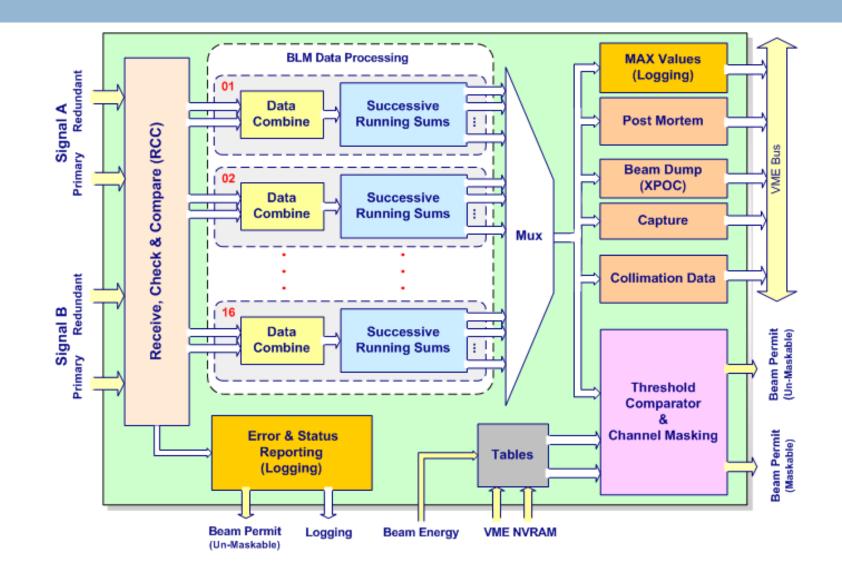
RELIABILITY TESTS OF THE LHC BEAM LOSS MONITORING FPGA FIRMWARE

Csaba F. Hajdu

Outline

- Introduction
 - The LHC Beam Loss Monitoring system
 - The Threshold Comparator firmware
 - Verification: Motivation
- Verification methodology
 - Simulation
 - Hardware-based testing
 - Software-based testing
- Procedure for new release
- Conclusion

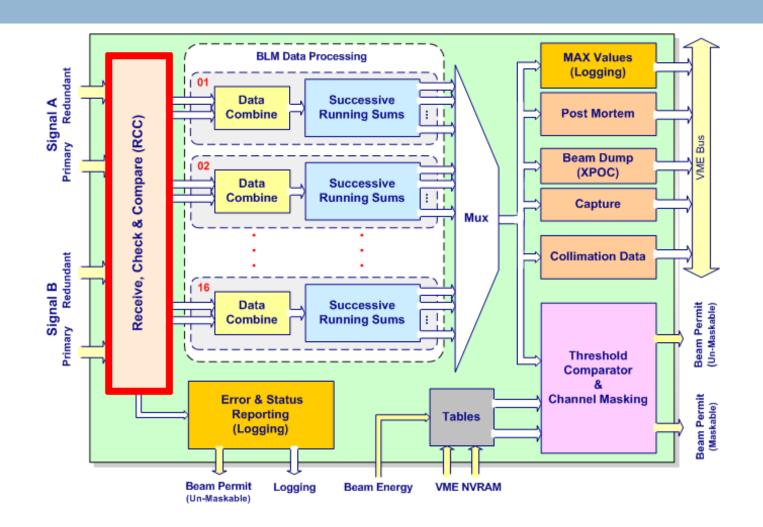

1/1. Introduction

The LHC Beam Loss Monitoring system

- The LHC Beam Loss Monitoring system
 - One of the most critical protection systems
 - Protects magnets from quenches, collider from damage
 - Provides data for diagnostics and machine tuning
 - Nearly 4'000 monitors
 - Ionization Chambers (IC), Secondary Emission Monitors (SEM)
 - Data acquisition: Current to Frequency Converter (CFC)
 - Data processing: Threshold Comparator (TC)
 - FPGA-based
 - Calculation of integrals over different time windows
 - Beam abort trigger when necessary

1/2. Introduction

The Threshold Comparator firmware


1/3. Introduction

Verification: Motivation

- Verification of the Threshold Comparator firmware
 - Verification: about 70% of the design cycle (Doulos)
- Sequential digital design of great complexity
 - Exhaustive verification impractical
 - Comprehensive verification environment
 - Different approaches of verification targeting different aspects of design
 - Functional simulation
 - Hardware-based approach
 - Software-based approach

