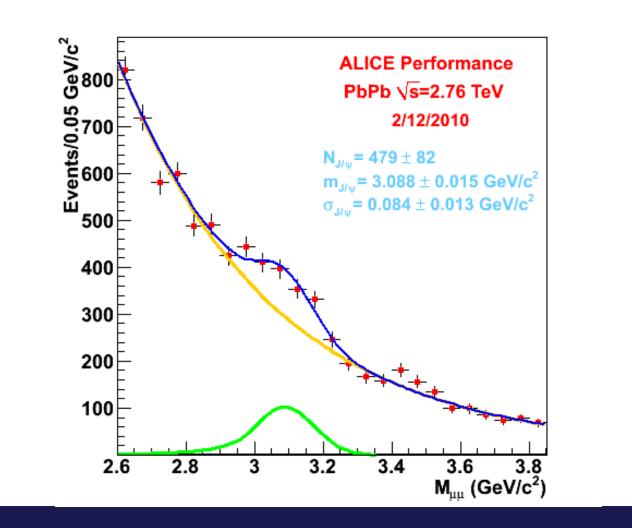

Preliminary comparison(s)

• Model calculations:


- R.Vogt, Phys. Rev. C 81 (2010) 044903
- J.P. Lansberg, arXiv:1006.2750
- CMS: p_T -integrated cross section 1.6<y<2.4 from (arXiv:1011.4193)
- ATLAS: do/dy 1.5<y<2.25, ATLAS-CONF-2010-062
- LHCb: dσ/dy 2.5<y<4 from LHCb-CONF-2010-010

\sqrt{s} -dependence of inclusive J/ ψ

• NLO calculation for $c\bar{c}$ by Mangano et al., normalized to the CDF point • Same \sqrt{s} -dependence for the inclusive J/ ψ cross section


November 2010: moving from p-p to Pb-Pb

• Higher occupancy with respect to Pb-Pb

• Re-tuning of reconstruction parameters

First J/ ψ signal from Pb-Pb collisions

- The J/ ψ is not completely suppressed!
- Expected final statistics for Pb run $\rightarrow O(10^3)$
- Extract R_{AA} in (some) centrality bins

Conclusions, perspectives

ALICE has measured inclusive J/ψ production

- Over a wide rapidity range (-0.88<y<0.88, 2.5<y<4)</p>
 - With good coverage down to $p_T=0$

Next steps, in the dimuon channel, with higher statistics:

- Extend the analysis to other charmonium ($\psi(2S)$) and bottomonium states

Integrated and differential J/ ψ polarization study

Pb-Pb run close to be completed

 J/ψ signal observed

Next step: nuclear modification factor vs centrality