2/1. Simulation

Scope

2/2. Simulation The RCC block

- □ The RCC block
 - Receives the redundant input signals from TLKs
 - Checks packets for errors
 - CRC, Card ID, Frame ID, link unavailable
 - Can issue beam abort triggers as required
 - Decides which packet to use for further processing

- Functional simulation
 - Verify compliance to functional requirements of spec
- Testbench (ModelSim)
 - "Black box" design methodology
 - Based only on specification
 - Stimulus read from file
 - Automatic checking of outputs
 - Comparison of versions
 - Regression testing
 - Detection of new bugs

2/4. Simulation

Sample output waveforms

Messages			Ţ		۲		Ţ			
Messages	00	00			00		\$ <u>00</u>)	00	
👸 🖬 🤣 /rcc_tb/data_cha	50BC	50BC			50BC		50BC		50BC	
<pre>/rcc_tb/data_cna /rcc_tb/txen_txer_chb</pre>	00	00			00)	00	
📻 🔶 /rcc_tb/data_chb	50BC	50BC			50BC				50BC	
✓ /rcc_tb/reset	0									
💽 🕂 🕂 🕞 🕞 🕞 🕞	0000000000330000(000000000070000	00000		000000000000000000000000000000000000000		000000000000000000000000000000000000000		000000000000000000000000000000000000000	
🚽 🔷 /rcc_tb/dready_parta	0						I			
/rcc_tb/dready_partb	0						I			
/rcc_tb/dump	0						1			
	0						1			
/rcc_tb/errb	0									
/rcc_tb/errc	0									
/rcc_tb/errd	0									
/rcc_tb/errf	0									
	0									
	0		1				1			
🛎 📰 💿 👘 Now	1100537500 ps		350000000 ps		400000	1000 ps		450000000 ps		50000
🔓 🌽 😑 Cursor 1	460986.982 ns	460986982 ps								

Output waveform for optical inspection

Time

2/5. Simulation

Sample output waveforms

Time

2/6. Simulation

Automatic output checker – Description

Automatic output checker

- Checks the output of the block vs. the expected output based on stimulus from file
- Complements visual inspection

```
507
508
          -- Both links are down
509
          IF (TxData ChA.LKup = '0') AND (TxData ChB.LKup = '0') THEN
510
            WAIT UNTIL (ERRA OR ERRB OR ERRC OR ERRD OR ERRF) = '1' FOR 1000 ns;
511
            IF (ERRA OR ERRB OR ERRC OR ERRD OR ERRF) = '1' THEN
512
              REPORT "Both links are down, error flag INCORRECTLY RAISED!" SEVERITY ERROR;
513
              WAIT FOR 30 ns; -- Wait one clock cycle and some more
514
            END IF
515
516
            IF DUMP = '1' THEN
              REPORT "Both links are down, dump correctly generated";
517
518
            ELSE
519
              REPORT "Both links are down, DUMP MISSING!";
520
            END IF:
521
          -- At least one of the links is up
522
          ELSE
```

Code snippet of the automatic output checker

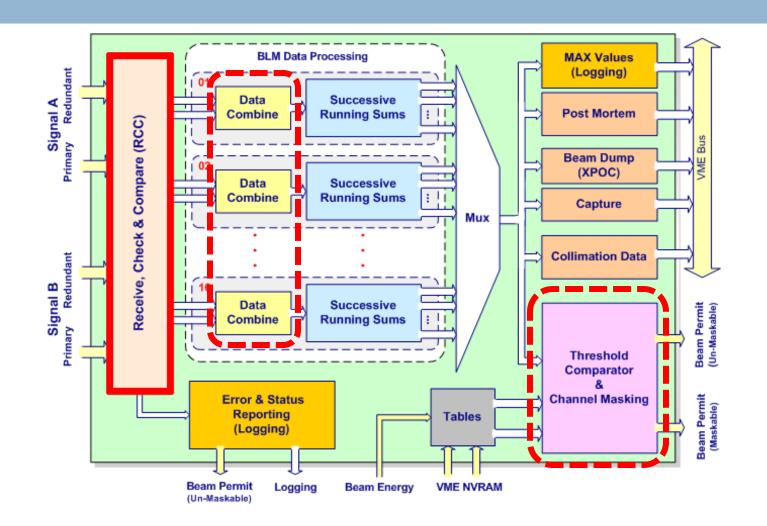
2/7. Simulation

Automatic output checker – Sample outputs

Transcript

** Note: Dump correctly generated by error flags # Time: 421067500 ps Iteration: 0 Instance: /rcc tb # ** Note: ChA CRC error correctly reported # Time: 461042500 ps Iteration: 0 Instance: /rcc_tb # ** Note: ChB CRC error correctly reported # Time: 461042500 ps Iteration: 0 Instance: /rcc_tb # ** Note: CRC comparison error correctly reported # Time: 461042500 ps Iteration: 0 Instance: /rcc_tb # ** Note: Dump correctly generated by error flags # Time: 461067500 ps Iteration: 0 Instance: /rcc tb # ** Note: ChB CRC error correctly reported # Time: 501042500 ps Iteration: 0 Instance: /rcc tb # ** Note: CRC comparison error correctly reported # Time: 501042500 ps Iteration: 0 Instance: /rcc tb # ** Note: ChA CRC error correctly reported # Time: 581042500 ps Iteration: 0 Instance: /rcc_tb # ** Note: CRC comparison error correctly reported # Time: 581042500 ps Iteration: 0 Instance: /rcc_tb # ** Note: ChA CRC error correctly reported # Time: 621042500 ps Iteration: 0 Instance: /rcc tb # ** Note: CRC comparison error correctly reported # Time: 621042500 ps Iteration: 0 Instance: /rcc_tb # ** Note: ERRFpc correctly reported # Time: 701042500 ps Iteration: 0 Instance: /rcc_tb

Error-free output


Transcript

#	** Error: CID comparison error INCORRECTLY REPORTED!
	Time: 821067500 ps_Iteration: 0_Instance: /rcc_tb
#	** Error: ERRF INCORRECTLY REPORTED!
#	Time: 821067500 ps_Iteration: 0_Instance: /rcc_tb
#	** Error: CID comparison error INCORRECTLY REPORTED!
	Time: 861067500 ps_Iteration: 0_Instance: /rcc_tb
#	** Error: ERRF INCORRECTLY REPORTED!
#	Time: 861067500 ps_Iteration: 0_Instance: /rcc_tb
#	** Error: CID comparison error INCORRECTLY REPORTED!
#	Time: 901067500 ps_Iteration: 0_Instance: /rcc_tb
#	** Error: ERRF INCORRECTLY REPORTED!
#	Time: 901067500 ps_Iteration: 0_Instance: /rcc_tb
#	** Error: Both links are down, error flag INCORRECTLY RAISED!
#	Time: 941042500 ps_Iteration: 0_Instance: /rcc_tb
#	** Note: Both links are down, dump correctly generated
#	Time: 941072500 ps_Iteration: 0_Instance: /rcc_tb
#	** Error: CID comparison error INCORRECTLY REPORTED!
#	Time: 981067500 ps_Iteration: 0_Instance: /rcc_tb
#	** Error: ERRF INCORRECTLY REPORTED!
	Time: 981067500 ps_Iteration: 0_Instance: /rcc_tb
#	** Error: Both links are down, error flag INCORRECTLY RAISED!
#	Time: 1021042500 ps_Iteration: 0_Instance: /rcc_tb
#	** Note: Both links are down, dump correctly generated
#	Time: 1021072500 ps_Iteration: 0_Instance: /rcc_tb

Output with errors

3/1. Hardware-based check

Scope

3/2. Hardware-based check

Motivation

□ In situ test of the TC in VME crate

Emulation of output signals of CFC

TC architecture

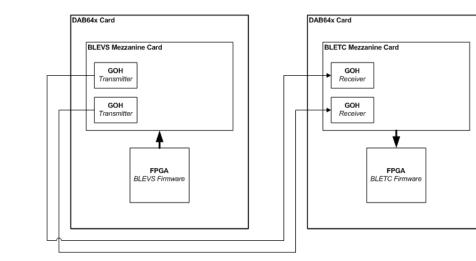
- Bl standard DAB64x card
- Optical receiver mezzanine
 4 TLKs, signal from 2 CFCs
 FPGA processing firmware

3/3. Hardware-based check

The "Vertical Slice" card

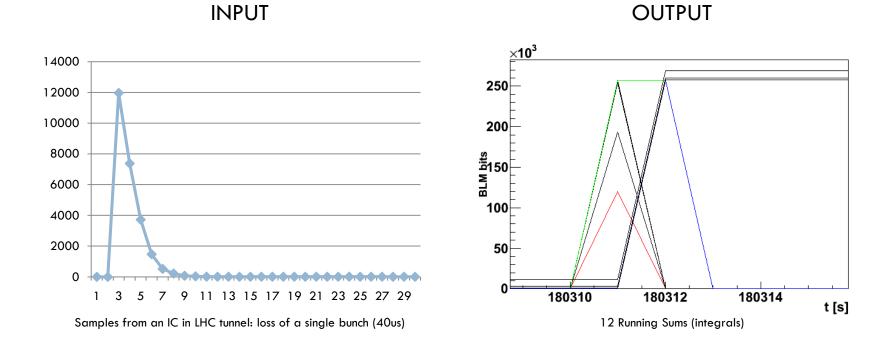
New mezzanine for DAB64x card

Two standard Gigabit Optical Hybrid transmitters


- Emulation of one CFC; more with optical splitters
- Custom FPGA firmware

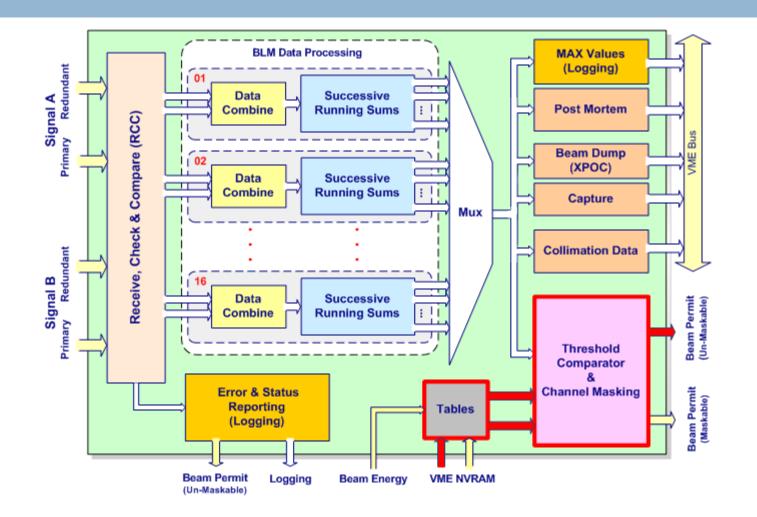
3/4. Hardware-based check

Installation



3/5. Hardware-based check

- Arbitrary Tx data
 - Comparison of different TC firmware versions
 - Playback of LHC capture data for analysis
- Tx errors
 - CRC, CID, FID
- Wrong configuration
- Errors in physical layer
- Manual testing procedure
 - Results read out in Expert application


3/6. Hardware-based check

Features – Playback of capture data

4/1. Software-based check

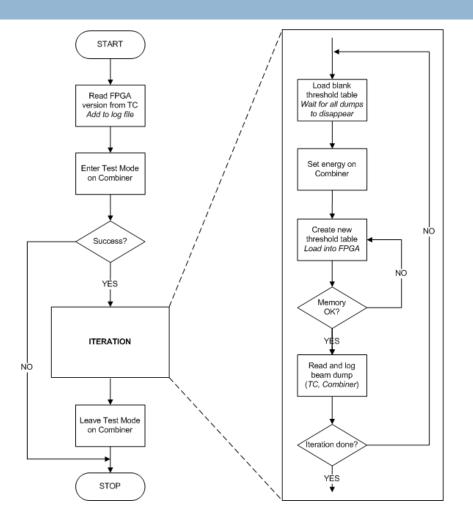
Scope

4/2. Software-based check

Description

- Exhaustive verification of the behavior of the Threshold Comparator block
 - Every threshold value has to trigger one by one
 - 16 cards/crate
 - 16 detectors/TC card
 - 12 integration windows/detector
 - 32 beam energy levels
 - 98'304 testcases/crate
- VME readout check

The same testcase repeated 500'000 times


4/3. Software-based check

The "Exhaustive Threshold Triggering"

- VME crates
 - "Front End Computer" (FEC)
 - Combiner (CS)
- Algorithm running on FEC
 - Loads threshold maps causing one chosen threshold to trigger a beam abort
 - Checks the result on TC and CS

4/4. Software-based check

Algorithm

5. New release

Procedure

- A few hours of manual testing
 - Carry out simulation with testbench
 - If RCC block has been modified
 - Perform hardware-based test
 - CRC errors
 - CID errors
 - FID errors
 - Lost frames
- 24 hours of automatic testing
 - Execute the software-based "Exhaustive testing"
- All tests need to pass!
- Inspection of the code changes by the verification engineer
 Independent review

6. Conclusion

- Numerous bugs identified and fixed
- Number of bugs found vs. time converging
 - Reason for optimism
- No bugs found during operation
 - Sheer good luck?